Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2515-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-8-2515-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives
B. Maronga
CORRESPONDING AUTHOR
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
M. Gryschka
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
R. Heinze
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
F. Hoffmann
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
F. Kanani-Sühring
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
M. Keck
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
K. Ketelsen
Software Consultant, Berlin, Germany
M. O. Letzel
Ingenieurbüro Lohmeyer GmbH & Co. KG, Karlsruhe, Germany
M. Sühring
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
S. Raasch
Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany
Related authors
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Mohamed H. Salim, Sebastian Schubert, Jaroslav Resler, Pavel Krč, Björn Maronga, Farah Kanani-Sühring, Matthias Sühring, and Christoph Schneider
Geosci. Model Dev., 15, 145–171, https://doi.org/10.5194/gmd-15-145-2022, https://doi.org/10.5194/gmd-15-145-2022, 2022
Short summary
Short summary
Radiative transfer processes are the main energy transport mechanism in urban areas which influence the surface energy budget and drive local convection. We show here the importance of each process to help modellers decide on how much detail they should include in their models to parameterize radiative transfer in urban areas. We showed how the flow field may change in response to these processes and the essential processes needed to assure acceptable quality of the numerical simulations.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Katrin Frieda Gehrke, Matthias Sühring, and Björn Maronga
Geosci. Model Dev., 14, 5307–5329, https://doi.org/10.5194/gmd-14-5307-2021, https://doi.org/10.5194/gmd-14-5307-2021, 2021
Michal Belda, Jaroslav Resler, Jan Geletič, Pavel Krč, Björn Maronga, Matthias Sühring, Mona Kurppa, Farah Kanani-Sühring, Vladimír Fuka, Kryštof Eben, Nina Benešová, and Mikko Auvinen
Geosci. Model Dev., 14, 4443–4464, https://doi.org/10.5194/gmd-14-4443-2021, https://doi.org/10.5194/gmd-14-4443-2021, 2021
Short summary
Short summary
The analysis summarizes how sensitive the modelling of urban environment is to changes in physical parameters describing the city (e.g. reflectivity of surfaces) and to several heat island mitigation scenarios in a city quarter in Prague, Czech Republic. We used the large-eddy simulation modelling system PALM 6.0. Surface parameters connected to radiation show the highest sensitivity in this configuration. For heat island mitigation, urban vegetation is shown to be the most effective measure.
Jens Pfafferott, Sascha Rißmann, Matthias Sühring, Farah Kanani-Sühring, and Björn Maronga
Geosci. Model Dev., 14, 3511–3519, https://doi.org/10.5194/gmd-14-3511-2021, https://doi.org/10.5194/gmd-14-3511-2021, 2021
Short summary
Short summary
The building model is integrated via an urban surface model into the urban climate model.
There is a strong interaction between the built environment and the urban climate.
According to the building energy concept, the energy demand results in a waste heat; this is directly transferred to the urban environment.
The impact of buildings on the urban climate is defined by different physical building parameters with different technical facilities for ventilation, heating and cooling.
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/gmd-14-3317-2021, https://doi.org/10.5194/gmd-14-3317-2021, 2021
Short summary
Short summary
We demonstrate the capability of the PALM model system version 6.0 to simulate urban boundary layers. The studied situation includes a real-world building setup of the HafenCity area in Hamburg, Germany. We evaluate the simulation results against wind-tunnel measurements utilizing PALM's virtual measurement module. The comparison reveals an overall high agreement between simulation results and wind-tunnel measurements including mean wind speed and direction as well as turbulence statistics.
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Short summary
Large-eddy simulation (LES) of the urban atmospheric boundary layer involves a large separation of turbulent scales, leading to prohibitive computational costs. An online LES–LES nesting scheme is implemented into the PALM model system 6.0 to overcome this problem. Test results show that the accuracy within the high-resolution nest domains approach the non-nested high-resolution reference results. The nesting can reduce the CPU by time up to 80 % compared to the fine-resolution reference runs.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Wieke Heldens, Cornelia Burmeister, Farah Kanani-Sühring, Björn Maronga, Dirk Pavlik, Matthias Sühring, Julian Zeidler, and Thomas Esch
Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, https://doi.org/10.5194/gmd-13-5833-2020, 2020
Short summary
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Helge Knoop, Felix Ament, and Björn Maronga
Adv. Sci. Res., 16, 143–148, https://doi.org/10.5194/asr-16-143-2019, https://doi.org/10.5194/asr-16-143-2019, 2019
Short summary
Short summary
This paper proposes a new generic method to define and detect wind gusts from high-resolution wind velocity data. The method describes any specific gust by an amplitude and period and allows the detection of individual gusts in time using wavelet-analysis. The result of a full gust analysis using this method yields a so-called characteristic gust distribution for the respective wind velocity data, which can serve as a direct link to the physical impact a particular gust has on e.g. an aircraft.
Johannes Schwenkel and Björn Maronga
Atmos. Chem. Phys., 19, 7165–7181, https://doi.org/10.5194/acp-19-7165-2019, https://doi.org/10.5194/acp-19-7165-2019, 2019
Short summary
Short summary
In this paper we study the influence of the cloud microphysical treatments in high-resolution numerical simulation models on radiation fog events, which are still unsatisfactorily predicted in weather forecasts. Our results showed that the choice of which scheme is used can have a significant impact on the strength and life cycle of the fog.
Mona Kurppa, Antti Hellsten, Pontus Roldin, Harri Kokkola, Juha Tonttila, Mikko Auvinen, Christoph Kent, Prashant Kumar, Björn Maronga, and Leena Järvi
Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, https://doi.org/10.5194/gmd-12-1403-2019, 2019
Short summary
Short summary
This paper describes the implementation of a sectional aerosol module, SALSA, into the PALM model system 6.0. The first evaluation study shows excellent agreements with measurements. Furthermore, we show that ignoring the dry deposition of aerosol particles can overestimate aerosol number concentrations by 20 %, whereas condensation and dissolutional growth increase the total aerosol mass by over 10 % in this specific urban environment.
Jaroslav Resler, Pavel Krč, Michal Belda, Pavel Juruš, Nina Benešová, Jan Lopata, Ondřej Vlček, Daša Damašková, Kryštof Eben, Přemysl Derbek, Björn Maronga, and Farah Kanani-Sühring
Geosci. Model Dev., 10, 3635–3659, https://doi.org/10.5194/gmd-10-3635-2017, https://doi.org/10.5194/gmd-10-3635-2017, 2017
Short summary
Short summary
A realistic numerical modelling of urban climate still poses a serious challenge. The paper describes a new urban surface model (USM), integrated into large-eddy simulation model PALM. The USM covers the most important urban canopy processes (e.g. radiation, energy balance on surfaces, thermal diffusion). The model was tested in the real conditions of a city and shows good agreement with observations. The USM is optimized for high-performance computing systems and is freely available.
Prasanth Prabhakaran, Timothy A. Myers, Fabian Hoffmann, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2025-2935, https://doi.org/10.5194/egusphere-2025-2935, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We explore how climate change and aerosol affect the evolution of marine low-clouds. Using high-resolution simulations, we find that warming has a stronger impact on these clouds, but aerosol becomes more important after the clouds form precipitation. Our results suggest that attempts to brighten these clouds using aerosol may become less effective in a warmer future due to the decrease in cloud cover.
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025, https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Short summary
Injecting sea salt aerosols into marine stratiform clouds can distribute the cloud water over more droplets in smaller sizes. This process is expected to make the clouds brighter, allowing them to reflect more sunlight back to space. However, it may also cause the clouds to lose water over time, reducing their ability to reflect sunlight. We use a computer model to show that the loss of cloud water occurs relatively quickly and does not completely offset the initial brightening.
