Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5179-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5179-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Open-ocean tides simulated by ICON-O, version icon-2.6.6
Jin-Song von Storch
CORRESPONDING AUTHOR
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Eileen Hertwig
Abteilung Datenmanagement, Deutsches Klimarechenzentrum (DKRZ), Hamburg, Germany
Veit Lüschow
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Nils Brüggemann
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Helmuth Haak
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Peter Korn
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Vikram Singh
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
Ting-Chen Chen, Hugues Goosse, Matthias Aengenheyster, Kristian Strommen, Christopher Roberts, Malcolm Roberts, Rohit Ghosh, Jin-Song von Storch, and Stephy Libera
EGUsphere, https://doi.org/10.5194/egusphere-2025-666, https://doi.org/10.5194/egusphere-2025-666, 2025
Short summary
Short summary
The Southern Annular Mode (SAM) is a key driver of Southern Hemisphere climate variability, but global models often overestimate its persistence in summer. Using high-resolution models, we show this bias can be reduced, along with some improvements in jet latitude and likely a better-resolved eddy-mean flow feedback. Controlled experiments reveal the potential roles of sea surface temperature biases and ocean mesoscales, underscoring the complex mechanisms shaping SAM persistence.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Oliver Gutjahr, Nils Brüggemann, Helmuth Haak, Johann H. Jungclaus, Dian A. Putrasahan, Katja Lohmann, and Jin-Song von Storch
Geosci. Model Dev., 14, 2317–2349, https://doi.org/10.5194/gmd-14-2317-2021, https://doi.org/10.5194/gmd-14-2317-2021, 2021
Short summary
Short summary
We compare four ocean vertical mixing schemes in 100-year coupled simulations with the Max Planck Institute Earth System Model (MPI-ESM1.2) and analyse their model biases. Overall, the mixing schemes modify biases in the ocean interior that vary with region and variable but produce a similar global bias pattern. We therefore cannot classify any scheme as superior but conclude that the chosen mixing scheme may be important for regional biases.
Wolfgang A. Müller, Stephan Lorenz, Trang V. Pham, Andrea Schneidereit, Renate Brokopf, Victor Brovkin, Nils Brüggemann, Fatemeh Chegini, Dietmar Dommenget, Kristina Fröhlich, Barbara Früh, Veronika Gayler, Helmuth Haak, Stefan Hagemann, Moritz Hanke, Tatiana Ilyina, Johann Jungclaus, Martin Köhler, Peter Korn, Luis Kornblüh, Clarissa Kroll, Julian Krüger, Karel Castro-Morales, Ulrike Niemeier, Holger Pohlmann, Iuliia Polkova, Roland Potthast, Thomas Riddick, Manuel Schlund, Tobias Stacke, Roland Wirth, Dakuan Yu, and Jochem Marotzke
EGUsphere, https://doi.org/10.5194/egusphere-2025-2473, https://doi.org/10.5194/egusphere-2025-2473, 2025
Short summary
Short summary
ICON XPP is a newly developed Earth System model configuration based on the ICON modeling framework. It merges accomplishments from the recent operational numerical weather prediction model with well-established climate components for the ocean, land and ocean-biogeochemistry. ICON XPP reaches typical targets of a coupled climate simulation, and is able to run long integrations and large-ensemble experiments, making it suitable for climate predictions and projections, and for climate research.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025, https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
Short summary
Vertical mixing is an important process, for example, for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes with different parameter settings in two different ocean models and show that most effects from mixing scheme parameter changes are model-dependent.
Ting-Chen Chen, Hugues Goosse, Matthias Aengenheyster, Kristian Strommen, Christopher Roberts, Malcolm Roberts, Rohit Ghosh, Jin-Song von Storch, and Stephy Libera
EGUsphere, https://doi.org/10.5194/egusphere-2025-666, https://doi.org/10.5194/egusphere-2025-666, 2025
Short summary
Short summary
The Southern Annular Mode (SAM) is a key driver of Southern Hemisphere climate variability, but global models often overestimate its persistence in summer. Using high-resolution models, we show this bias can be reduced, along with some improvements in jet latitude and likely a better-resolved eddy-mean flow feedback. Controlled experiments reveal the potential roles of sea surface temperature biases and ocean mesoscales, underscoring the complex mechanisms shaping SAM persistence.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Ulrike Proske, