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Abstract. When a new, better-formulated physical parame-
terization is introduced into a global atmospheric model, as-
pects of the global model solutions are sometimes degraded.
Then, in order to use the new global model to address sci-
ence questions, there is an incentive to restore its accuracy.
Oftentimes this restoration is achieved by tuning of model
parameter values. Unfortunately, the retuning process is ex-
pensive because characterizing the parameter dependence re-
quires numerous time-consuming global simulations.

To reduce the cost of tuning, this manuscript introduces
a “poor man’s” model tuner, “QuadTune”. QuadTune carves
the globe into regions and approximates the model parameter
dependence through the use of an uncorrelated quadratic em-
ulator (i.e., response surface). The simplicity of the emulator
reduces the required number of global model simulations and
aids explainability of tuner behavior.

Tuning removes parametric error but leaves behind model
structural error. Structural error manifests itself as regional
residual biases, such as stubborn biases and tuning trade-offs.
To visualize these residual biases, QuadTune’s software in-
cludes a set of diagnostic plots. This paper illustrates the use
of the plots for characterizing residual biases with an exam-
ple tuning problem.

1 Introduction

Global physics-based models of the atmosphere (i.e., “global
models” for short) contain structural model errors. These
are errors in the functional form of a model parameteriza-
tion or term in the model equations. They are distinct from
“parametric errors”, which are errors in the values of tun-
able parameters in the model (Kennedy and O’Hagan, 2001;
Peatier et al., 2024). Structural errors degrade the accuracy of
simulated phenomena (e.g., stratocumulus clouds) that may
underlie other phenomena that model users wish to study
(e.g., sea-surface temperatures off the west coasts of conti-
nents). To make the model usable for these studies, model
developers frequently attempt to improve its accuracy by tun-
ing parameter values. Unfortunately, such tuning risks build-
ing in compensating errors between model parameterizations
(Mauritsen et al., 2012). In this case, there is improvement
in the overall simulation but degradation in the representa-
tion of individual processes. If compensating errors exist in
a global model, then later, when the model structure is im-
proved by, say, implementing a better parameterization, the
compensating error is no longer compensated, and the results
may degrade. For this reason, the development of a global
model often involves a two-step cycle of (1) introducing a
structural improvement, and then (2) retuning parameter val-
ues to remove any degradations in accuracy due to disruption
of compensating errors.
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Big gains in model accuracy often come from structural
model improvements (e.g., Vitart, 2014). Hence we would
like to spend more time modifying the structure and less time
retuning. In order to help developers quickly retune newly
modified parameterizations, we seek to develop an inexpen-
sive tuner.

Recently, a number of automated tuning methods have
been developed. These include sequential methods such as
Very Fast Simulated Annealing (Jackson et al., 2003, 2004;
Yang et al., 2012; Zou et al., 2014). Unfortunately, perform-
ing many global atmospheric simulations in sequence incurs
a long runtime. To reduce runtime, global simulations can
be run in parallel by use of a perturbed parameter ensem-
ble (PPE) (e.g., Qian et al., 2018; Li et al., 2019; Cleary
et al., 2021; Dunbar et al., 2021; Hourdin et al., 2021; Eid-
hammer et al., 2024; Elsaesser et al., 2025). However, a PPE
typically requires O(100) global simulations and hence re-
quires a large computer allocation. Sometimes a new struc-
tural modification is ready to be tried before the automated
tuning is completed!

What is needed is a method to quickly re-tune global mod-
els after a structural change has been made. What is also de-
sirable is guidance on what structural errors remain after the
parametric errors have been tuned out (e.g., Rostron et al.,
2025). For this purpose, the retuning need not yield the exact
global optimum as long as the retuning is effective enough to
indicate whether the modified parameterization has promise.

To this end, we have developed an inexpensive, “poor
man’s” tuner. It divides the globe into 20° longitude by 20°
latitude tiles (i.e., regions) that, taken collectively, cover the
globe. Our tuner treats each field within each region as a
sample point. It then finds the set of parameter values of the
global model that best fit the observed regional values in a
least-squares sense. To do so, it uses quadratic regression
(Neelin et al., 2010; Bellprat et al., 2012). Hence, we call
our tuner “QuadTune”. If P denotes the number of tuning
parameters, then QuadTune requires only 2P +1 global sim-
ulations, because it neglects parameter interactions. Once the
global runs are completed, using QuadTune to find optimal
parameter values takes only seconds on a laptop computer.

QuadTune tells us those regions in which biases can be
reduced and those in which they cannot. It informs the user
which biases are stubborn and where there are tuning trade-
offs among regions (e.g., Regayre et al., 2023; Peatier et al.,
2024). In this sense, QuadTune gives hints about the nature
of the model’s structural error.

To visualize this information and enhance explainability
(Linardatos et al., 2020), QuadTune outputs a series of diag-
nostic plots. These plots indicate the manner in which Quad-
Tune has reduced regional biases and the character of the
structural errors that prevent further bias reduction.

One purpose of the present paper is to document Quad-
Tune’s algorithm. Another is to illustrate the use of Quad-
Tune’s diagnostic plots. We illustrate the plots by doing an
example set of tuning runs using a global model. Before we

present these plots, we discuss some regression theory so
that the interested reader can understand which mathemati-
cal equations are plotted in the diagnostics.

This paper is organized as follows. Section 2 describes the
tuning problem that we address. Section 3 gives an outline
of QuadTune’s algorithm. Section 4 discusses a toy tuning
problem in order to build intuition about model biases. Sec-
tion 5 lists QuadTune’s emulator, loss function, and some of
its formulas underlying diagnostic plots. Section 6 describes
the global model, parameterization, and observations used by
our example tuning analysis. The example analysis is given
in Sect. 7. Section 8 describes sensitivities to the configura-
tion of our tuning runs. Caveats are noted in Sect. 9, and we
conclude in Sect. 10.

2 The regional tuning problem

The mathematics of the regional tuning problem resembles
that of standard least-squares (nonlinear) regression (e.g.,
Chap. 8 of Pollock, 1999), but there are important differences
in interpretation that we broach in this section.

Suppose we have a global, physics-based atmospheric
model that advances a set of fluid mechanical partial differen-
tial equations (PDEs) forward in time. Let us represent this
model’s set of PDEs schematically as G(t,x;p1,p2). Here
t denotes time, and x denotes spatial position, e.g., latitude
and longitude. In addition, p1 and p2 denote two physical
parameters that are embedded in the model PDEs. (We limit
ourselves at first to two parameters for ease of discussion.)
For instance, p1 and p2 might denote coefficients related
to turbulent dissipation. They are our input “features”. We
take p1 and p2 to be constant in time and space throughout a
global simulation, but we treat them as tunable.

Although we denote the model’s set of PDEs by G, we de-
note G’s time-averaged global-model output by a function, f :

f = f (x;p1,p2) . (1)

Here, f could represent any observable field that is output
by the model. E.g., it could represent a field such as cloud
cover that is part of the time-averaged model state, or it could
represent a derived field, such as Shortwave Cloud Radia-
tive Forcing (SWCF). We denote the dependence of f on
G schematically, with some abuse of notation, as

G (t,x;p1,p2)
t
7−→ f (x;p1,p2) . (2)

Here ( )
t

denotes a time average. The particular output,
f (x;p1,p2), that is produced depends on the particular
choice of the parameter values p1 and p2 embedded in G. We
treat all other parameters, initial conditions, boundary condi-
tions, etc., in G as known, prescribed constants.

We wish to tune p1 and p2 in order to improve the agree-
ment of G’s solutions (i.e., f (x;p1,p2)) with observations,
fobs(x). Here, fobs(x) might represent, e.g., satellite obser-
vations of cloud cover. However, no matter how p1 and
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p2 are adjusted, f (x;p1,p2) 6= fobs(x), because G is not Na-
ture’s true set of PDEs and hence contains model structural
error. In this initial effort, we will assume that, in comparison
to G’s structural error, the observational error in fobs(x) is
negligible. (However, Elsaesser et al. (2025) find that obser-
vational error does impact optimal parameter values. Hence
observational error should be accounted for in a fuller treat-
ment.) If fobs(x) is taken to be an adequate representation of
Nature’s truth, then we may write

fobs(x)= f (x;p1,p2)+ εm (p1,p2) , (3)

where εm represents model structural and parametric error.
One could attempt to minimize the error at fine resolution

with an integral over the whole globe:

arg minp1,p2

∫ [
f (x;p1,p2)− fobs(x)

]2dx. (4)

Instead, to simplify, we carve the globe into n coarse (20°×
20°) tiles (i.e., regions), as, e.g., in Yarger et al. (2024). Then,
assuming f represents only one field, we minimize the error
averaged over each region, xi :

arg minp1,p2

n∑
i=1

[
f (x;p1,p2)

x∈xi
− fobs(x)

x∈xi
]2
. (5)

We notice two differences between a standard regression
problem and our regional tuning problem. First, we assume
that the residual scatter left after tuning is not due primar-
ily to random measurement error, but is instead due mostly
to model structural error in G. Our problem is perhaps more
akin to a problem of least squares function approximation, in
which the observations consist of samples of a deterministic
function to be matched, and f (x;p1,p2) is a kind of “ba-
sis function” that contains parameters to optimize (Lanczos,
1988). Second, our sample points are not drawn randomly
from a population, but are instead drawn at even spatial in-
tervals over the globe.

3 The QuadTune regional tuning recipe

Now that we have introduced the problem, we outline Quad-
Tune’s method. (More detail on QuadTune’s method will be
provided later, in Sect. 5.)

We define a “regional metric” – or “metric” for short –
as a field (e.g., SWCF) that is output by the global model
and averaged over the ith region. The regional metric can
be compared to a reference dataset, such as an observational
climatology derived from satellite measurements.

We assume that we start with observations of each regional
metric. Then we perform the following steps:

1. Preprocessing steps:

a. Choose P model parameters to tune. At present,
QuadTune leaves the decision of which parameters
ought to be tuned to expert judgment.

b. Choose N observed regional metrics to match. For
illustration, this paper tunes a single field, SWCF,
but QuadTune allows multiple observables, e.g.,
SWCF and surface precipitation, to be tuned simul-
taneously with user-specified weighting on each
observable. The choice is again left to expert judg-
ment. To form a regional metric, the observed field
must be averaged over each region, e.g., each 20◦×
20◦ tile. Here, N equals the number of observed
fields times the number of tiles.

c. Run 2P + 1 global simulations, as follows:

i. Run 1 global default simulation with default pa-
rameter values.

ii. Run 2P global sensitivity simulations. Perturb
the parameters one at a time (Saltelli et al.,
2008; Kennedy et al., 2025); that is, when one
parameter is perturbed from its default value,
the other parameters are kept at their default
values. For example, one sensitivity simula-
tion might be perturbed as (p1,p2)→ (p1+

δp1,p2). Perturb each parameter above and be-
low its default value, by an amount decided
by expert judgment, for a total of 2P sim-
ulations. This one-at-a-time sampling strategy
determines the quadratic emulator of parame-
ter dependence with the minimum number of
global simulations.

iii. Output the average of each regional metric to a
file.

d. Choose regional weights, σi . The user may choose
to weight a region more if the user wishes to boost
the chance that QuadTune will produce a good fit
in that region (at the expense of other regions). In
this paper, the weights are simply set proportional
to the geographical area of each 20°× 20° region.

2. Tuning and analysis steps:

a. Given the regional metrics output file and the
regional weights, run QuadTune. Upon running
QuadTune, QuadTune will

i. estimate optimal (“recommended”) parameter
value according to (a possibly weighted version
of) Eq. (5);

ii. estimate expected metric improvements for
each region; and

iii. generate diagnostic plots.
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b. Optional: if desired, re-run QuadTune in order
to explore tuning trade-offs. Such experiments
might delete ineffective parameters or more heav-
ily weight a regional metric in order to see how it
influences the optimal parameter values.

c. Run a global-model simulation with QuadTune’s
recommended parameter values. Although Quad-
Tune estimates metric improvements, the true im-
provements are not known until the global model is
run with QuadTune’s recommended parameter val-
ues.

4 A toy linear example of regional tuning

One of our goals is to diagnose and visualize aspects of
model structural error, such as stubborn biases and tuning
trade-offs among different regions. To illustrate, in a simpli-
fied setting, some of the symptoms of various kinds of struc-
tural error, we now discuss a toy example in which the em-
ulator of parameter dependence is linear. Discussion of the
quadratic term in our emulator will be deferred to Sect. 5 and
later sections. Conceptual understanding of the toy example
will aid understanding of the diagnostics that we present in
Sect. 7 and the mathematical quantities that they plot (Ap-
pendix A).

In this example, for definiteness, we assume that f de-
notes cloud cover. For simplicity, we tune the time-averaged
cloud cover to match observations in only three regions, cho-
sen somewhat arbitrarily. These regions are the marine stra-
tocumulus deck off the coast of California (Sc), the shallow
cumulus region near Hawaii (Cu), and the Western Pacific
warm pool (WP). We assume that near the optimal parame-
ter values (p1,opt, p2,opt), the model output is an approximate
match to observations:

f
(
Sc;p1,opt,p2,opt

)
≈ fobs(Sc)

f
(
Cu;p1,opt,p2,opt

)
≈ fobs(Cu)

f
(
WP;p1,opt,p2,opt

)
≈ fobs(WP). (6)

This assumption is valid if the model structural error and ob-
servational error are not too large. Again, this has been writ-
ten somewhat schematically. The “value” x = Sc in fact de-
notes a regional spatial average, e.g., fobs(Sc)≡ fobs(x)

x∈Sc

and f (Sc;p1,p2)≡ f (x;p1,p2)
x∈Sc

. The cloud cover in
the stratocumulus region, f (Sc), is an example of what this
paper calls a “regional metric” or simply “metric” for short.

The functional dependence of cloud cover f (x;p1,p2)

on p1 and p2 in the three regions is unknown. Ideally, we
would like to map out the dependence for a broad range of
values of (p1, p2) and create a sophisticated emulator of the
hills and valleys in that 2D parameter space. For instance,
past authors have emulated parameter dependence by use
of a Gaussian Process (e.g. Kennedy and O’Hagan, 2001;
Salter et al., 2019) or a polynomial chaos expansion (Yarger

et al., 2024). However, in this didactic example, we simply
linearize f (Sc;p1,p2), f (Cu;p1,p2), and f (WP;p1,p2)

about the default values of the parameters, (p1,def, p2,def): f (Sc;p1,opt,p2,opt
)

f
(
Cu;p1,opt,p2,opt

)
f
(
WP;p1,opt,p2,opt

)
≈

 f (Sc;p1,def,p2,def
)

f
(
Cu;p1,def,p2,def

)
f
(
WP;p1,def,p2,def

)


+


∂f
∂p1

∣∣∣
x=Sc

∂f
∂p2

∣∣∣
x=Sc

∂f
∂p1

∣∣∣
x=Cu

∂f
∂p2

∣∣∣
x=Cu

∂f
∂p1

∣∣∣
x=WP

∂f
∂p2

∣∣∣
x=WP


[
δp1,opt
δp2,opt

]

≈

 fobs(Sc)
fobs(Cu)
fobs(WP)

 .

(7)

Here δp1,opt ≡ p1,opt−p1,def, and similarly for δp2,opt.
What Eq. (7) assumes is that the emulator that describes

the global model’s parameter dependence can be approxi-
mated by linearization about the default parameter values.
The linearization introduces a sensitivity matrix (or Jacobian
matrix), S, on the left-hand side. Each element of S repre-
sents the linear sensitivity of a particular regional metric to a
particular parameter. Each row of Eq. (7) corresponds to an
equation for a particular regional metric, i.e. cloud cover in
the Sc, Cu, or WP region.

We pause to note that errors in our problem arise from two
distinct sources: (1) errors in the emulator of parameter de-
pendence, and (2) parametric or structural errors in the global
atmospheric model, G. The latter model errors are the focus
of this paper.

Now, to neaten the equation, we define the bias, δb(x), as,
e.g.,

δb(Sc)≡ f
(
Sc;p1,def,p2,def

)
− fobs(Sc), (8)

and similarly for Cu and WP. (Note that “bias” here means a
bias in model output and not a bias in a parameter value, un-
like in traditional statistics nomenclature (Ross, 2009).) Then
we may move the default values to the right-hand side of
Eq. (7):

∂f
∂p1

∣∣∣
x=Sc

∂f
∂p2

∣∣∣
x=Sc

∂f
∂p1

∣∣∣
x=Cu

∂f
∂p2

∣∣∣
x=Cu

∂f
∂p1

∣∣∣
x=WP

∂f
∂p2

∣∣∣
x=WP


[
δp1,opt
δp2,opt

]
≈−

 δb(Sc)
δb(Cu)
δb(WP)

 ,
(9)

or, rewritten in symbolic form,

S · δpopt ≈−δb. (10)

We regard as knowns the bias vector δb and the sensitivity
matrix S.

Geosci. Model Dev., 18, 9767–9790, 2025 https://doi.org/10.5194/gmd-18-9767-2025



V. E. Larson et al.: QuadTune version 1 9771

The matrix equation (Eq. 9) has no exact solution, in gen-
eral, because it has more equations (rows) than unknowns
(columns). However, one can find the optimal parameter val-
ues in a least-squares sense by means of linear regression
(Press et al., 2007, Sect. 15.4). In this analogy, S corresponds
to a design matrix in linear regression, and each row of S —
i.e., each regional metric — may be interpreted as a “sam-
ple point” drawn from a distribution of sensitivities. The
“sample point” is a multivariate sample of the sensitivities
of f (x;p1,p2) to the parameters p1 and p2 in a region xi .

In our problem, which neglects observational error, the
scatter about the regression curve is a consequence of de-
terministic structural errors in the global model, G. Conse-
quently, the scatter provides clues about where the errors in G
lie, and hence the scatter is a primary object of interest.

4.1 The column-space geometric interpretation of the
sensitivity matrix

How does model structural error manifest itself in the context
of parametric tuning? We can gain some basic understanding,
for linear parameter dependence, by interpreting the sensitiv-
ity matrix, S, as a set of column vectors. From the column-
vector point of view, the goal of tuning is to represent, insofar
as possible, the bias column vector δb as a linear combina-
tion of the column vectors of S (see Eq. 9 above and Chap. 8
of Pollock, 1999). Suppose that δb has length N (i.e., N re-
gional metrics) and that there are P column vectors of S (i.e.,
P parameters). In the usual circumstance, N > P , there are
more equations than unknowns, and hence exact representa-
tion of δb is impossible in general. Instead, solving the least-
squares optimization problem (Eq. 5) leaves a residual bias.
The residual bias is a consequence of the fact that G has a
model structural error. In contrast, in the special case that
δb happens to reside within the P -dimensional subspace that
is spanned by the columns of S, then δb can indeed be exactly
represented as a linear combination of them. If so, then the
bias can be removed entirely by changes in parameter values,
indicating that the global model, G, has no structural error.

The j th column of S tells us how perturbing the j th pa-
rameter, δpj , affects the spatial pattern of a metric across
different regions of the globe. At first one might think that if
all elements of the j th column of S are small, relative to those
of other columns, then all regional metrics are relatively in-
sensitive to the corresponding parameter, δpj . A naive sensi-
tivity analysis might then drop δpj from the set of tuning pa-
rameters. However, in this linear problem, this lack of sensi-
tivity could, in principle, be counteracted simply by increas-
ing the magnitude of the parameter perturbation δpj . Rather,
the true problem occurs when some elements of the column
are small and others are large, in such a way that increas-
ing δpj to remove the bias in an insensitive metric (i.e., row)
creates a large error in a more sensitive metric (i.e., row).
Then adjustment of δpj is unable to remove the bias in the
insensitive region. In practice, the rows of S are unlikely to

include all sensitive regional metrics that could be observed,
and hence an unduly large increase in δpj risks incurring a
large error in an excluded metric.