Jung-Sub Lim, Yign Noh, Hyunho Lee, and Fabian Hoffmann
Atmos. Chem. Phys., 25, 5313–5329, https://doi.org/10.5194/acp-25-5313-2025, https://doi.org/10.5194/acp-25-5313-2025, 2025
Short summary
Short summary
Rain formation in warm clouds begins when small droplets collide, but this process can be slow without larger droplets. We used simulations to explore the role of bigger droplets, known as precipitation embryos, in triggering rain. We found that they speed up rain only when their size and number exceed a critical threshold. This threshold becomes larger when collisions are naturally efficient, such as in clouds with broad droplet size distributions or strong turbulence.
Graham Feingold, Franziska Glassmeier, Jianhao Zhang, and Fabian Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-1869, https://doi.org/10.5194/egusphere-2025-1869, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Scientists usually use snapshots of atmospheric data to glean understanding of time-evolving atmospheric processes. We examine how much can be learned about processes from snapshots using examples from cloud and atmospheric physics. We couch the analysis in terms of Boltzmann's theory of ergodic systems, space-time-exchange, and the Deborah number -- concepts that are commonly applied in other branches of physics. We discuss the reasons for the varying degrees of success.
Levin Rug, Willi Schimmel, Fabian Hoffmann, and Oswald Knoth
EGUsphere, https://doi.org/10.5194/egusphere-2025-380, https://doi.org/10.5194/egusphere-2025-380, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present the Chemical Mechanism Integrator (Cminor) v1.0, a tool to predict concentrations of chemical compounds undergoing arbitrary reactions. Cminor is an advanced, open-source solver to model either combustion chemistry, or atmospheric chemistry and its direct influence on condensation of cloud droplets and the subsequent processing of aerosol. It uses the superdroplet idea, making it particularly feasible for coupling with such models, which is part of future work.
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025, https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Short summary
Large-eddy simulations of a convection cloud chamber show two new microphysics regimes, cloud oscillation and cloud collapse, due to haze–cloud interactions. Our results suggest that haze particles and their interactions with cloud droplets should be considered especially in polluted conditions. To properly simulate haze–cloud interactions, we need to resolve droplet activation and deactivation processes, instead of using Twomey-type activation parameterization.
Sasu Karttunen, Matthias Sühring, Ewan O'Connor, and Leena Järvi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-235, https://doi.org/10.5194/gmd-2024-235, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper presents PALM-SLUrb, a single-layer urban canopy model for the PALM system, designed to simulate urban-atmosphere interactions without resolving flow around individual buildings. The model is described in detail and evaluated against grid-resolved urban canopy simulations, demonstrating its ability to model urban surfaces accurately. By bridging the gap between computational efficiency and physical detail, PALM-SLUrb broadens PALM's potential for urban climate research.
Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-3893, https://doi.org/10.5194/egusphere-2024-3893, 2024
Short summary
Short summary
Clouds reflect a substantial portion of the incoming solar radiation back into space. This capacity is determined by the number of cloud droplets, which in turn is influenced by the number of aerosol particles, forming the basis for aerosol-cloud-climate interactions. In this study, we use a simple mixed-layer approach to understand the effect of aerosol on cloud water in non-precipitating stratocumulus.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
Atmos. Chem. Phys., 24, 13403–13412, https://doi.org/10.5194/acp-24-13403-2024, https://doi.org/10.5194/acp-24-13403-2024, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol–cloud–climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024, https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024, https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721, https://doi.org/10.5194/egusphere-2023-1721, 2023
Preprint archived
Short summary
Short summary
We present a description and evaluation of numerical simulations of field experiment days during the CHEESEHEAD19 field campaign, conducted over a heterogeneous forested domain in Northern Wisconsin, USA. Diurnal simulations, informed and constrained by field measurements for two days during the summer and autumn were performed. The model could simulate near surface time series and profiles of atmospheric state variables and fluxes that matched relatively well with observations.
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022, https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Short summary
The response of clouds to changes in aerosol remains a large uncertainty in our understanding of the climate. Studies typically look at aerosol and cloud processes in snapshot images, measuring all properties at the same time. Here we use multiple images to characterise how cloud temporal development responds to aerosol. We find a reduction in liquid water path with increasing aerosol, party due to feedbacks. This suggests the aerosol impact on cloud water may be weaker than in previous studies.
Mohamed H. Salim, Sebastian Schubert, Jaroslav Resler, Pavel Krč, Björn Maronga, Farah Kanani-Sühring, Matthias Sühring, and Christoph Schneider
Geosci. Model Dev., 15, 145–171, https://doi.org/10.5194/gmd-15-145-2022, https://doi.org/10.5194/gmd-15-145-2022, 2022
Short summary
Short summary
Radiative transfer processes are the main energy transport mechanism in urban areas which influence the surface energy budget and drive local convection. We show here the importance of each process to help modellers decide on how much detail they should include in their models to parameterize radiative transfer in urban areas. We showed how the flow field may change in response to these processes and the essential processes needed to assure acceptable quality of the numerical simulations.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021, https://doi.org/10.5194/gmd-14-5435-2021, 2021
Short summary
Short summary
In this paper, we provide a technical description of a newly developed interface for coupling the PALM model system 6.0 to the weather prediction model COSMO. The interface allows users of PALM to simulate the detailed atmospheric flow for relatively small regions of tens of kilometres under specific weather conditions, for instance, periods around observation campaigns or extreme weather situations. We demonstrate the interface using a benchmark simulation.
Katrin Frieda Gehrke, Matthias Sühring, and Björn Maronga
Geosci. Model Dev., 14, 5307–5329, https://doi.org/10.5194/gmd-14-5307-2021, https://doi.org/10.5194/gmd-14-5307-2021, 2021
Jaroslav Resler, Kryštof Eben, Jan Geletič, Pavel Krč, Martin Rosecký, Matthias Sühring, Michal Belda, Vladimír Fuka, Tomáš Halenka, Peter Huszár, Jan Karlický, Nina Benešová, Jana Ďoubalová, Kateřina Honzáková, Josef Keder, Šárka Nápravníková, and Ondřej Vlček
Geosci. Model Dev., 14, 4797–4842, https://doi.org/10.5194/gmd-14-4797-2021, https://doi.org/10.5194/gmd-14-4797-2021, 2021
Short summary
Short summary
We describe validation of the PALM model v6.0 against measurements collected during two observational campaigns in Dejvice, Prague. The study focuses on the evaluation of the newly developed or improved radiative and energy balance modules in PALM related to urban modelling. In addition to the energy-related quantities, it also evaluates air flow and air quality under street canyon conditions.
Michal Belda, Jaroslav Resler, Jan Geletič, Pavel Krč, Björn Maronga, Matthias Sühring, Mona Kurppa, Farah Kanani-Sühring, Vladimír Fuka, Kryštof Eben, Nina Benešová, and Mikko Auvinen
Geosci. Model Dev., 14, 4443–4464, https://doi.org/10.5194/gmd-14-4443-2021, https://doi.org/10.5194/gmd-14-4443-2021, 2021
Short summary
Short summary
The analysis summarizes how sensitive the modelling of urban environment is to changes in physical parameters describing the city (e.g. reflectivity of surfaces) and to several heat island mitigation scenarios in a city quarter in Prague, Czech Republic. We used the large-eddy simulation modelling system PALM 6.0. Surface parameters connected to radiation show the highest sensitivity in this configuration. For heat island mitigation, urban vegetation is shown to be the most effective measure.
Jens Pfafferott, Sascha Rißmann, Matthias Sühring, Farah Kanani-Sühring, and Björn Maronga
Geosci. Model Dev., 14, 3511–3519, https://doi.org/10.5194/gmd-14-3511-2021, https://doi.org/10.5194/gmd-14-3511-2021, 2021
Short summary
Short summary
The building model is integrated via an urban surface model into the urban climate model.
There is a strong interaction between the built environment and the urban climate.
According to the building energy concept, the energy demand results in a waste heat; this is directly transferred to the urban environment.
