Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2203-2015
https://doi.org/10.5194/gmd-8-2203-2015
Model description paper
 | 
23 Jul 2015
Model description paper |  | 23 Jul 2015

The integrated Earth system model version 1: formulation and functionality

W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt

Related authors

Identifying Atmospheric Rivers and their Poleward Latent Heat Transport with Generalizable Neural Networks: ARCNNv1
Ankur Mahesh, Travis O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William Collins
EGUsphere, https://doi.org/10.5194/egusphere-2023-763,https://doi.org/10.5194/egusphere-2023-763, 2023
Short summary
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020,https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Characterization of extreme precipitation within atmospheric river events over California
S. Jeon, Prabhat, S. Byna, J. Gu, W. D. Collins, and M. F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, https://doi.org/10.5194/ascmo-1-45-2015,https://doi.org/10.5194/ascmo-1-45-2015, 2015
Short summary
Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation
D. R. Feldman, W. D. Collins, and J. L. Paige
Geosci. Model Dev., 8, 1943–1954, https://doi.org/10.5194/gmd-8-1943-2015,https://doi.org/10.5194/gmd-8-1943-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023,https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023,https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023,https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023,https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023,https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary

Cited articles

Bond-Lamberty, B., Calvin, K., Jones, A. D., Mao, J., Patel, P., Shi, X. Y., Thomson, A., Thornton, P., and Zhou, Y.: On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model, Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, 2014.
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudré, N., Pacifico, F., Pongratz, J., and Weiss, M.: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century, J. Climate, 26, 6859–6881, https://doi.org/10.1175/JCLI-D-12-00623.1, 2013.
Calvin, K. V.: GCAM Wiki Documentation, available at: https://wiki.umd.edu/gcam/ (last access: 21 August 2012), 2011.
CCSP: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity, a Report by the US Climate Change Science Program and the Subcommittee on Global Change Research, edited by: Backlund, P., Janetos, A., Schimel, D., Hatfield, J., Boote, K., Fay, P., Hahn, L., Izaurralde, C., Kimball, B. A., Mader, T., Morgan, J., Ort, D., Polley, W., Thomson, A., Wolfe, D., Ryan, M., Archer, S., Birdsey, R., Dahm, C., Heath, L., Hicke, J., Hollinger, D., Huxman, T., Okin, G., Oren, R., Randerson, J., Schlesinger, W., Lettenmaier, D., Major, D., Poff, L., Running, S., Hansen, L., Inouye, D., Kelly, B. P., Meyerson, L., Peterson, B., and Shaw, R., US Environmental Protection Agency, Washington, D.C., 362 pp., 2008.
Chaturvedi, V., Kim, S., Smith, S. J., Clarke, L., Yuyu, Z., Kyle, P., and Patel, P.: Model evaluation and hindcasting: An experiment with an integrated assessment model, Energy, 61, 479–490, https://doi.org/10.1016/j.energy.2013.08.061, 2013.
Download
Short summary
The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human-climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. By introducing heretofore-omitted feedbacks between natural and societal drivers in iESM, we can improve scientific understanding of the human-Earth system dynamics.