Model structural error can be quantified by the residual
bias that remains after tuning out the parametric error. As-
sume, for simplicity, that S has no zero singular values (Press
et al., 2007, Sect. 15.4). Now suppose that we use least-
squares linear regression to find optimal parameter pertur-
bations δpopt,j . Then let us define

δbremov,i ≡−Sij δpopt,j , (11)

where Sij is the ij th element of the matrix S. Also, δbremov is
the default model output minus the tuned model output. The
vector δbremov is the part of the bias δb that is removable
by linear regression. Thinking more geometrically, δbremov is
the part of the bias vector δb that lies within the subspace
spanned by the columns of S.

Now define the residual bias, δbresid, as the part of the bias
that remains after δbremov has been removed by linear regres-
sion:

δb ≡ δbremov+ δbresid. (12)

Here, δbresid is the tuned model output minus the observa-
tional values. (Note that the residual bias δbresid is defined
to have the opposite sign as the residual that is traditionally
defined in statistics (Pollock, 1999).) δbresid lies outside the
subspace spanned by the columns of S. (In fact, in linear re-
gression, δbresid turns out to be orthogonal to δbremov (Pol-
lock, 1999).)

Hence, δbresid, supplemented with δb, provides informa-
tion about structural errors in G such as stubborn biases and
tuning trade-offs (e.g., Peatier et al., 2024). Namely, we de-
fine the bias in the ith metric to be stubborn if

|δbremov,i | � |δbi |, so that |δbresid,i | ∼ |δbi |. (13)

Also, we define a tuning trade-off between metrics l and i
to be the situation in which tuning improves region l at the
expense of region i (or vice-versa):

|δbresid,l |< |δbl | improved region, and

|δbresid,i |> |δbi | traded-off region. (14)

4.2 The row-space geometric interpretation of the
sensitivity matrix

The previous section examined the vector space of
S’s columns. In this section, we examine the vector space
of S’s rows. The elements of the ith row of S contain the sen-
sitivities of the regional metric i to each of the P parameters.

From the perspective of the row-vector space, the goal
of (linear) tuning is to find a single parameter perturba-
tion vector, δp, whose dot product with the ith row of S
matches −δbi as closely as possible, for all i (see Eq. 10).
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However, this goal commonly encounters two difficulties,
namely, stubborn biases and tuning trade-offs.

A stubborn bias occurs when all elements (sensitivities) of
the ith row of S are small (ε), but the bias δbi is large in
magnitude. This can be illustrated by the following example
matrix equation snippet:


...

...

ε ε

1 2
...

...


[
δp1,opt
δp2,opt

]
≈−


...

1
2
...

 . (15)

In this case, it is impossible to remove the bias in the ith row
with sensitivities ε without choosing a large-magnitude pa-
rameter perturbation, |δp|. Choosing large |δp| is problem-
atic, in our experience, for at least two reasons. First, even
if large |δp| reduces the bias in the ith regional metric, it is
likely to cause degrading side effects in other, more sensi-
tive regional metrics, such as row i+ 1. (This problem was
discussed in Sect. 4.1 from the column-space point of view.)
Second, if any component of δp strays outside the low or
high values of the sensitivity runs, then it is more likely there
will be a violation of the assumption of QuadTune’s emula-
tor that G can be represented by a simple quadratic interpola-
tion. Consequently, when |δp| is large, the parameter-value
recommendations of QuadTune’s emulator may lie far from
the optimum of the actual global model.

The question of whether a regional bias is stubborn is
different from the question of whether a parameter is non-
influential. A typical sensitivity analysis, as practiced in the
atmospheric sciences, determines whether a particular pa-
rameter has little influence over most of the globe (Saltelli
et al., 2008). This involves comparing one column of the sen-
sitivity matrix, S, to another. Analyzing a stubborn bias asks a
different question: Is a particular regional metric insensitive
to all parameters? Deducing whether the ith regional met-
ric is unbudgeable involves comparing the magnitude of the
ith row of S and the corresponding bias δbi (i.e., the ith met-
ric) with that of another row (i.e., another metric).

Another tuning problem is tuning trade-offs (Neelin et al.,
2010; Peatier et al., 2024), as defined in Eq. (14). For ex-
ample, if two rows of S are proportional to each other, then
adjusting the parameters has a proportional effect on, e.g.,
clouds in the two corresponding regions. Then we do not
have the ability to brighten the clouds independently in the
two regions. This poses a difficulty if the biases are different
in the two regions, as in the following snippet of a matrix
equation:
...

...

2 1
4 2
...

...


[
δp1,opt
δp2,opt

]
≈−


...

−3
6
...

 . (16)

Then there will be a tuning trade-off. This might happen,
e.g., if the parameters brighten stratocumulus and cumulus
regions similarly, and in the default simulation, the stratocu-
mulus is too dim while the cumulus is too bright. Note that
the existence of proportional rows in S is not necessarily
problematic if the right-hand side biases associated with the
two rows are consistent. Also note that nearly but not exactly
proportional rows will, in principle, allow both regions to be
fit but only at the cost of increasing the magnitude of the pa-
rameter values.

If there are tuning trade-offs among different regional met-
rics, tuning may leave the parameter values little changed,
even if a set of parameters is deemed sensitive, and a set of
metrics is deemed budgeable. Therefore a standard parameter
sensitivity analysis (e.g., Nardi et al., 2022, 2024) is helpful
but insufficient; tuning is necessary.

To overcome either stubborn biases or tuning trade-offs, a
developer must either find a new parameter, or else the de-
veloper must make a model structural change.

5 QuadTune’s emulator, loss function, and quasi-linear
approximations

Section 4 discussed a toy emulator of parameter dependence
that is linear because it provides a simple didactic illustration
of various impediments to tuning away errors. In fact, how-
ever, QuadTune’s emulator extends beyond the linear terms
to include the diagonal part of the quadratic terms (Neelin
et al., 2010; Bellprat et al., 2012). Including these extra terms
has the drawback of requiring an extra P global simulations
beyond the P + 1 simulations needed for a linear emulator,
leading to a total of 2P + 1 simulations. On the other hand,
retaining the diagonal quadratic terms has two advantages.
First, the quadratic terms help regularize the optimized pa-
rameter values. That is, they help limit the size of the pa-
rameter perturbations during tuning. This is helpful because,
in our experience, large perturbations tend to have damaging
side effects (see Sect. 4.2). Second, including the quadratic
terms better approximates the global model’s parameter de-
pendence, which can be strongly nonlinear.

In this section, we will discuss QuadTune’s quadratic em-
ulator, QuadTune’s loss function, and some approximate
quasi-linear functions that we visualize in our diagnostics.

5.1 QuadTune’s quadratic, non-interacting emulator

We wish to build an emulator for the model’s parameter de-
pendence. The ith of N simulated regional metrics, mi , is
given by

mi ≡mi(p)≡ f (x;p)
xi
. (17)

Now we normalize so that tuning will fairly consider all pa-
rameters and metrics. In order to make the magnitudes of the
parameters similar to each other, we normalize them by the
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default-simulation value of pj , pj,def.

p̃j =
pj∣∣pj,def

∣∣ . (18)

Likewise, we also normalize the simulated metrics and bi-
ases by the globally averaged observed values of the met-
rics, mobs:

m̃i =
mi

|mobs|
(19)

and

δb̃i =
δbi

|mobs|
. (20)

These normalizations are a kind of weighting. Other nor-
malizations are plausible and will yield different answers.
Henceforth, having normalized the equations, we will use
normalized variables and drop the tildes in the following sec-
tions and appendices.

We approximate the model’s parameter dependence, i.e.,
the functions mi(p), using a quadratic expansion. This sim-
ple expansion prevents QuadTune from doing more than
seeking a nearby local minimum in parameter space. How-
ever, the simplicity of the approximation helps us better un-
derstand structural errors.

In addition to the linear terms in the polynomial expansion,
we also include the quadratic terms in order to better repre-
sent the parameter dependence about the default value, pdef:

mi(p) =mi
(
pdef

)
+

P∑
j=1

∂mi

∂pj
δpj

+
1
2

P∑
j=1

P∑
k=1

δpk
∂2mi

∂pk∂pj
δpj + . . . (21)

Here we recognize that the linear term is simply the sensitiv-
ity matrix Sij ≡ ∂mi/∂pj .

The core of the quadratic term is a 3D tensor, ∂2mi
∂pk∂pj

,
that includes both diagonal terms (k = j ) and cross terms
or interaction terms (k 6= j ). Retaining the interaction terms
would improve the emulator, but in the most straightforward
implementation would also require a large number of extra
global simulations. To avoid this expense, we drop the inter-
action terms. Doing so diminishes the accuracy of the em-
ulator, of course. However, other authors have gone further
and dropped the entire quadratic term, including the diago-
nal part, in order to reduce the cost (e.g., Petrov et al., 2025).
Furthermore, even when parameter perturbations extend to
the limits recommended by expert judgment, parameter inter-
actions have been found to be relatively small in both global
and single-column atmospheric simulations. For instance, in
the global PPE of Qian et al. (2018), parameter two-way in-
teractions have a relative contribution of 5 % to 10 % (see

their Fig. 2). Similarly, the global simulations of Neelin et al.
(2010) obtain similar optimal parameter values when the in-
teraction terms are kept or omitted. In the single-column stra-
tocumulus simulations of Guo et al. (2014), the relative con-
tribution of parameter two-way interactions is usually less
than 5 % (see their Fig. 3).

Once we drop the interaction terms, then QuadTune’s em-
ulator becomes

mi(p)=mi
(
pdef

)
+

P∑
j=1

∂mi

∂pj
δpj +

1
2

P∑
j=1

∂2mi

∂p2
j

(
δpj

)2
+ εe,i . (22)

Here, εe,i represents error in the ith regional metric of the
emulator (i.e., error in the omission of high-order polyno-
mial terms). With no interaction terms, the quadratic emu-
lator function becomes a simple uncorrelated parabola. The
diagonal quadratic term in QuadTune’s loss function (Eq. 22)
is reminiscent of the shrinkage penalty term that helps regu-
larize ridge regression (James et al., 2013).