The impact of buildings on the urban climate is defined by different physical building parameters with different technical facilities for ventilation, heating and cooling.
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/gmd-14-3317-2021, https://doi.org/10.5194/gmd-14-3317-2021, 2021
Short summary
Short summary
We demonstrate the capability of the PALM model system version 6.0 to simulate urban boundary layers. The studied situation includes a real-world building setup of the HafenCity area in Hamburg, Germany. We evaluate the simulation results against wind-tunnel measurements utilizing PALM's virtual measurement module. The comparison reveals an overall high agreement between simulation results and wind-tunnel measurements including mean wind speed and direction as well as turbulence statistics.
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Short summary
Large-eddy simulation (LES) of the urban atmospheric boundary layer involves a large separation of turbulent scales, leading to prohibitive computational costs. An online LES–LES nesting scheme is implemented into the PALM model system 6.0 to overcome this problem. Test results show that the accuracy within the high-resolution nest domains approach the non-nested high-resolution reference results. The nesting can reduce the CPU by time up to 80 % compared to the fine-resolution reference runs.
Pavel Krč, Jaroslav Resler, Matthias Sühring, Sebastian Schubert, Mohamed H. Salim, and Vladimír Fuka
Geosci. Model Dev., 14, 3095–3120, https://doi.org/10.5194/gmd-14-3095-2021, https://doi.org/10.5194/gmd-14-3095-2021, 2021
Short summary
Short summary
The adverse effects of an urban environment, e.g. heat stress and air pollution, pose a risk to health and well-being. Precise modelling of the urban climate is crucial to mitigate these effects. Conventional atmospheric models are inadequate for modelling the complex structures of the urban environment; in particular, they lack a 3-D model of radiation and its interaction with surfaces and the plant canopy. The new RTM simulates these processes within the PALM-4U urban climate model.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Wieke Heldens, Cornelia Burmeister, Farah Kanani-Sühring, Björn Maronga, Dirk Pavlik, Matthias Sühring, Julian Zeidler, and Thomas Esch
Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, https://doi.org/10.5194/gmd-13-5833-2020, 2020
Short summary
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 13, 5119–5145, https://doi.org/10.5194/gmd-13-5119-2020, https://doi.org/10.5194/gmd-13-5119-2020, 2020
Short summary
Short summary
Particle-based cloud models use simulation particles for the representation of cloud particles like droplets or ice crystals. The collision and merging of cloud particles (i.e. collisional growth a.k.a. collection in the case of cloud droplets and aggregation in the case of ice crystals) was found to be a numerically challenging process in such models. The study presents verification exercises in a 1D column model, where sedimentation and collisional growth are the only active processes.
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
Short summary
The impact of anthropogenic aerosols on clouds is a key uncertainty in climate change. This study analyses large-domain simulations with a new high-resolution model to investigate the differences in clouds between 1985 and 2013 comparing multiple observational datasets. The differences in aerosol and in cloud droplet concentrations are clearly detectable. For other quantities, the detection and attribution proved difficult, despite a substantial impact on the Earth's energy budget.
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Christopher Moseley, Ieda Pscheidt, Guido Cioni, and Rieke Heinze
Atmos. Chem. Phys., 20, 2891–2910, https://doi.org/10.5194/acp-20-2891-2020, https://doi.org/10.5194/acp-20-2891-2020, 2020
Short summary
Short summary
In this paper, we analyze a climate simulation over Germany of a continuous period in May and June 2016, with resolutions of 600 m, 300 m, and 150 m. This resolution is high enough that strong convective rain events like rain showers and thunderstorms are sufficiently resolved. Our analysis shows that the tendency of convection to organize is improved at higher resolution and that the highest-resolution simulation is closest to weather radar data.
Franziska Glassmeier, Fabian Hoffmann, Jill S. Johnson, Takanobu Yamaguchi, Ken S. Carslaw, and Graham Feingold
Atmos. Chem. Phys., 19, 10191–10203, https://doi.org/10.5194/acp-19-10191-2019, https://doi.org/10.5194/acp-19-10191-2019, 2019
Short summary
Short summary
The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to certain cloud properties. We derive the dependence of cloud fraction, cloud albedo, and the relative cloud radiative effect on the number of cloud droplets and on liquid water path from a large set of detailed simulations of stratocumulus clouds.
Helge Knoop, Felix Ament, and Björn Maronga
Adv. Sci. Res., 16, 143–148, https://doi.org/10.5194/asr-16-143-2019, https://doi.org/10.5194/asr-16-143-2019, 2019
Short summary
Short summary
This paper proposes a new generic method to define and detect wind gusts from high-resolution wind velocity data. The method describes any specific gust by an amplitude and period and allows the detection of individual gusts in time using wavelet-analysis. The result of a full gust analysis using this method yields a so-called characteristic gust distribution for the respective wind velocity data, which can serve as a direct link to the physical impact a particular gust has on e.g. an aircraft.
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Short summary
Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Here, we present three novel methods for calibrating vertically pointing cloud radars. These calibration methods are based on microphysical processes of liquid clouds, such as the transition of cloud droplets to drizzle drops. We successfully apply the methods to cloud radar data from the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites.
Johannes Schwenkel and Björn Maronga
Atmos. Chem. Phys., 19, 7165–7181, https://doi.org/10.5194/acp-19-7165-2019, https://doi.org/10.5194/acp-19-7165-2019, 2019
Short summary
Short summary
In this paper we study the influence of the cloud microphysical treatments in high-resolution numerical simulation models on radiation fog events, which are still unsatisfactorily predicted in weather forecasts. Our results showed that the choice of which scheme is used can have a significant impact on the strength and life cycle of the fog.
Mona Kurppa, Antti Hellsten, Pontus Roldin, Harri Kokkola, Juha Tonttila, Mikko Auvinen, Christoph Kent, Prashant Kumar, Björn Maronga, and Leena Järvi
Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, https://doi.org/10.5194/gmd-12-1403-2019, 2019
Short summary
Short summary
This paper describes the implementation of a sectional aerosol module, SALSA, into the PALM model system 6.0. The first evaluation study shows excellent agreements with measurements. Furthermore, we show that ignoring the dry deposition of aerosol particles can overestimate aerosol number concentrations by 20 %, whereas condensation and dissolutional growth increase the total aerosol mass by over 10 % in this specific urban environment.
Johannes Schwenkel, Fabian Hoffmann, and Siegfried Raasch
Geosci. Model Dev., 11, 3929–3944, https://doi.org/10.5194/gmd-11-3929-2018, https://doi.org/10.5194/gmd-11-3929-2018, 2018
Short summary
Short summary
Lagrangian cloud models are a powerful tool to understand cloud microphysics and are increasingly used in the cloud physics community. In this study we present a method designed to improve the warm cloud precipitation process in such models. Our results indicate that using this method is essential for a proper representation of the collisional process of warm clouds, while maintaining an appropriate computational demand.
Jaroslav Resler, Pavel Krč, Michal Belda, Pavel Juruš, Nina Benešová, Jan Lopata, Ondřej Vlček, Daša Damašková, Kryštof Eben, Přemysl Derbek, Björn Maronga, and Farah Kanani-Sühring
Geosci. Model Dev., 10, 3635–3659, https://doi.org/10.5194/gmd-10-3635-2017, https://doi.org/10.5194/gmd-10-3635-2017, 2017
Short summary
Short summary
A realistic numerical modelling of urban climate still poses a serious challenge. The paper describes a new urban surface model (USM), integrated into large-eddy simulation model PALM. The USM covers the most important urban canopy processes (e.g. radiation, energy balance on surfaces, thermal diffusion). The model was tested in the real conditions of a city and shows good agreement with observations. The USM is optimized for high-performance computing systems and is freely available.
Fabian Hoffmann
Atmos. Chem. Phys., 17, 8343–8356, https://doi.org/10.5194/acp-17-8343-2017, https://doi.org/10.5194/acp-17-8343-2017, 2017
Short summary
Short summary
This study analyzes at which aerosol radius the mass growth leading to activation switches from diffusion to collection, marking the limit of traditional Köhler activation theory. It is found that collection becomes increasingly important for aerosols larger than 0.1 µm in dry radius and is responsible for all activations of aerosols larger than 1.0 µm. A novel particle-based cloud modeling approach is applied, in which activation can be represented without parameterizations.
Rieke Heinze, Christopher Moseley, Lennart Nils Böske, Shravan Kumar Muppa, Vera Maurer, Siegfried Raasch, and Bjorn Stevens
Atmos. Chem. Phys., 17, 7083–7109, https://doi.org/10.5194/acp-17-7083-2017, https://doi.org/10.5194/acp-17-7083-2017, 2017
Short summary
Short summary
High-resolution multi-week simulations of a measurement campaign are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two models are used in a semi-idealized setup through forcing, with output from a coarser-scale model to account for the larger-scale conditions. The boundary layer depth is in principal agreement with observations. Turbulence statistics like variance profiles agree satisfactorily with measurements.
Simon Unterstrasser, Fabian Hoffmann, and Marion Lerch
Geosci. Model Dev., 10, 1521–1548, https://doi.org/10.5194/gmd-10-1521-2017, https://doi.org/10.5194/gmd-10-1521-2017, 2017
Short summary
Short summary
In the last decade, several Lagrangian microphysical models (LCMs) have been developed which use a large number of (computational) particles to represent a cloud. In particular, the collision process leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently in various models. Three existing implementations are reviewed and extended, and their performance is evaluated by a comparison with well established analytical and bin model solutions.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Related subject area
Atmospheric sciences
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Using a data-driven statistical model to better evaluate surface turbulent heat fluxes in weather and climate numerical models: a demonstration study
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
A REtrieval Method for optical and physical Aerosol Properties in the stratosphere (REMAPv1)
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
Generalized local fractions – a method for the calculation of sensitivities to emissions from multiple sources for chemically active species, illustrated using the EMEP MSC-W model (rv5.5)
SanDyPALM v1.0: Static and Dynamic Drivers for the PALM-4U Model to Facilitate Realistic Urban Microclimate Simulations
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Accurate and fast prediction of radioactive pollution by Kriging coupled with Auto-Associative Models
Mitigating Hail Overforecasting in the 2-Moment Milbrandt-Yau Microphysics Scheme (v2.25.2_beta_04) in WRF (v4.5.1) by Incorporating the Graupel Spongy Wet Growth Process (MY2_GSWG v1.0)
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Comprehensive evaluation of iAMAS (v1.0) in simulating Antarctic meteorological fields with observations and reanalysis
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025, https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Short summary
Aerosol data assimilation has gained popularity as it combines the advantages of modelling and observation. However, few studies have addressed the challenges in the prior vertical structure. Different observations are assimilated to examine the sensitivity of assimilation to vertical structure. Results show that assimilation can optimize the dust field in general. However, if the prior introduces an incorrect structure, the assimilation can significantly deteriorate the integrity of the aerosol profile.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025, https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025, https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
Short summary
Tuning a climate model means adjusting uncertain parameters in the model to best match observations like the global radiation balance and cloud cover. This is usually done by running many simulations of the model with different settings, which can be time-consuming and relies heavily on expert knowledge. To make this process faster and more objective, we developed a machine learning emulator to create a large ensemble and apply a method called history matching to find the best settings.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025, https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025, https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Short summary
We developed a deep learning method to estimate CO2 emissions from power plants using satellite images. Trained and validated on simulated data, our model accurately predicts emissions despite challenges like cloud cover. When applied to real OCO3 satellite images, the results closely match reported emissions. This study shows that neural networks trained on simulations can effectively analyse real satellite data, offering a new way to monitor CO2 emissions from space.
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025, https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Short summary
Microphysics model-based diagnosis, such as the spectral bin model (SBM), has recently been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM has a relatively higher accuracy for dry-snow and wet-snow events, whereas it has lower accuracy for rain events. When the microphysics scheme in the SBM was optimized for the corresponding region, the accuracy for rain events improved.
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025, https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
Short summary
In winter, snow- and ice-covered artificial surfaces are important aspects of the urban climate. They may influence the magnitude of the urban heat island effect, but this is still unclear. In this study, we improved the representation of the snow and ice cover in the Town Energy Balance (TEB) urban climate model. Evaluations have shown that the results are promising for using TEB to study the climate of cold cities.
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025, https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with an upper-atmospheric extension with the physics package for numerical weather prediction (UA-ICON(NWP)). We optimized the parameters for the gravity wave parameterizations and achieved realistic modeling of the thermal and dynamic states of the mesopause regions. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025, https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary
Short summary
Reducing emissions of methane, a powerful greenhouse gas, is a top policy concern for mitigating anthropogenic climate change. The Integrated Methane Inversion (IMI) is an advanced, cloud-based software that translates satellite observations into actionable emissions data. Here we present IMI version 2.0 with vastly expanded capabilities. These updates enable a wider range of scientific and stakeholder applications from individual basin to global scales with continuous emissions monitoring.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Maurin Zouzoua, Sophie Bastin, Fabienne Lohou, Marie Lothon, Marjolaine Chiriaco, Mathilde Jome, Cécile Mallet, Laurent Barthes, and Guylaine Canut
Geosci. Model Dev., 18, 3211–3239, https://doi.org/10.5194/gmd-18-3211-2025, https://doi.org/10.5194/gmd-18-3211-2025, 2025
Short summary
Short summary
This study proposes using a statistical model to freeze errors due to differences in environmental forcing when evaluating the surface turbulent heat fluxes from numerical simulations with observations. The statistical model is first built with observations and then applied to the simulated environment to generate possibly observed fluxes. This novel method provides insight into differently evaluating the numerical formulation of turbulent heat fluxes with a long period of observational data.
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025, https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary
Short summary
This paper presents the result of many years of effort of the author, who developed an original mathematical numerical model of heat and moisture exchange processes in soil, vegetation, and snow. The author relied on her 30 years of research experience in atmospheric numerical modelling. The presented model is the fruit of the author's research on physical processes at the surface–atmosphere interface and their numerical approximation and aims at improving numerical weather forecasting and climate simulations.
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025, https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Short summary
We developed ClimKern, a Python package and radiative kernel repository, to simplify calculating radiative feedbacks and make climate sensitivity studies more reproducible. Testing of ClimKern with sample climate model data reveals that radiative kernel choice may be more important than previously thought, especially in polar regions. Our work highlights the need for kernel sensitivity analyses to be included in future studies.
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025, https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Short summary
Particle size is a key factor determining the properties of aerosol particles which have a major influence on the climate and on human health. When measuring the particle sizes, however, sometimes the sampling lines that transfer the aerosol to the measurement device distort the size distribution, making the measurement unreliable. We propose a method to correct for the distortions and estimate the true particle sizes, improving measurement accuracy.
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025, https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
Short summary
We estimate carbon monoxide emissions through inverse modeling, an approach where measurements of tracers in the atmosphere are fed to a model to calculate backwards in time (inverse) where the tracers came from. We introduce measurements from a new satellite instrument and show that, in most places globally, these on their own sufficiently constrain the emissions. This alleviates the need for additional datasets, which could shorten the delay for future carbon monoxide source estimates.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025, https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Short summary
Machine learning has the potential to aid the identification of organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning models in atmospheric sciences.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025, https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate this effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense, is consistent with radiative model calculations, and can be applied to atmospheric models with speed requirements.
