Articles | Volume 18, issue 23
https://doi.org/10.5194/gmd-18-9767-2025
https://doi.org/10.5194/gmd-18-9767-2025
Model description paper
 | 
09 Dec 2025
Model description paper |  | 09 Dec 2025

QuadTune version 1: a regional tuner for global atmospheric models

Vincent E. Larson, Zhun Guo, Benjamin A. Stephens, Colin Zarzycki, Gerhard Dikta, Yun Qian, and Shaocheng Xie

Related authors

Actionable reporting of CPU-GPU performance comparisons: Insights from a CLUBB case study
Gunther Huebler, Vincent E. Larson, John Dennis, and Sheri Voelz
EGUsphere, https://doi.org/10.5194/egusphere-2025-4435,https://doi.org/10.5194/egusphere-2025-4435, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022,https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
CondiDiag1.0: a flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)
Hui Wan, Kai Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, Shixuan Zhang, and Ross Dixon
Geosci. Model Dev., 15, 3205–3231, https://doi.org/10.5194/gmd-15-3205-2022,https://doi.org/10.5194/gmd-15-3205-2022, 2022
Short summary
Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1
Hui Wan, Shixuan Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, and Huiping Yan
Geosci. Model Dev., 14, 1921–1948, https://doi.org/10.5194/gmd-14-1921-2021,https://doi.org/10.5194/gmd-14-1921-2021, 2021
Short summary

Cited articles

Bellprat, O., Kotlarski, S., Lüthi, D., and Schär, C.: Objective calibration of regional climate models, Journal of Geophysical Research: Atmospheres, 117, D23115, https://doi.org/10.1029/2012JD018262, 2012. a, b
Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., and Stuart, A. M.: Calibrate, emulate, sample, Journal of Computational Physics, 424, 109 716, https://doi.org/10.1016/j.jcp.2020.109716, 2021. a
Dagon, K., Sanderson, B. M., Fisher, R. A., and Lawrence, D. M.: A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5, Advances in Statistical Climatology, Meteorology and Oceanography, 6, 223–244, 2020. a
Dunbar, O. R., Garbuno-Inigo, A., Schneider, T., and Stuart, A. M.: Calibration and uncertainty quantification of convective parameters in an idealized GCM, Journal of Advances in Modeling Earth Systems, 13, e2020MS002 454, https://doi.org/10.1029/2020MS002454, 2021. a
Eidhammer, T., Gettelman, A., Thayer-Calder, K., Watson-Parris, D., Elsaesser, G., Morrison, H., van Lier-Walqui, M., Song, C., and McCoy, D.: An Extensible Perturbed Parameter Ensemble (PPE) for the Community Atmosphere Model Version 6, EGUsphere, 2024, 1–27, https://doi.org/10.5194/gmd-17-7835-2024, 2024. a
Download
Short summary
Global models of the atmosphere contain errors that lead to inaccurate simulations. A software tool ("QuadTune") is presented that attempts to mitigate errors related to suboptimal parameter values. It also displays diagnostic plots that provide hints about where structural errors might lie in the model.
Share