5.2 QuadTune’s loss function

We define error in the ith regional metric produced by the
global model, εm,i (which is distinct from error in the emu-
lator, εe,i) by

fobs,i ≡ fobs(x)
xi
=mi(p)+ εm,i(p). (23)

We define the bias by

δbi ≡mi
(
pdef

)
− fobs,i . (24)

Then the approximated equation becomes

−δbi =

P∑
j=1

∂mi

∂pj
δpj +

1
2

P∑
j=1

∂2mi

∂p2
j

(
δpj

)2
+ εi . (25)

where we have combined the errors in the emulator and the
global model: εi = εe,i + εm,i .

If we want to manually alter the influence of the ith re-
gional metric, then we may multiply the entire ith equation,
including the non-linear term, by a weight, σi :

−σiδbin= σi

P∑
j=1

∂mi

∂pj
δpj +

1
2
σi

P∑
j=1

∂2mi

∂p2
j

(
δpj

)2
+ σiεi + . . .

(no sum over i). (26)

In this paper, the weights are simply taken to be proportional
to the geographic areas of the 20°× 20° regions.

To find the optimal parameter values, QuadTune mini-
mizes the following least-squares loss function, L:

L≡

N∑
i=1

σ 2
i

[
−δbi −

P∑
j=1

(
∂mi

∂pj
δpj +

1
2
∂2mi

∂p2
j

(
δpj

)2)]2

. (27)
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Figure 1. Schematic diagram illustrating the parameter dependence
of a quadratic emulator (blue), a global atmospheric model (green),
and observations (red). The emulator is constructed to match the
global model at three parameter values (black dots). We are ulti-
mately interested in finding the parameter value that minimizes the
distance between the global model and the observations, but for ef-
ficiency we in fact find the parameter value that minimizes the dis-
tance between the emulator and the observations. The error in emu-
lator shape is less consequential if the global model varies smoothly
with a change in parameter value and if the optimized value stays
within the parameter range spanned by the three parameter values.

Although QuadTune’s emulator is quadratic, its loss function
is quartic. Because the loss function (Eq. 27) is quartic, it
is not necessarily convex and therefore does not necessarily
have a single unique minimum.

To do this minimization, QuadTune calls SciPy’s
optimize.minimize package with the Powell method,
which performs a sequence of one-dimensional minimiza-
tions along conjugate directions in parameter space (Powell,
1964; Press et al., 2007). For a quadratic function, Powell’s
method requires P(P + 1) 1D minimizations. It scales lin-
early with the number of regional metrics.

As input to the minimization routine, we must provide
∂mi/∂pj and ∂2mi/∂p

2
j for each i and j . These are cal-

culated by fitting a parabola in pj to mi(pj ). The parabola
passes through the 3 points formed by the output of the de-
fault simulation and the outputs of the 2 simulations that per-
turb pj (Fig. 1). Therefore, at these three points, QuadTune’s
parabolic emulator is an exact match to the global model so-
lutions. Despite the resemblance of the quadratic emulator
(Eq. 22) to a Taylor series, Eq. (22) is, strictly speaking, a
polynomial interpolation, rather than a Taylor series. That is,
the derivatives in Eq. (22) – ∂mi/∂pj and ∂2mi/∂p

2
j – are

not guaranteed to match the global model’s derivatives at the
default parameter value.

From the coefficients of the parabola, the first and second
derivatives of the parabola are calculated at the default value
of pj . QuadTune’s one-at-a-time sampling strategy, which
perturbs each parameter high and low, is designed to estimate
∂mi/∂pj and ∂2mi/∂p

2
j with the minimum number of global

simulations.

5.3 Quasi-linear approximations that are useful for
diagnostic plots

We now write down some formulas that are not needed for
finding optimal parameter values, but nevertheless are useful
for creating visual diagnostics. In particular, we have found
that QuadTune’s behavior is not well described by the lin-
ear sensitivity matrix, S. Therefore, we construct an extended
matrix, S+, that captures some non-linearity.

After QuadTune has found the optimal parameter pertur-
bation δpopt, we can linearize the quadratic term about it ex
post facto. This yields an approximate quasi-linear form of
Eq. (26):

−σiδbi ≈ σi

P∑
j=1

(
∂mi

∂pj
+

1
2
δpj,opt

∂2mi

∂p2
j

)
δpj

+ σiεi + . . .

(no sum over i). (28)

In order to generalize the linear sensitivity matrix to a quasi-
linear form, we define the matrix

S+ij

(
δpopt

)
≡
∂mi

∂pj
+

1
2
δpj,opt

∂2mi

∂p2
j

(no sum over j). (29)

If we substitute S+ij into Eq. (28), then the quadratic regres-
sion formula can be written as a simple quasi-linear matrix
multiplication:

−σiδbi ≈σi

P∑
j=1

S+ij

(
δpopt

)
δpj + σiεi + . . .

(no sum over i). (30)

Equation (30) indicates that the ith bias is approximated by
summing the contributions from each of the P parameter per-
turbations δpj . However, for diagnostic purposes, it is some-
times helpful to keep the parameter contributions separate
from each other. To do so, we define a new matrix

T +ij ≡ S
+

ij

(
δpopt

)
δpj,opt (no sum over j). (31)

From Eqs. (30) and (31), we see that the bias for the ith re-
gional metric, δbi , is approximated by a sum over the ith row
of T +ij . The ij th element of T +ij represents the total contribu-
tion to the ith regional metric of tuning the j th parameter. It
takes into account both the sensitivity S+ij and the size of the
optimal parameter perturbation, δpj,opt.

6 The turbulence and cloud parameterization, global
atmospheric model, and SWCF observations that we
use

Here we overview the turbulence and cloud parameteriza-
tion (Cloud Layers Unified By Binormals, CLUBB, Lar-
son, 2017) whose parameters we tune. We also overview the
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global model that hosts CLUBB, namely, the Energy Exas-
cale Earth System Model (E3SM, Golaz et al., 2022), or more
precisely, its atmosphere component (EAM, Rasch et al.,
2019). Finally, we note the observations that we attempt to
match in our example tuning analysis.

6.1 CLUBB model description

CLUBB is a parameterization of subgrid-scale clouds and
turbulence in atmospheric models (Larson, 2017). Given
mean profiles of winds, moisture, and temperature, CLUBB
estimates vertical turbulent fluxes of those fields and also es-
timates subgrid cloud fraction and liquid water content.

CLUBB prognoses various turbulence moments, and
its prognostic equations contain damping time scales re-
lated to pressure damping and turbulent dissipation. The
version of CLUBB in the default version of EAM uses
the so-called “Lscale” code option (Golaz et al., 2002). In
simple overview, the CLUBB-Lscale option approximates
the turbulent mixing length scale as the distance that a
test parcel can move up or down before reaching its level
of neutral buoyancy. In contrast, the version of CLUBB
retuned here parameterizes the damping time scales by
use of the so-called “taus” code option. CLUBB-taus
uses simple diagnostic formulas to estimate the effects of
physical processes such as vertical wind shear and buoyant
stratification. The most relevant aspects of CLUBB-taus
are listed in Appendix B, but for more details, see Guo
et al. (2021) and Zhang et al. (2023). In order to switch
from CLUBB-Lscale to CLUBB-taus, one sets the CLUBB
flag |l_diag_Lscale_from_tau=.true.|. Doing so,
unfortunately, leads to model biases that we attempt to tune
away. This paper uses a version of CLUBB from 28 Novem-
ber 2022: https://github.com/larson-group/clubb_release/
commit/c50ab36d29f7c3cdbadbfa6cfa5cf935451e26a2 (last
access: 26 November 2025).

The CLUBB parameters that we tune are described in Ta-
ble B1. Since we do not tune non-CLUBB parameters, we do
not sample the global model’s full parametric error. However,
our tuning run is intended to be merely an example demon-
stration. QuadTune is capable of tuning parameters in other
model components if so desired.

6.2 Global atmospheric model

EAM is a global atmospheric model that calls CLUBB
in order to estimate the effects of small-scale clouds and
turbulence. The global-model code base we use is a de-
velopment version of EAM that is a close predecessor to
EAMv3.0.0 (Xie et al., 2025). In particular, the development
version includes major new features of EAMv3, such as the
Predicted Particle Properties (P3) stratiform microphysics
scheme, convective microphysics, a mass-flux adjustment for
the Zhang-McFarlane deep convective scheme, and the Mul-
tiscale Coherent Structure Parameterization (MCSP) (Terai

et al., 2025). Use of a development version of EAM is ap-
propriate to our goal, which is to illustrate the use of Quad-
Tune for retuning after making a structural modification, in
our case, from CLUBB-Lscale to CLUBB-taus.

To produce the results in this paper, we branched
off of branch https://github.com/E3SM-Project/v3atm/
commits/NGD_v3atm/ (last access: 26 November 2025) at
commit https://github.com/E3SM-Project/v3atm/commit/
555c7b81080c1e5262f1ec56052787819d984ad8 (last
access: 26 November 2025), which was made on 22 Jan-
uary 2023. (EAMv3.0.0 was released on 4 March 2024.)

6.3 Observations

The main goals of this paper are to document QuadTune’s
algorithm and to illustrate how to use its diagnostic plots.
For these limited purposes, it is sufficient to tune to observa-
tions of a single variable, namely Shortwave Cloud Radiative
forcing (SWCF). SWCF measures the radiative perturbation
due to the presence of clouds. The more negative SWCF, the
brighter the cloud, because brighter clouds reflect more in-
coming shortwave radiation, thereby reducing the net short-
wave flux at the top of the atmosphere.

The observational dataset of SWCF that we use is ver-
sion 4.1 of Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) Energy Balanced And Filled (EBAF) (Loeb
et al., 2018).

7 An example tuning analysis: matching observations
of SWCF

QuadTune not only finds optimal values of tuning parameters
but also generates diagnostic plots. These plots are designed
to characterize regional biases in the global model solutions
and the dependence of those solutions on parameter values.
For instance, the plots indicate

1. the relative importance of nonlinear parameter depen-
dencies versus linear parameter sensitivities;

2. which regional biases can be removed by tuning;

3. which parameters are most helpful in removing those
biases; and

4. the nature of the biases that cannot be removed.

The mathematical quantities plotted are listed in Ap-
pendix A.

To illustrate the use of these diagnostic plots, we now tune
the SWCF field produced by the updated taus version of
EAM described in Sect. 6.2. We tune P = 5 tunable parame-
ters with the names c8, n2_thresh, sfc, n2, and n2_wp2. They
are defined in Table B1.
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Figure 2. Biases of SWCF in various versions of EAM-taus: (a) default (untuned), (b) hand-tuned, and (c) quad-tuned. Without tuning, the
stratocumuli in EAM-taus are too bright. These biases can be reduced almost as much by automated quad-tuning (c) as they can by laborious
hand-tuning (b).

7.1 How much bias can be removed by a quadratic
emulator without parameter interactions?

The default version of EAM-taus is created by transplant-
ing CLUBB-taus, which was described in Sect. 6.1, into
a version of EAM that has been tuned around CLUBB-
Lscale. Consequently, EAM-taus has an unimpressive RMSE
of SWCF of 12.4 W m−2, in part because the simulated stra-
tocumulus (Sc) clouds off the coasts of Chile (South Amer-
ica) and Namibia (Africa) are far too bright (see Fig. 2a, blue

contours). From this starting point, in which the model is
badly out of tune, much of the parametric error can be re-
moved by QuadTune, despite the simplicity of its emulator.

Hand tuning of EAM-taus dims the Sc and improves the
RMSE of SWCF to 10.1 W m−2 (Fig. 2b). However, hand
tuning can require dozens of simulations and months of
work. To avoid the labor of hand tuning, we instead employ
QuadTune. That is, we tune EAM-taus using QuadTune, we
set the parameter values in EAM-taus to the values recom-
mended by QuadTune, and then we re-run EAM-taus with
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the recommended parameter values. This yields a SWCF
RMSE of 10.4 W m−2 (Fig. 2c). Although QuadTune’s
RMSE (10.4 W m−2) is worse than the hand-tuned RMSE
(10.1 W m−2), QuadTune’s global-mean bias (0.32 W m−2)
is better than the hand-tuned bias (1.85 W m−2). Further-
more, QuadTune makes a sizable improvement over the un-
tuned, default RMSE (12.4 W m−2). However, we add the
caveat that an equally sizable improvement would not be ex-
pected if the default model were already highly tuned to be-
gin with.

QuadTune not only recommends parameter values but also
estimates how much of the regional biases in the default sim-
ulation will be removed if EAM is run with QuadTune’s
recommended parameter values. In our example tuning run,
QuadTune thinks that the use of its recommended param-
eter values can reduce the EAM-taus Sc biases almost to
zero (see boxes 6_14 and 6_18 in Fig. 3b). However, in this
case QuadTune is too optimistic; in fact, when its recom-
mended values are used, the stratocumulus bias is not even
halved (Fig. 3c). QuadTune’s prediction is imperfect because
its simple quadratic emulator is approximate. Nevertheless,
QuadTune’s prediction of the bias reduction is qualitatively
correct and useful.

7.2 The importance of nonlinear parameter
dependence

The parameter dependence is relatively easy to intuit when
the first-order derivatives, ∂mi/∂pj (“sensitivities”) are
more important than the second-order derivatives, ∂m2

i /∂p
2
j

(“curvature terms” or Hessian terms, Sect. 15.5 of Press et al.,
2007). Then, with regard to a given metricmi and a given pa-
rameter pj , it is sensible to speak of a single sensitivity. In
contrast, when the curvature terms matter, then the sensitivity
varies over the relevant region of parameter space. As a con-
sequence, hard-won intuition about how a parameter influ-
ences model output for a default set of parameter values may
mislead us when we consider a model configuration with a
different default set of parameter values.

In our tuning example, non-linear parameter dependence
does matter (see the “three-dot” plot, Fig. 4). While linear
parameter dependence dominates the sensitivities of some re-
gions (e.g. the stratocumulus regions 6_14 and 6_18), nonlin-
ear parameter dependence strongly influences other regions
(e.g. 3_6 in China or 8_13 in the SH storm track). These non-
linear sensitivities are not isolated examples. Considering all
regions over the globe, the quadratic contributions to sensi-
tivity are smaller than the linear contributions but still siz-
able (not shown). Nonlinear parameter dependence was also
found to be important in the global model of Elsaesser et al.
(2025).

In principle, one could attempt to relate these strong non-
linear dependencies to how these parameters enter EAM’s
equations. However, doing so would be a difficult task that is
beyond the scope of this manuscript. Here, we merely spec-

Figure 3. Global output of normalized SWCF averaged over
20°× 20° regions. Panel (a) shows the normalized model biases
(model minus observations) from the default EAM simulation.
Panel (b) shows QuadTune’s prediction of residual biases after tun-
ing. Panel (c) shows the actual residual biases of a EAM simulation
that uses QuadTune’s recommended parameter values. Before tun-
ing, stratocumulus clouds (regions 6_14 and 6_18) are much too
bright (a). QuadTune thinks that it can diminish those biases (b),
but only at the cost of worsening biases elsewhere, e.g., over East-
ern United States (region 3_14) and over the Southern Hemisphere
storm track (region 8_13). An EAM simulation using QuadTune’s
recommended parameter values (c) shows reduced stratocumulus
biases, but not as much as QuadTune predicts.

ulate on the reason for one simple example of nonlinearity,
namely, the fact that c8 (see Table B1) sometimes has weaker
sensitivity for smaller values of c8 (see the left-most column
of Fig. 4). The reason possibly has to do with the fact that
c8 is the coefficient of a damping term in the w′3 equation
that competes with another damping term, the C11 damping
term, in the same equation (see Eq. B2). When c8 is small,
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Figure 4. “Three-dot” plot showing the SWCF values from the sensitivity and default runs (three black dots, with the middle dot being
the default), quad-tuned tuning predictions (orange x-marks), the interpolating parabola through those three points (blue curve), and the
observations (red line). Each row shows a regional metric, and each column shows a tunable parameter. (The tunable parameters are defined
in Table B1.) Many regions show a strongly nonlinear dependence on parameter value.
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Figure 5. The change in loss function upon tuning, as given by
Eq. (A4). Green indicates a reduced bias, and purple indicates a
worsened bias. QuadTune thinks that it can diminish the stratocu-
mulus biases (6_14 and 6_18), but it believes that the reduction
comes only at the cost of worsening biases elsewhere, e.g., over
Eastern United States (box 3_14) and over the Southern Hemisphere
storm track (box 8_13).

the C11 term presumably dominates, rendering the value of
c8 less significant.

Because of the nonlinearity in our example tuning run,
we cannot predict QuadTune’s behavior based solely on an
analysis of the (linear) sensitivity matrix, Sij . Instead, we
will proceed to analyze the quasi-linear sensitivity matrix,
S+ij (δpopt), which was defined in Eq. (29). However, this ma-
trix is available only after QuadTune has been run in order to
obtain δpopt. Our analysis merely aims to explain, after the
fact, why QuadTune did what it did.

7.3 Which regional biases does QuadTune prioritize
for removal?

Recall that we have defined a “tuning trade-off” as the situ-
ation in which tuning increases (i.e., worsens) the loss func-
tion in one region in order to improve it in another region
(see Eq. 14). A map of QuadTune’s predicted loss function
(Fig. 5) shows that QuadTune thinks that it can reduce the
loss function in some regions (green), while leaving it un-
changed in other regions (white) and worsened in other re-
gions (purple). E.g., QuadTune strives to reduce the bias in
the stratocumulus regions (6_14 and 6_18) at the expense of
other regions (e.g., 3_14, 1_6, and 3_6).

Why does QuadTune prioritize bias reduction in the stra-
tocumulus regions? In our tuning example, QuadTune ap-
pears to prioritize bias reduction where the loss is large
and the magnitude of the sensitivity is large. Consider
Fig. 6, which plots the bias versus sensitivity for each re-
gion. Among all regions, the stratocumulus regions (6_14
and 6_18) have both the largest-magnitude bias and the
largest sensitivities. The large sensitivities mean that parame-
ter adjustments have the possibility of reducing those losses.
The large losses mean that if the losses are indeed removed in
those regions, then the reduction to the overall loss function

Figure 6. Regional biases δb versus signed sensitivity, which is
defined in Eq. (A6). The color coding indicates the residual bias,
which is defined in Eq. (12). Panel (a) shows all regions in order
to provide a broad-brush overview; panel (b) shows only the spe-
cially designated regions, for clarity. The large stratocumulus bi-
ases (6_14 and 6_18) can be diminished by tuning because those
regions are sensitive to parameter perturbations. The biases in in-
sensitive regions (e.g., the Arctic region 1_14) cannot be budged,
i.e., are stubborn.

will be relatively large. To reduce these large losses, the tuner
sacrifices other regions that would lead to smaller gains. This
leads to stubborn biases and tuning trade-offs.

The loss in stratocumulus regions is especially large be-
cause the loss function is based on mean squared error
(Eq. 27), rather than mean absolute error (MAE). However,
when MAE is used instead, the optimal parameter values re-
main qualitatively similar (not shown), presumably because
even with MAE, the stratocumulus regions dominate the er-
ror.
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Figure 7. Contribution due to each parameter and the bias averaged
over all metrics. The upper panel shows the square of metrics per-
turbations (Eq. A12). The lower panel shows the straight average
(Eq. A13), plus QuadTune’s estimate of bias of the tuned run, plus
the observed bias from the default simulation. Although c8’s sen-
sitivity has little spatial correlation with the bias pattern, c8 is an
important parameter because it restores global radiative balance.

7.4 Which parameters does QuadTune adjust in order
to remove the biases?

It is helpful to know the relative influence of the tunable pa-
rameters because that suggests the relative influence of the
terms in the model equations that contain those parameters.
In addition, the parameter influence indicates which param-
eters could be dropped from a subsequent tuning run. How-
ever, the influence is not simply related to the correlation be-
tween the parameter and the bias.

QuadTune’s recommended parameter values were plotted
as the orange x-marks in Fig. 4. However, the size of the
parameter perturbation does not necessarily indicate the ef-
fectiveness of that parameter in removing biases. A large pa-

Figure 8. The first left singular vector, U1 of the quasi-linear sensi-
tivity matrix S+ (Eq. A9), arranged on a map. Most of the bias re-
duction is achieved by SVD 1. This is in part because of the strong
projection onto the stratocumulus regions 6_14 and 6_18.

rameter perturbation might have little effect on the biases, if
the model is insensitive to that parameter.

One simple measure of the j th parameter’s influence is the
sum of a squared parameter perturbation over all N regional
metrics (where T +ij is defined in Eq. 31):

N∑
i=1

(
T +ij

)2
. (32)

This sum comprises some terms in the (unweighted) loss
function (Eq. 27). This sum is plotted in Fig. 7. We see that,
by this measure, for our example tuning run, the most in-
fluential parameters are n2_thresh and c8, followed by sfc
and n2 (see the definitions of these parameters in Table B1).

Another way to measure the influence of parameters is
singular value decomposition (SVD). (SVD has been widely
used to decompose various types of matrices associated with
PPEs, see, e.g., Dagon et al. (2020)). The first singular vec-
tor of the quasi-linear sensitivity matrix S+ contains a large
fraction of the explained variance (R2

= 0.88). The spatial
pattern of the first left singular vector (U1, Eq. A9, Fig. 8)
correlates fairly well with the spatial pattern of major biases
(Fig. 3a).

The first right-singular vector shows that the largest com-
ponent is n2_thresh (Fig. 9). The other major contributors
are n2 and c8. The importance of c8 might seem counterin-
tuitive (Elsaesser et al., 2025), given the low correlation of
its sensitivity pattern (Fig. 10) with the default bias pattern
(Fig. 3a). Quantitatively, the correlation between the sensi-
tivity of c8 and the default bias is low (0.07), as measured by
the parameter-bias correlation matrix (Fig. 11).

Why, then, is c8 so important? It is because c8 is needed
to restore global radiative balance (Elsaesser et al., 2025).
QuadTune uses n2_thresh and n2 to reduce the local stra-
tocumulus biases (Fig. 10a and b), but the net effect of tuning
those parameters is to dim the globe too much. Increasing c8
brightens the clouds in a more globally uniform way, without
entirely undoing the benefits in the stratocumulus regions of
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Figure 9. The right singular vector matrix, VT of the quasi-linear
sensitivity matrix S+ (Eq. A9). The first singular vector, V T

1 , which
is the top row of VT , is dominated by n2_thresh.

tuning n2_thresh and n2. For a similar reason, the sfc param-
eter is also more important (Fig. 7) than what one might ex-
pect given its low correlation with the bias pattern (Fig. 11).

7.5 Biases that QuadTune fails to remove: tuning
trade-offs, stubborn biases, and the complexity
introduced by nonlinear parameter dependence

The stratocumulus regions 6_14 and 6_18 have the largest
biases among all regions. These biases contribute the most
to the loss function, and hence, QuadTune is incentivized to
remove them, if possible. And, in fact, QuadTune believes
that it can remove those biases (Fig. 3b). QuadTune believes
this because the parameter sensitivities of 6_14 and 6_18 are
large (Fig. 6). Therefore, speaking in a broad-brush overview,
QuadTune adjusts the parameter values primarily so as to re-
move those biases.

Other regions with smaller biases are de-prioritized by
QuadTune. If those regions have biases and sensitivities that
are “consistent” with the stratocumulus regions, then those
regions’ biases will be reduced. But sometimes those regions
are inconsistent, and then there is a trade-off between tuning
away the stratocumulus biases and tuning away other biases.
Because the other biases and sensitivities are weaker, they
are sacrificed.

Our tuning example exhibits two notable types of tuning
trade-offs between the stratocumulus regions and other re-
gions:

1. Regions with positively correlated sensitivity, but the
“wrong” bias. Consider the Eastern United States,
specifically region 3_14. Region 3_14 has a similar sen-
sitivity to all the parameters as does 6_14 (or 6_18)
(see the matrix-equation bar chart in Fig. 12). How-
ever, 3_14’s bias has the opposite sign. Whereas 6_14 is

Figure 10. Map of normalized sensitivity, S+
j

, of (a) n2_thres,
(b) n2, (c) c8. The spatial pattern of SVD 1 (Fig. 8) resembles the
sensitivity of two of its strongest components, n2_thresh and n2, but
not c8, despite c8’s importance (Fig. 9).

too bright, 3_14 is too dim. In whatever way Quad-
Tune adjusts the parameter values, improving 6_14 will
necessarily worsen 3_14. In our example, points such
as 3_14 appear in the upper-right quadrant of the bias-
sensitivity scatterplot, opposite the lower-right quadrant
where the large biases such as 6_14 appear (Fig. 6). (For
a toy example of this trade-off, see Eq. 16 and the re-
lated discussion.)

2. Regions with a “correct-sign” bias, but with an anti-
correlated sensitivity. Consider region 1_6, which is
north of Siberia. Its bias has the same sign as the stra-
tocumulus biases (it is too bright), but its response
to, for instance, parameter n2_thresh has the opposite
sign to that of the stratocumulus regions (Fig. 12). Re-
sponses with different signs in different regions have
been noticed, e.g., by Qian et al. (2024). The reason
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Figure 11. Quasi-linear correlations among parameters and the bias
(Eq. A11). The parameters n2_thresh and n2 have the strongest cor-
relation to the bias pattern, and c8 has a weak correlation.

for the different response in 1_6 is that the dependence
on n2_thresh is strongly nonlinear (Fig. 4). Increasing
n2_thresh dims the Sc regions, as desired, but bright-
ens 1_6, unfortunately. Such points appear in the lower-
left quadrant of the bias-sensitivity scatterplot (Fig. 6).

3. Overcorrection. Sometimes a region starts with a bias of
one sign, but after tuning, it is left with a bias of the op-
posite sign. An example is Region 8_13, in the SH storm
track. The clouds in 8_13 are originally too dim, but
they end up too bright (Fig. 12). The over-brightening
occurs because the dependence on n2_thresh is nonlin-
ear and because the sensitivity to c8 is unusually strong
in this region (Fig. 4).

We now list two other types of bias that cannot be re-
moved, regardless of their consistency or inconsistency with
the prioritized Sc biases, 6_14 and 6_18.

1. Stubborn bias. A stubborn bias occurs in a region
that has a non-negligible bias but has little sensitiv-
ity to any parameter (see Eq. 15). An example is Re-
gion 1_14, in the Arctic north of Canada. The large
bias and small sensitivity of 1_14 is evident in both
the matrix-equation bar chart (Fig. 12) and the three-
dot plot (Fig. 4). The large bias and small sensitivity
also means that 1_14 resides on or near the y axis of
the bias-sensitivity scatterplot, and far from the x axis,
which has zero bias (Fig. 6b).

Possibly 1_14’s bias is stubborn to perturbations to
CLUBB’s parameters because the clouds in 1_14 are
impacted less by CLUBB’s tendencies than by tenden-
cies of other parameterizations, such as microphysics.
Because of 1_14’s lack of sensitivity, removing its bias

Figure 12. Visualization of the quasi-linear tuning matrix equation
(Eq. A14). Each row of bars represents a row of the matrix equation
(Eq. A14). The vertical black bars indicate the default bias value.
The lengths of the horizontal black bars indicate QuadTune’s pre-
diction of removable bias. Each colored rectangle represents the
change in a metric i due to the j th parameter perturbation (T+

ij
).

The plot illustrates, e.g., stubborn biases (1_14) and tuning trade-
offs (e.g., 3_14).

via CLUBB would require a large adjustment to the
parameter values. Such a large parameter adjustment
would over-perturb other more sensitive regions, wors-
ening the overall fit. Therefore, QuadTune leaves the
stubborn bias in 1_14 unimproved.

2. Nonlinear zugzwang. In this situation, the default pa-
rameter value is the best possible value because the
quadratic parameter dependence prevents any parame-
ter perturbation from improving the bias. An example is
Region 3_6, which is located in China. The dependence
of SWCF in 3_6 on each parameter is parabolic (Fig. 4).
Because each parabola curves away from the observed
value of SWCF, any large parameter perturbation wors-
ens the fit. This worsening is “internal” to region 3_6,
rather than a tuning trade-off with other regions.

If a QuadTune user wishes to remove a residual bias in a
particular regional metric that remains after tuning, then he
must either find another global-model parameter to tune, or
else make a model structural change, or else upweight the
region.

8 How sensitive are results to the tuning configuration
and emulator functional form?

The sensitivity of the quad-tuned results to various configu-
rations of QuadTune is listed in Table 1. All simulations in
Table 1 have a duration of 5 years, even if the parameter-
value recommendations are based on 1- or 2-year perturbed
simulations. The default quad-tuned configuration produces
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Table 1. Root mean square error (RMSE) of SWCF of global EAM
simulations.

Simulation RMSE
(W m−2)

Default (untuned) EAM parameters 12.4
Hand-tuned 10.1
Quad-tuned, 20°× 20°, 1-year runs (default) 10.4
Quad-tuned, 30°× 30°, 1-year runs 10.3
Quad-tuned, 20°× 20°, 2-year runs 10.6
Piecewise-linear-tuned, 20°× 20°, 1-year runs 10.3
Quad-tuned with interaction term, 20°× 20°, 1-year runs 10.1

The top three rows use 1-year sensitivity simulations and 20°× 20° regions, but have different
methods of tuning (see Fig. 2). The fourth and fifth rows list two alternative quad-tuned
configurations, one of which uses 30°× 30° regions and the other of which uses sensitivity
simulations that last two years. The sixth row replaces the quadratic emulator with a
piecewise-linear emulator (Eq. 33). The seventh row includes a single interaction term in the
quadratic emulator (Eq. 34). Modifying the size of regions, duration of sensitivity
simulations, or shape of the emulator has only modest impacts.

a RMSE of SWCF (10.4 W m−2) that is better than the un-
tuned EAM run (12.4 W m−2) but somewhat worse than the
hand-tuned run (10.1 W m−2).