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Andrin Jörimann, Timofei Sukhodolov, Beiping Luo, Gabriel Chiodo, Graham Mann, and Thomas Peter
EGUsphere, https://doi.org/10.5194/egusphere-2025-145, https://doi.org/10.5194/egusphere-2025-145, 2025
Short summary
Short summary
Aerosol particles in the stratosphere affect our climate. Climate models therefore need an accurate description of their properties and evolution. Satellites measure how strongly aerosol particles extinguish light passing through the stratosphere. We describe a method to use such aerosol extinction data to retrieve the number and sizes of the aerosol particles and calculate their optical effects. The resulting data sets for models are validated against ground-based and balloon observations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Peter Wind and Willem van Caspel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3571, https://doi.org/10.5194/egusphere-2024-3571, 2025
Short summary
Short summary
This paper presents a numerical method to assess the origin of air pollution. Combined with a numerical air pollution transport and chemistry model, it can follow the contributions from a large number of emission sources. The result is a series of maps that give the relative contributions from for example all European countries at each point.
Julian Vogel, Sebastian Stadler, Ganesh Chockalingam, Afshin Afshari, Johanna Henning, and Matthias Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2025-144, https://doi.org/10.5194/egusphere-2025-144, 2025
Short summary
Short summary
This study presents a toolkit to simplify input data creation for the urban microclimate model PALM-4U. It introduces novel methods to automate the use of open data sources. Our analysis of four test cases created from different geographic data sources shows variations in temperature, humidity, and wind speed, influenced by data quality. Validation indicates that the automated methods yield results comparable to expert-driven approaches, facilitating user-friendly urban climate modeling.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Raphaël Périllat, Sylvain Girard, and Irène Korsakissok
EGUsphere, https://doi.org/10.5194/egusphere-2024-3838, https://doi.org/10.5194/egusphere-2024-3838, 2025
Short summary
Short summary
We developed a method to improve decision-making during nuclear crises by predicting the spread of radiation more efficiently. Existing approaches are often too slow, especially when analyzing complex data like radiation maps. Our method combines techniques to simplify these maps and predict them quickly using statistical tools. This approach could help authorities respond faster and more accurately in emergencies, reducing risks to the population and the environment.
Shaofeng Hua, Gang Chen, Baojun Chen, Mingshan Li, and Xin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3834, https://doi.org/10.5194/egusphere-2024-3834, 2025
Short summary
Short summary
Hail forecasting using numerical models remains a challenge. In this study, we found that the commonly used graupel-to-hail conversion parameterization method led to hail overforecasting in heavy rainfall cases where no hail was observed. By incorporating the spongy wet growth process, we successfully mitigated hail overforecasting. The modified scheme also produced hail in real hail events. This research contributes to a better understanding of hail formation.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3512, https://doi.org/10.5194/egusphere-2024-3512, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line and Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, it is valuable for airglow research and astronomical observatories.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Qike Yang, Chun Zhao, Jiawang Feng, Gudongze Li, Jun Gu, Zihan Xia, Mingyue Xu, and Zining Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-229, https://doi.org/10.5194/gmd-2024-229, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents the first comprehensive evaluation of unstructured meshes using the iAMAS model over Antarctica, encompassing both surface and upper-level meteorological fields. Comparison with ERA5 and observational data reveals that the iAMAS model performs well in simulating the Antarctic atmosphere; iAMAS demonstrates comparable, and in some cases superior, performance in simulating temperature and wind speed in East Antarctica when compared to ERA5.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Cited articles
Abd Razak, A., Hagishima, A., Ikegaya, N., and Tanimoto, J.: Analysis of airflow over building arrays for assessment of urban wind environment, Build. Environ., 59, 56–65, 2013.
Ackerman, A. S., vanZanten, M. C., Stevens, B., Savic-Jovcic, V., Bretherton, C. S., Chlond, A., Golaz, J.-C., Jiang, H., Khairoutdinov, M., Krueger, S. K., Lewellen, D. C., Lock, A., Moeng, C.-H., Nakamura, K., Petters, M. D., Snider, J. R., Weinbrecht, S., and Zuluaf, M.: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer, Mon. Weather Rev., 137, 1083–1110, 2009.
Andrejczuk, M., Reisner, J. M., Henson, B., Dubey, M. K., and Jeffery, C. A.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008.
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, in: 1977: General Circulation Models of the Atmosphere, Methods in Computational Physics, edited by: Chang, J., 17, Berlin, 173–265, 1977.
Ayala, O., Rosa, B., and Wang, L.-P.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization, New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016, 2008.
Balsamo, G., Vitebo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A. K., and Scipal, K.: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, 2009.
Beare, R. J., Cortes, M. A. J., Cuxart, J., Esau, I., Golaz, C., Holtslag, A. A. M., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T., Lundquist, J., Mccabe, A., Macvean, M. K., Moene, A., Noh, Y., Poulos, G., Raasch, S., and Sullivan, P.: An intercomparison of large-eddy simulations of the stable boundary layer, Bound.-Lay. Meteorol., 118, 247–272, 2006.
Beyrich, F. and Mengelkamp, H.-T.: Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment: an overview, Bound.-Lay. Meteorol., 121, 5–32, 2006.
Blackadar, A. K.: Turbulence and Diffusion in the Atmosphere, Springer, Berlin, Heidelberg, New York, 185 pp., 1997.
Bougeault, P.: Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations against numerical data, J. Atmos. Sci., 38, 2414–2428, 1981.
Briscolini, M. and Santangelo, P.: Development of the mask method for incompressible unsteady flows, J. Comput. Phys., 84, 57–75, 1989.
Brown, K. W. and Covey, W.: The energy-budget evaluation of the micro-meteorological transfer process within a cornfield, Agr. Meteorol., 3, 73–96, 1966.
Cassiani, M., Katul, G. G., and Albertson, J. D.: The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results, Bound.-Lay. Meteorol., 126, 433–460, 2008.
Cescatti, A. and Marcolla, B.: Drag coefficient and turbulence intensity in conifer canopies, Agr. Forest Meteorol., 121, 197–206, 2004.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Ra., 91, 233–244, 2005.
Clyne, J., Mininni, P., Norton, A., and Rast, M.: Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation, New. J. Phys., 301, 1–28, 2007.
Cuijpers, J. W. M. and Duynkerke, P. G.: Large eddy simulation of trade wind cumulus clouds, J. Atmos. Sci., 50, 3894–3908, 1993.
Davies, H. C.: A lateral boundary formulation for multi-level prediction models, Q. J. Roy. Meteor. Soc., 102, 405–418, 1976.
Deardorff, J. W.: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence, J. Fluid. Eng.-T. ASME, 95, 429–438, 1973.
Deardorff, J. W.: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer, Bound.-Lay. Meteorol., 7, 81–106, 1974.
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, 1980.
Detering, H. W. and Etling, D.: Application of the E−ε turbulence model to the atmospheric boundary layer, Bound.-Lay. Meteorol., 33, 113–133, 1985.
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M. and Brdar, D.: Large eddy simulation using the general circulation model ICON, J. Adv. Mod. Earth Syst., 07, https://doi.org/10.1002/2015MS000431, 2015.
Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D. and Kühn, M.: The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms, J. Wind Eng. Ind. Aerodyn., https://doi.org/10.1016/j.jweia.2014.12.011, 2015.
Dupont, S. and Brunet, Y.: Coherent structures in canopy edge flow: a large-eddy simulation study, J. Fluid Mech., 630, 93–128, 2009.
Edwards, J. M., Basu, S., Bosveld, F. C., and Holtslag, A. A. M.: The impact of radiation on the GABLS3 large-eddy simulation through the night and during the morning transition, Bound.-Lay. Meteorol., 152, 189–211, 2014.
Emanuel, K. A.: Atmospheric Convection, Oxford University Press, 1994.
Esau, I.: Simulation of Ekman Boundary Layers by Large Eddy Model with Dynamic Mixed Subfilter Closure, Env. Fluid. Mech., 4, 273–303, 2004.
