Articles | Volume 17, issue 3
https://doi.org/10.5194/gmd-17-957-2024
https://doi.org/10.5194/gmd-17-957-2024
Development and technical paper
 | 
05 Feb 2024
Development and technical paper |  | 05 Feb 2024

GeoPDNN 1.0: a semi-supervised deep learning neural network using pseudo-labels for three-dimensional shallow strata modelling and uncertainty analysis in urban areas from borehole data

Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng

Related authors

The 4D reconstruction of dynamic geological evolution processes for renowned geological features
Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
Geosci. Model Dev., 17, 847–864, https://doi.org/10.5194/gmd-17-847-2024,https://doi.org/10.5194/gmd-17-847-2024, 2024
Short summary
Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022,https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024,https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Architectural insights into and training methodology optimization of Pangu-Weather
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024,https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Evaluation of global fire simulations in CMIP6 Earth system models
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024,https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Evaluating downscaled products with expected hydroclimatic co-variances
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024,https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Software sustainability of global impact models
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024,https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary

Cited articles

Avalos, S. and Ortiz, J. M.: Recursive Convolutional Neural Networks in a Multiple-Point Statistics Framework, Comput. Geosci., 141, 104522, https://doi.org/10.1016/j.cageo.2020.104522, 2020. 
Batista, G. E. A. P., Prati, R. C., and Monard, M. C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data, Sigkdd Explor. Newsl., 6, 20–29, https://doi.org/10.1145/1007730.1007735, 2004. 
Burrough, P. A., van Gaans, P. F. M., and Hootsmans, R.: Continuous classification in soil survey: Spatial correlation, confusion and boundaries, Geoderma, 77, 115–135, https://doi.org/10.1016/S0016-7061(97)00018-9, 1997. 
Caers, J.: Modeling Uncertainty in the Earth Sciences, Wiley, https://doi.org/10.1002/9781119995920, 2011. 
Calcagno, P., Chiles, J. P., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge Part I. Modelling method coupling 3D potential-field interpolation and geological rules, Phys. Earth Planet. In., 171, 147–157, https://doi.org/10.1016/j.pepi.2008.06.013, 2008. 
Download
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.