The quality of the tuning results is moderately sensitive
to the size of the tuning regions and the duration of the sen-
sitivity simulations. In the default tuning configuration, the
metrics are averaged over 20°× 20° regions, and the pertur-
bation global simulations last 1 year. If the regions are coars-
ened to 30°×30°, then the RMSE actually improves slightly
(10.3 W m−2). If the regions are 20°× 20°, but the pertur-
bation simulations are lengthened to 2 years, then the RMSE
worsens slightly (10.6 W m−2). The sense of these changes is
counter-intuitive, but the changes are modest, and we believe
that they are within the range of random error.

The sensitivity of the RMSE to the emulator shape is ad-
dressed with two independent experiments. In the first, we
replace the quadratic emulator (Eq. 22) with a piecewise lin-
ear emulator:

mi(p)=mi
(
pdef

)
+

P∑
j=1


∂mi
∂pj

∣∣∣
left
δpj if pj < pj,def

∂mi
∂pj

∣∣∣
right

δpj if pj ≥ pj,def
. (33)

In this equation, we have assumed that the default parameter
value lies between the high and low values. “Left” denotes
the slope between the default and low value, and “right”
denotes the slope between the default and high value. The
RMSE of SWCF changes from 10.4 to 10.3 W m−2, demon-
strating little sensitivity to the emulator shape in this particu-
lar example. In the second experiment, we add a single inter-
action term to Eq. (22), namely

1
2
∂2mi

∂p1∂p2
, (34)

where p1 = c8 and p2 = n2_thresh. This interaction term
was chosen because QuadTune perturbs both these parame-
ters a lot in the stratocumulus regions, 6_14 and 6_18. Hence
we expect the interaction term between these two parameters

to be large as well. Ideally, of course, one might like to in-
clude all interaction terms, but that would require 10 extra
simulations. However, even including one interaction term
improves the RMSE of SWCF from 10.4 to 10.1 W m−2,
which equals the hand-tuned RMSE. Once again, the result
gives a sense of the sensitivity to emulator shape.

We know that parametric error remains in QuadTune’s
default-configuration solution because that solution has
greater RMSE (10.4 W m−2) than both the hand-tuned and
interaction solutions (10.1 W m−2). Given the existence of
parametric error even after tuning, the structural errors have
not been fully isolated. Because of this, the model error that
we analyze is in fact a mixture of structural error and para-
metric error.

This is a vexing problem in general because, no matter
how sophisticated one makes an emulator, one can never
know if parametric error has been eliminated. There may
always exist an unexplored pocket of parameter space that
produces a much lower error. However, in our example, vary-
ing the emulator and hand tuning both produce a RMSE of
SWCF between 10 and 11 W m−2. In contrast, eliminating all
parametric and structural (and observational) error would, in
theory, produce a RMSE of 0 W m−2. If we assume that fully
eliminating parametric error does not reduce RMSE much
below 9 or 10 W m−2, then the model error is still domi-
nated by structural error. If so, our analysis of structural error
remains qualitatively useful, despite the admixture of post-
tuning parametric error.

9 Caveats and future work

At present, QuadTune is a barebones tuner. It could be ex-
tended in many ways. We list several of them now.

1. Calculate an ensemble of perturbed parameter sets. By
calculating multiple near-optimal parameter sets, a cali-
brated physics ensemble can be created, as in Elsaesser
et al. (2025). Such an ensemble of parameter sets would
allow us to construct error bars on parameter values, re-
gional metrics, and other quantities. Calculating an en-
semble is particularly important because the quartic loss
function potentially has multiple minima (Sect. 5.2).

2. Find a better way to choose which parameters to tune
(i.e., do feature selection). Currently, we are manually
pruning away unimportant parameters simply by run-
ning QuadTune and deleting parameters that contribute
little, as measured by, e.g., Fig. 7a. However, it would
be preferable to have a more efficient and objective
method.

3. Simultaneously tune multiple fields. In this initial ex-
position, we tuned only one metric (SWCF). However,
tuning only one metric is prone to overfitting the tuned
metric at the expense of other metrics. Therefore, we
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should explore the question of how much data is needed
to avoid overfitting. Tuning multiple metrics also re-
quires design choices, such as how to weight different
metrics appropriately.

4. Explore the effects of parameter interactions. The accu-
racy of our emulator (Eq. 22) is improved by including
interactions between parameters, especially those that
are strongly perturbed. However, doing so requires per-
forming extra global simulations. The benefits and costs
should be explored further.

5. After quad-tuning once, systematically iterate in or-
der to improve optimal parameter estimates. QuadTune
could be used to carry out an initial, exploratory stage
of tuning in order to prepare for later stages of more
refined tuning. If desired, each later stage could also
be carried out by QuadTune, but with an updated de-
fault simulation and an updated set of sensitivity sim-
ulations. This would allow the user to sequentially run
small batches of 2P + 1 simulations until adequate pa-
rameter values are found. For example, as an initial ex-
ploratory experiment, we have started with the iteration-
1 optimal parameters from QuadTune (which produce
RMSE= 10.4 W m−2), constructed a new batch of 2P+
1 simulations with reduced parameter perturbations
about the iteration-1 optimum, re-quad-tuned once, and
found an improved RMSE of 10.0 W m−2 (not shown).
Alternatively, the later stages could employ a more so-
phisticated tuning method than QuadTune. In this case,
the first stage (i.e., quad-tuning) would help demarcate
reasonable ranges of the parameter values, i.e. would
help do feature selection for later stages of iteration
(Hastie et al., 2009).

10 Conclusions

QuadTune provides software to tune away parametric error –
approximately but quickly – in global atmospheric models. It
reduces the required number of global sensitivity runs, which
are expensive, by assuming a particularly simple emulator of
parameter dependence, namely, a quadratic, non-interacting
one (Eq. 22).

QuadTune does not attempt to find the true global optimal
parameter set, but merely finds the approximate location of a
nearby minimum in parameter space. Nevertheless, the tuner
is capable of removing much of the parametric bias that is re-
movable in hand tuning. E.g., in our example, the RMSE in
SWCF is reduced from 12.4 to 10.4 W m−2, as compared to a
hand-tuned value of 10.1 W m−2. In this particular example,
this reduction requires only 11 global tuning runs (although
the important parameters and their ranges must be identified
beforehand). Based on our experience thus far, we are hope-
ful that QuadTune will prove useful for quick retuning after
a structural model change.

In our example tuning analysis, we find that nonlinearity in
the parameter dependence cannot be ignored (Fig. 4). There-
fore, for many of our parameters, it is unhelpful to think
simply in terms of a single sensitivity. To help understand
some of the non-linear effects, we base our diagnostics on a
quasi-linear sensitivity matrix, S+ij (Eq. 29). However, S+ij is
a function of QuadTune’s estimate of optimal parameter val-
ues, and hence dependence on S+ij , restricts us to after-the-
fact interpretation of QuadTune’s behavior.

One of our goals is explainability. Namely, we wish to
understand why QuadTune finds the parameter values that
it does and what prevents QuadTune from reducing biases
further. QuadTune’s explainability is aided by its simple,
quadratic emulator and also by its diagnostic plots that, for
instance, compress a multiple regression problem to a uni-
variate scatterplot (Fig. 6) and visualize the tuning equation
(Eq. 30) with a decorated bar chart (Fig. 12). The compres-
sion in the scatterplot is achieved by calculating the overall
sensitivity to all parameters rather than retaining the individ-
ual sensitivity to each parameter. The bar chart visualizes
the contributions of each parameter perturbation to remov-
ing each regional bias, but more generally, it provides a way
to visualize any (small) matrix equation. The mathematical
quantities plotted in QuadTune’s diagnostics are listed in Ap-
pendix A.

In our example tuning run, how does QuadTune adjust pa-
rameter values in order to reduce the biases? QuadTune per-
turbs two parameters that are strongly correlated with the
bias (n2_thresh and n2) and also perturbs another parame-
ter that is weakly correlated (c8) (see Fig. 9, and Sect. 7.4).
Even though c8 is weakly correlated, an adjustment to c8 is
needed to restore radiative balance after the adjustments to
n2_thresh and n2 (Fig. 7).

We encountered two classes of bias that could not be re-
moved by tuning (Sect. 7.5). The first class is the class of
stubborn biases, as defined in Eq. (13) and illustrated in
Eq. (15). A stubborn bias is a relatively large-magnitude bias
with a relatively small sensitivity to parameter perturbations.
We found, for instance, that there is a stubborn bias in the
Canadian Arctic region 1_14 (Fig. 6). The second class of
biases that we encountered is the class of tuning trade-offs.
We define a tuning trade-off as a sacrifice of the loss function
in one region in order to improve the loss function in another
region (see Eqs. 14. 16, and Fig. 5). A tuning trade-off may
involve, for example, two regions with the same sensitivity
but different biases (see Region 3_14 in the United States
in Fig. 12). Alternatively, it may involve the same sign of
bias but a different sensitivity (e.g., the Siberian Arctic Re-
gion 1_6 in Fig. 12).

QuadTune can tell us which parameters matter in which
regions. This information could, in principle, provide hints
about model structural error if a parameter could be associ-
ated with a particular term (i.e., process) in a budget. How-
ever, QuadTune itself does not analyze how parameters enter
global-model equations. That requires further analysis.

Geosci. Model Dev., 18, 9767–9790, 2025 https://doi.org/10.5194/gmd-18-9767-2025



V. E. Larson et al.: QuadTune version 1 9785

Appendix A: Mathematical basis of diagnostics plots

This Appendix lists the mathematical quantities that are plot-
ted in QuadTune’s diagnostic plots.

A1 Three-dot plot (Fig. 4)

The purpose of this plot is to give detailed information about
the sensitivity of selected regions to each parameter. In par-
ticular, the plot conveys the degree of nonlinearity in the pa-
rameter dependence.