Esau, I.: Indirect air-sea interactions simulated with a coupled turbulence-resolving model, Ocean Dynam., 64, 689–705, https://doi.org/10.1007/s10236-014-0712-y, 2014.
Finnigan, J. J., Shaw, R. H., and Patton, E. G.: Turbulence structure above a vegetation canopy, J. Fluid Mech., 637, 387–424, 2009.
Frigo, M. and Johnson, S. G.: FFTW: an adaptive software architecture for the FFT, in: Proc. of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 381–1384, 1998.
Geoffroy, O., Brenguier, J.-L., and Burnet, F.: Parametric representation of the cloud droplet spectra for LES warm bulk microphysical schemes, Atmos. Chem. Phys., 10, 4835–4848, https://doi.org/10.5194/acp-10-4835-2010, 2010.
Grabowski, W. M., Andrejczuk, M., and Wang, L.-P.: Droplet growth in a bin warm-rain scheme with Twomey CCN activation, Atmos. Res., 99, 290–301, 2011.
Gropp, W., Lusk, E., and Skjellum, A.: Using MPI: Portable Parallel Programming with the Message Passing Interface, 2nd Edn., MIT Press, Cambridge, MA, 1999.
Gryschka, M. and Raasch, S.: Roll convection during a cold air outbreak: a large-eddy simulation with stationary model domain, Geophys. Res. Lett., 32, L14805, https://doi.org/10.1029/2005GL022872, 2005.
Gryschka, M., Drüe, C., Etling, D., and Raasch, S.: On the influence of sea-ice inhomogeneities onto roll convection in cold-air outbreaks, Geophys. Res. Lett., 35, L23804, https://doi.org/10.1029/2008GL035845, 2008.
Gryschka, M., Fricke, J., and Raasch, S.: On the impact of forced roll convection on vertical turbulent transport in cold-air outbreaks, J. Geophys. Res., 119, 12513–12532, https://doi.org/10.1002/2014JD022160, 2014.
Hackbusch, W.: Multigrid Methods and Applications, Springer, Berlin, Heidelberg, New York, 378 pp., 1985.
Hall, W. D.: A detailed microphysical model within a two-dimensional dynamic framework: model description and preliminary results, J. Atmos. Sci., 37, 2486–2507, 1980.
Harlow, F. H. and Welch, J. E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182–2189, 1965.
Heinze, R., Raasch, S., and Etling, D.: The structure of Karman vortex streets in the atmospheric boundary layer derived from large eddy simulation, Meteorol. Z., 21, 221–237, 2012.
Heinze, R., Mironov, D., and Raasch, S.: Second-moment budgets in cloud-topped boundary layers: a large-eddy simulation study, J. Adv. Model. Earth Syst., 7, https://doi.org/10.1002/2014MS000376, 2015.
Hellsten, A. and Zilitinkevich, S.: Role of convective structures and background turbulence in the dry convective boundary layer, Bound.-Lay. Meteorol., 149, 323–353, 2013.
Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010.
Hoffmann, F., Siebert, H., Schumacher, J., Riechelmann, T., Katzwinkel, J., Kumar, B., Götzfried, P., and Raasch, S.: Entrainment and mixing at the interface of shallow cumulus clouds: results from a combination of observations and simulations, Meteorol. Z., 23, 349–368, https://doi.org/10.1127/0941-2948/2014/0597, 2014.
Hoffmann, F., Raasch, S., and Noh, Y.: Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM-LES approach, Atmos. Res., 156, 43–57, https://doi.org/10.1016/j.atmosres.2014.12.008, 2015.
Inagaki, A., Letzel, M. O., Raasch, S., and Kanda, M.: Impact of surface heterogeneity on energy imbalance: A study using LES, J. Meteorol. Soc. Jpn., 84, 187–198, 2006.
Inagaki, A., Castillo, M., Yamashita, Y., Kanda, M., and Takimoto, H.: Large-eddy simulation of coherent flow structures within a cubical canopy, Bound.-Lay. Meteorol., 142, 207–222, 2011.
Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies, S. M.: Algortihms for density, potential temperature, conservative temperature, and the freezing temperature of seawater, J. Atmos. Ocean. Tech., 23, 1709–1728, 2006.
Kanani, F., Maronga, B., Knoop, H., and Raasch, S.: Large-eddy simulation of a forest-edge flow – adjustment of a turbulent flow to the changing surface conditions at a clearing-to-forest transition, Computer animation, https://doi.org/10.5446/14311, 2014a.
Kanani, F., Maronga, B., Knoop, H., and Raasch, S.: Large-eddy simulation of the scalar transport in a forest-edge flow – spatial variability of the scalar distribution and the scalar transport downstream of a clearing-to-forest transition, Computer animation, https://doi.org/10.5446/14368, 2014b.
Kanani, F., Träumner, K., Ruck, B., and Raasch, S.: What determines the differences found in forest edge flow between physical models and atmospheric measurements? – an LES study, Meteorol. Z., 23, 33–49, 2014c.
Kanani-Sühring, F. and Raasch, S.: Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: a large-eddy simulation study, Bound.-Lay. Meteorol., 155, 1–27, https://doi.org/10.1007/s10546-014-9986-3, 2015.
Kanda, M., Inagaki, A., Letzel, M. O., Raasch, S., and Watanabe, T.: LES study of the energy imbalance problem with eddy covariance fluxes, Bound.-Lay. Meteorol., 110, 381–404, 2004.
Kanda, M., Inagaki, A., Miyamoto, T., Gryschka, M., and Raasch, S.: A new aerodynamic parameterization for real urban surfaces, Bound.-Lay. Meteorol., 148, 357–377, 2013.
Kataoka, H. and Mizuno, M.: Numerical flow computation around aerolastic 3d square cylinder using inflow turbulence, Wind Struct., 5, 379–392, 2002.
Keck, M., Raasch, S., Letzel, M. O., Ng, E., and Ren, C.: High resolution large-eddy simulations of the urban canopy flow in Macau, First International Education Forum on Energy and Environment, Hawaii's Big Island USA, 2012.
Kim, H.-J., Noh, Y., and Raasch, S.: Interaction between wind and temperature fields under the heterogeneous heat flux in the planetary boundary layer, Bound.-Lay. Meteorol., 111, 225–246, 2004.
Klemp, J. B. and Lilly, D. K.: Numerical simulation of hydrostatic mountain waves, J. Atmos. Sci., 35, 78–107, 1978.
Knoop, H., Keck, M., and Raasch, S.: Urban large-eddy simulation – influence of a densely build-up artificial island on the turbulent flow in the city of Macau, Computer animation, https://doi.org/10.5446/14368, 2014.
Lamb, R. G.: A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer, Atmos. Environ., 12, 1297–1304, 1978.
Lee, J. H., Noh, Y., Raasch, S., Riechelmann, T., and Wang, L.-P.: Investigation of droplet dynamics in a convective cloud using a Lagrangian cloud model, Meteorol. Atmos. Phys., 124, 1–21, https://doi.org/10.1007/s00703-014-0311-y, 2014.
Letzel, M. O. and Raasch, S.: Large eddy simulation of thermally induced oscillations in the convective boundary layer, J. Atmos. Sci., 60, 2328–2341, 2003.
Letzel, M. O., Krane, M., and Raasch, S.: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale, Atmos. Environ., 42, 8770–8784, 2008.
Letzel, M. O., Helmke, C., Ng, E., An, X., Lai, A., and Raasch, S.: LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong, Meteorol. Z., 21, 575–589, 2012.
Lilly, D. K.: The presentation of small-scale turbulence in numerical simulation experiments, in: Proc. IBM scientific Computing Symp. on Environmental Sciences, Thomas J. Watson Research Center, Yorktown Heights, NY, 195–210, 1967.
Lund, T. S., Wu, X., and Squires, K. D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations, J. Comput. Phys., 140, 233–258, 1998.
Lüpkes, C., Gryanik, V., Witha, B., Gryschka, M., Raasch, S., and Gollnik, T.: Modeling convection over arctic leads with LES and a non-eddy-resolving microscale model, J. Geophys. Res., 113, c09028, https://doi.org/10.1029/2007JC004099, 2008.
Markkanen, T., Steinfeld, G., Kljun, N., Raasch, S., and Foken, T.: Comparison of conventional Lagrangian stochastic footprint models against LES driven footprint estimates, Atmos. Chem. Phys., 9, 5575–5586, https://doi.org/10.5194/acp-9-5575-2009, 2009.
Markkanen, T., Steinfeld, G., Kljun, N., Raasch, S., and Foken, T.: A numerical case study on footprint model performance under inhomogeneous flow conditions, Meteorol. Z., 19, 539–547, 2010.
Maronga, B.: Monin-Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: results from high-resolution large-eddy simulations, J. Atmos. Sci., 71, 716–733, 2014.
Maronga, B. and Raasch, S.: Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment, Bound.-Lay. Meteorol., 146, 17–44, 2013.
Maronga, B., Hoffmann, F., Riechelmann, T., and Raasch, S.: Large-eddy simulation of dust devils: Animation of dust devils in the convective boundary layer using a virtual dust, Computer animation, https://doi.org/10.5446/9352, 2013a.
Maronga, B., Moene, A. F., van Dinther, D., Raasch, S., Bosveld, F., and Gioli, B.: Derivation of structure parameters of temperature and humidity in the convective boundary layer from large-eddy simulations and implications for the interpretation of scintillometer observations, Bound.-Lay. Meteorol., 148, 1–30, 2013b.
Maronga, B., Hartogensis, O. K., Raasch, S., and Beyrich, F.: The effect of surface heterogeneity on the structure parameters of temperature and specific humidity: a large-eddy simulation case study for the LITFASS-2003 experiment, Bound.-Lay. Meteorol., 153, 441–470, 2014.
Martinuzzi, R. and Tropea, C.: The flow around a surface-mounted, prismatic obstacle placed in a fully developed channel flow, J. Fluids Eng., 115, 85–92, 1993.
Mason, P. J.: Large-eddy simulation of the convective atmospheric boundary layer, J. Atmos. Sci., 46, 1492–1516, 1989.
Mason, P. J.: Large-eddy simulation: A critical review of the technique, Q. J. Roy. Meteor. Soc., 120, 1–26, 1994.
Mason, P. J., and Sykes, R. I.: A simple cartesian model of boundary layer flow over topography, J. Comput. Phys., 28, 198–210, 1978.
Metcalf, M., Reid, J. K., and Cohen, M.: Fortran 95/2003 Explained, vol. 416, Oxford University Press, Oxford, 2004.
Miller, M. J. and Thorpe, A. J.: Radiation conditions for the lateral boundaries of limited-area numerical models, Q. J. Roy. Meteor. Soc., 107, 615–628, 1981.
Moeng, C.-H.: A large-eddy-simulation model for the study of planetary boundary-layer turbulence, J. Atmos. Sci., 41, 2052–2062, 1984.
Moeng, C.-H. and Wyngaard, J. C.: Spectral analysis of large-eddy simulations of the convective boundary layer, J. Atmos. Sci., 45, 3573–3587, 1988.
Neggers, R. A. J., Siebesma, A. P., and Heus, T.: Continuous single-column model evaluation at a permanent meteorological supersite, B. Am. Meteorol. Soc., 29, 91–115, 2012.
Noh, Y., Cheon, W. G., and Raasch, S.: The role of preconditioning in the evolution of open-ocean deep convection, J. Phys. Oceanogr., 33, 1145–1166, 2003.
Noh, Y., Min, H. S., and Raasch, S.: Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir circulation, J. Phys. Oceanogr., 34, 720–735, 2004.
Noh, Y., Kang, I. S., Herold, M., and Raasch, S.: Large-eddy simulation of particle settling in the ocean mixed layer, Phys. Fluids, 18, 085109, https://doi.org/10.1063/1.2337098, 2006.
Noh, Y., Goh, G., Raasch, S., and Gryschka, M.: Formation of a diurnal thermocline in the ocean mixed layer simulated by LES, J. Phys. Oceanogr., 39, 1244–1257, 2009.
Noh, Y., Goh, G., and Raasch, S.: Examination of the mixed layer deepening process during convection using LES, J. Phys. Oceanogr., 40, 2189–2195, 2010.
Noh, Y., Goh, G., and Raasch, S.: Influence of Langmuir circulation on the deepening of the wind-mixed layer, J. Phys. Oceanogr., 41, 472–484, 2011.
Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 21, 251–269, 1976.
Panofsky, H. A. and Dutton, J. A.: Atmospheric Turbulence, Models and Methods for Engineering Applications, John Wiley & Sons, New York, 1984.
Park, S. B. and Baik, J.: A large-eddy simulation study of thermal effects on turbulence coherent structures in and above a building array, J. Appl. Meteorol., 52, 1348–1365, 2013.
Park, S. B., Baik, J., Raasch, S., and Letzel, M. O.: A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon, J. Appl. Meteorol. Clim., 51, 829–841, 2012.
Patrinos, A. N. A. and Kistler, A. L.: A numerical study of the Chicago lake breeze, Bound.-Lay. Meteorol., 12, 93–123, 1977.
Piacsek, S. A. and Williams, G. P.: Conservation properties of convection difference schemes, J. Comput. Phys., 198, 580–616, 1970.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing, 2nd Edn., Cambridge University Press, Cambridge, 1996.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, 2nd Edn., Kluwer Academic Publishers, Dordrecht, 1997.
Raasch, S. and Etling, D.: Numerical simulation of rotating turbulent thermal convection, Beitr. Phys. Atmos., 64, 185–199, 1991.
Raasch, S. and Franke, T.: Structure and formation of dust-devil-like vortices in the atmospheric boundary layer – a high resolution numerical study, J. Geophys. Res., 116, D16120, https://doi.org/10.1029/2011JD016010, 2011.
Raasch, S. and Harbusch, G.: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation, Bound.-Lay. Meteorol., 101, 31–59, 2001.
Raasch, S. and Schröter, M.: PALM – a large-eddy simulation model performing on massively parallel computers, Meteorol. Z., 10, 363–372, 2001.
Raupach, M. R., Finnigan, J. J., and Brunet, Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy, Bound.-Lay. Meteorol., 78, 351–382, 1996.
Riechelmann, T., Noh, Y., and Raasch, S.: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision, New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008, 2012.
Riechelmann, T., Wacker, U., Beheng, K. D., Etling, D., and Raasch, S.: Influence of turbulence on the drip growth in warm clouds, part II: Sensitivity studies with a spectral bin microphysics and a lagrangian cloud model, Meteorol. Z., submitted, 2015.
Rodean, H. C.: Stochastic Lagrangian models of turbulent diffusion, Meteor. Mon., 26, 1–84, https://doi.org/10.1175/0065-9401-26.48.1, 1996.
Rogers, R. R. and Yau, M. K.: A short course in cloud physics, Pergamon Press, New York, 1989.
Rogers, R. R., Baumgardner, D., Ethier, S. A., Carter, D. A., and Ecklund, W. L.: Comparison of raindrop size distributions measured by radar wind profiler and by airplane, J. Appl. Meteorol., 32, 694–699, 1993.
Saiki, E. M., Moeng, C.-H., and Sullivan, P. P.: Large-eddy simulation of the stably stratified planetary boundary layer, Bound.-Lay. Meteorol., 95, 1–30, 2000.
Savic-Jovcic, V. and Stevens, B.: The structure and mesoscale organization of precipitating stratocumulus, J. Atmos. Sci., 65, 1587–1605, https://doi.org/10.1175/2007JAS2456.1, 2008.