For a given regional metric and parameter, the three black
“dots” plot the simulated value of the metric (here, SWCF)
versus the parameter value for the default simulation and the
two sensitivity runs that perturb the parameter high and low.
The blue line is the parabola that uniquely interpolates these
three dots. For the regional metric mi and parameter pj , it is

mi
(
pj ;pj,def

)
=mi

(
pj,def

)
+
∂mi

∂pj
δpj +

1
2
∂2mi

∂p2
j

(
δpj

)2
,

(no sum over j) (A1)

where δpj ≡ pj −pj,def. This is essentially one term in the
quadratic emulator (Eq. 22).

A2 Loss map (Fig. 5)

The contribution to the loss function in the ith region is

Li(δp)≡σ
2
i

[
−δbi −

P∑
j=1

(
∂mi

∂pj
δpj +

1
2
∂2mi

∂p2
j

(
δpj

)2)]2

.

(no sum over i). (A2)

Of particular interest is the change in loss upon tuning (tuned
minus default):

δLi ≡ Li
(
δpopt

)
−Li(0). (A3)

When δLi < 0, the ith bias is reduced in magnitude, and
when δLi > 0, the bias is worsened.

To produce better color contrast, Fig. 5 plots the quantity

1000sgn(δLi)
√
δLi . (A4)

A3 Bias-sensitivity scatterplot (Fig. 6)

Here our goal is to compress information about a multiple
linear regression problem into a familiar univariate scatter-
plot. I.e., we wish to create a mock univariate scatterplot.

To do so, we create a scatterplot of the bias δbi versus the
signed sensitivity of each regional metric, signedSensi . The
sign of signedSensi is positive for any region whose sensi-
tivity row vector is positively correlated with the sensitivity
row vector of the most sensitive region. Likewise, the sign is
negative for negatively correlated regions.

The overall sensitivity of the ith region to all parameters,
sensi , is taken to be the Euclidean norm of the sensitivity due
to all parameters:

sensi =

√∑
j

(
S+ij

)2
(A5)

where S+ij is defined in Eq. (29). We plot a signed version of
sensi , signedSensi :

signedSensi = signOfSensisensi (no sum over i). (A6)

Here, signOfSensi = 1 if the sensitivity row-vector of the
ith region is positively correlated with the sensitivity row-
vector of the most sensitive region. On the other hand,
signOfSensi =−1 if it is negatively correlated.

We assume that QuadTune prioritizes the reduction of the
bias of the region with the greatest sensitivity. We denote that
region i = I :

I = arg maxi (sensi) (A7)

Moreover, signOfSensi is simply the sign of the dot product
between row i and row I of S+ij :

signOfSensi = sign

(∑
j

S+ij S
+

Ij

)
. (A8)

A4 Singular vectors (Figs. 8 and 9)


...

· · · S+
· · ·

...

≈ σ1


...

U1
...

[· · · V T
1 · · ·

]
+ . . .

(A9)

Recall that, for S+ij , the ith row corresponds to the ith re-
gional metric, and the j th column corresponds to the j th pa-
rameter. The SVD separates the dependence on regions and
parameters, so that the column vector U1 represents the spa-
tial pattern and the row vector V T1 represents the parameter
dependence. Figure 8 color-codes the values of the elements
of U1 and arranges them on a gridded map. Figure 9 color-
codes the entire VT matrix. The first row corresponds to the
first singular vector.

A5 Parameter-correlation matrix (Fig. 11)

First we extend the quasi-linear sensitivity matrix S+ by ap-
pending the bias column vector:

SE+ ≡
[
S+(N×P) δb(N×1).

]
(A10)

Then we de-bias and normalize the columns of SE+ in or-
der to form the matrix SE+n . Finally, the correlation matrix is
given by:

C≡ SE+
T

n SE+n (A11)
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One may interpret Cij as cos(θij ), where θij is the angle be-
tween two columns of SE+.

A6 Parameter contribution bar chart (Fig. 7)

In Fig. 7a, which shows the absolute value of each contribu-
tion by an individual parameter to all regions, the height of
the j th bar (parameter) is given by:

bar heightj =
N∑
i=1

∣∣∣T +ij ∣∣∣ . (A12)

In Fig. 7b, which shows the mean contribution of each pa-
rameter,

bar heightj =
N∑
i=1

T +ij . (A13)

A7 Matrix-equation bar chart (Fig. 12)

This bar chart visualizes the matrix equation

δbi =

P∑
j=1

T +ij + δbresid,i . (A14)

Because the chart can be applied to any such matrix equa-
tion, it is quite general. Each element T +ij is represented by a
colored bar. Because every individual matrix element is dis-
played, the chart is a comprehensive depiction of the ma-
trix equation. (However, in Fig. 12, only selected rows are
shown.) The value of the bias δbi is represented by the lo-
cation of the vertical black line. The residual bias δbresid,i
is given by the distance between the end of the horizon-
tal black line and the y axis. The length of the horizon-
tal black line represents the removable portion of the bias
δbremov,i = δbi − δbresid,i .

Appendix B: How CLUBB parameters appear in
CLUBB-taus equations

This Appendix lists the terms that contain the five param-
eters that we tune in this paper (c8, n2_thresh, sfc, n2,
and n2_wp2). The purpose of this equation sketch is mostly
to give a flavor of some of the potential interactions between
parameters. For ease of exposition, we ignore extra damping
that CLUBB applies in clear, stable layers. We also ignore
the fact that some of CLUBB’s damping is reduced near the
ground. For a fuller account of CLUBB’s tau damping, see
Guo et al. (2021) or Zhang et al. (2023).

The five parameters appear in damping time scales in
equations for three of CLUBB’s prognosed subgrid turbu-
lence moments:

∂w′2

∂t
= . . .−

w′2

τ
w′2

(B1)

∂w′3

∂t
= . . .−C11

3g
θ0
w′2θv ′−

c8
τ
w′2
w′3 (B2)

∂w′x′

∂t
= . . .−

w′x′

τw′x′
, (B3)

wherew′2 is the variance of vertical velocity,w′3 is the third-
order moment of vertical velocity, and w′x′ is the turbulent
flux of either total moisture (x′ = r ′t ) or liquid water poten-
tial temperature (x′ = θ ′l). Here the C11 term is a buoyancy
damping term that competes with the more generic damping
term, −c8w′3/τ

w′2 , as discussed in Sect. 7.2. The damping

on w′3 is assumed to be proportional to the damping on w′2,
with a proportionality constant c8. In CLUBB, the ratio of
w′3 to w′2 affects boundary layer depth and cloud brightness
(Ma et al., 2022).

The damping time scale of w′2, 1/τ
w′2 , is the sum of two

other damping time scales that attempt to model the effects of
physical conditions such as the degree of stable stratification,
as measured by the Brunt-Väisälä frequency, N :

1
τ
w′2
=

1
τnoN
+

1
τN,wp2

. (B4)

The damping onw′x′ adds an extra factor in order to better
account for the strong effects of stable stratification on cloud-
top entrainment fluxes (Guo et al., 2021):

1
τw′x′

=

(
1
τnoN
+

1
τN

)
×

(
1+CiτwpxpRiRi

0.5
g H

(
N2
−N2

thresh

))
. (B5)

Here, Rig is the gradient Richardson number, CiτwpxpRi is
a constant, and H is the Heaviside step function, which
equals 1 if its argument is positive and 0 if its argument is
negative. Also, the expression contains a tunable parameter
N2

thresh (also denoted n2_thresh). The parameter N2
thresh is a

threshold below which the extra damping factor is shut off.
The damping is neutrally stratified layers (“noN”) is mod-

eled by

1
τnoN

=Ciτ sfc
u∗

κz︸ ︷︷ ︸
surface

+Ciτ shear

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

︸ ︷︷ ︸
shear

+Ciτbkgnd
1

τconst︸ ︷︷ ︸
background

. (B6)

where Ciτ sfc (also denoted sfc) is a tunable parameter that
governs the strength of damping near the ground, where z is
the altitude above ground, u∗ is the surface friction veloc-
ity, and κ is the von Karman constant. The second term adds
extra damping in sheared layers, and the last term provides

Geosci. Model Dev., 18, 9767–9790, 2025 https://doi.org/10.5194/gmd-18-9767-2025



V. E. Larson et al.: QuadTune version 1 9787

background damping in unsheared layers aloft. For more de-
tails, see Guo et al. (2021).

To this neutrally stratified damping, we add extra damping
to w′x′ in stable layers:

1
τN
= CiτNmax(0,N), (B7)

where CiτN (also denoted n2) is another tunable parameter.
To w′2, we add

1
τN,wp2

= CiτN,wp2max(0,N), (B8)

where CiτN,wp2 (also denoted n2_wp2) is a tunable parame-
ter.

The tunable parameters are summarized in Table B1.
Inspecting these expressions, one can find several potential

parameter interactions. For instance, sfc, n2, and n2_thresh
all appear in 1/τw′x′ (Eq. B5). If one of the three parameters
has smaller effects than the others, then the model sensitiv-
ity may roll off, as mentioned in Sect. 7.2. To cite another
example, sfc and n2_wp2 both appear in 1/τ

w′2 .

Table B1. Definitions of tunable parameters.

Parameter Meaning Low value Default value High value Eq.
name

c8 Damping on w′3 0.3 0.5 0.9 B2
n2_thresh Lower N2 threshold for extra damping 2.0× 10−4 3.3× 10−4 5.0× 10−4 B5
sfc Lower surface damping 0.0 0.3 0.4 B6
n2 Damping of w′x′ for large N2 0.2 0.65 1.0 B7

n2_wp2 Damping of w′2 for large N2 0.0 0.2 0.4 B8

The low and high parameter values are the ones used in our 2P one-at-a-time sensitivity runs.

Code availability. The EAM global-model source code, includ-
ing CLUBB, is located at https://github.com/larson-group/v3atm/
releases/tag/quadtune_2025_paper and is archived on Zenodo at
https://doi.org/10.5281/zenodo.15121834 (see Guo et al., 2025).
The QuadTune Python scripts are available at https://github.com/
larson-group/quadtune_release and are archived on Zenodo at
https://doi.org/10.5281/zenodo.17215920 (see Larson et al., 2025).
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