Schalkwijk, J., Grifftih, E. J., Post, F. H., and Jonker, H. J. J.: High-performance simulations of turbulent clouds on a desktop PC, B. Am. Meteorol. Soc., 93, 307–314, 2012.
Schumann, U. and Sweet, R. A.: Fast Fourier Transforms for Direct Solution of Poisson's Equation with Staggered Boundary Conditions, J. Comput. Phys., 75, 123–137, 1988.
Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., 18, 376–404, 1975.
Seifert, A.: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model., J. Atmos. Sci., 65, 3608–3619, https://doi.org/10.1175/2008JAS2586.1, 2008.
Seifert, A. and Beheng, K. D.: A double-moment parameterization for simulating autoconversion, accretion and selfcollection, Atmos. Res., 59, 265–281, 2001.
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 45–66, 2006.
Seifert, A., Nuijens, L., and Stevens, B.: Turbulence effects on warm-rain autoconversion in precipitating shallow convection, Q. J. Roy. Meteor. Soc., 136, 1753–1762, 2010.
Shaw, R. H. and Patton, E. G.: Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation, Agr. Forest Meteorol., 115, 5–17, 2003.
Shaw, R. H. and Schumann, U.: Large-eddy simulation of turbulent flow above and within a forest, Bound.-Lay. Meteorol., 61, 47–64, 1992.
Shima, S.-I., Kusano, K., Kawano, A., Sugiyama, T., and Kawahara, S.: The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model, Q. J. Roy. Meteor. Soc., 135, 1307–1320, 2009.
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H., Sanchez, E., Stevens, B., and Stevens, D. E: A large eddy simulation intercomparison study of shallow cumulus convection, J. Atmos. Sci., 60, 1201–1219, 2003.
Singleton, R. C.: An algorithm for computing the mixed radix fast Fourier transform, IEEE T. Acoust. Speech, 17, 93–103, 1969.
Sommeria, G. and Deardorff, J. W.: Subgrid-scale condensation in models of nonprecipitating clouds, J. Atmos. Sci., 34, 344–355, 1977.
Sölch, I. and Kärcher, B.: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking, Q. J. Roy. Meteor. Soc., 136, 2074–2093, 2010.
Sorbjan, Z.: A numerical study of daily transitions in the convective boundary layer, Bound.-Lay. Meteorol., 123, 365–383, 2007.
Steinfeld, G., Raasch, S., and Markkanen, T.: Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian stochastic particle model embedded into large-eddy simulation, Bound.-Lay. Meteorol., 129, 225–248, 2008.
Steinhorn, I.: Salt flux and evaporation, J. Phys. Oceanogr., 21, 1681–1683, 1991.
Stevens, B. and Seifert, A.: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection, J. Meteor. Soc. Jpn., 86, 143–162, 2008.
Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J.-C., Jiang, H., Khairoutdinov, M., Kirkpatrick, M. P., Lewellen, D.-C., Lock, A., Müller, F., Stevens, D. E., Whelan, E., and Zhu, P.: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus, Mon. Weather Rev., 133, 1443–1462, https://doi.org/10.1175/MWR2930.1, 2005. 1681–1683, 1991.
Stoll, R. and Porté-Agel, F.: Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions, J. Atmos. Sci., 66, 412–431, 2008.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp., 1988.
Sühring, M. and Raasch, S.: Heterogeneity-induced heat flux patterns in the convective boundary layer: can they be detected from observations and is there a blending height? – a large-eddy simulation study for the LITFASS-2003 experiment, Bound.-Lay. Meteorol., 148, 309–331, 2013.
Sühring, M., Maronga, B., Herbort, F., and Raasch, S.: On the effect of surface heat-flux heterogeneities on the mixed-layer top entrainment, Bound.-Lay. Meteorol., 151, 531–556, 2014.
Sühring, M., Kanani, F., Charuchittipan, D., Foken, T., and Raasch, S.: Footprint estimation for elevated turbulence measurements – a comparison between large-eddy simulation and a Lagrangian stochastic backward model, Bound.-Lay. Meteorol., in review, 2015.
Sullivan, P. E., McWilliams, J. C., and Moeng, C.-H.: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows, Bound.-Lay. Meteorol., 71, 247–286, 1986.
Sullivan, P. P. and Patton, E. G.: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation, J. Atmos. Sci., 68, 2395–2415, 2011.
Sullivan, P. P., Moeng, C.-H., Stevens, B., Lenschow, D. H., and Mayor, S. D.: Structure of the entrainment zone capping the convective atmospheric boundary layer, J. Atmos. Sci., 55, 3042–3064, 1998.
Temperton, C.: A Generalized Prime Factor FFT Algorithm for Any N = (2**P)(3**Q)(5**R), SIAM J. Sci. Stat. Comp., 13, 676–686, 1992.
Thomson, D. J.: Criteria for the selection of stochastic models of particle trajectories in turbulent flows, J. Fluid Mech., 180, 529–556, 1987.
van den Hurk, B. J. J. M., Beljaars, A. C. M., and Betts, A. K.: Offline validation of the ERA-40 surface scheme, Tech. Memo. 295, ECMWF, 43 pp., 2000.
Wakata, Y.: Dependence of seafloor boundary layer thickness on the overlying flow direction: a large eddy simulation study, J. Oceanogr., 67, 667–673, 2011.
Watanabe, T.: Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies, Bound.-Lay. Meteorol., 112, 207–341, 2004.
Weil, J. C., Sullivan, P. P., and Moeng, C.-H.: The use of large-eddy simulations in Lagrangian particle dispersion models, J. Atmos. Sci., 61, 2877–2887, 2004.
Weinbrecht, S., Raasch, S., Ziemann, A., Arnold, K., and Raabe, A.: Comparison of large-eddy simulation data with spatially averaged measurements obtained by acoustic tomography – presuppositions and first results, Bound.-Lay. Meteorol., 111, 441–465, 2004.
Wicker, L. J. and Skamarock, W. C.: Time-splitting methods for elastic models using forward time schemes, Mon. Weather Rev., 130, 2088–2097, 2002.
Williamson, J. H.: Low-storage Runge–Kutta schemes, J. Comput. Phys., 35, 48–56, 1980.
Willis, G. E. and Deardorff, J. W.: A laboratory model of diffusion into the convective boundary layer, Q. J. Roy. Meteorol. Soc., 102, 427–445, 1976.
Witha, B., Steinfeld, G., Dörenkämper, M. and Heinemann, D.: Large-eddy simulation of multiple wakes in offshore wind farms, J. Phys. Conf. Ser., 555, 012108, https://doi.org/10.1088/1742-6596/555/1/012108, 2014
Wyngaard, J. C., Peltier, L. J., and Khanna, S.: LES in the surface layer: surface fluxes, scaling, and SGS modeling, J. Atmos. Sci., 55, 1733–1754, 1998.
Yaghoobian, N., Kleissl, J., and Paw U, K. T.: An improved three-dimensional simulation of the diurnally varying street-canyon flow, Bound.-Lay. Meteorol., 153, 251–276, https://doi.org/10.1007/s10546-014-9940-4, 2014.
Yi, C.: Momentum transfer within canopies, J. Appl. Meteorol., 47, 262–275, 2008.
Zhou, B. and Chow, T. K.: Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain, J. Atmos. Sci., 71, 1021–1039, 2014.
Short summary
The paper gives a detailed description of the PArallelized Large-eddy simulation Model (PALM) version 4.0 for the simulation of turbulent atmospheric and oceanic boundary layer flows. The model is optimized for use on massively parallel computer architectures and has been applied for various boundary-layer research studies over the last 15 years by various work groups all over the world. Besides the model description, we outline past PALM applications and also discuss future perspectives.
The paper gives a detailed description of the PArallelized Large-eddy simulation Model (PALM)...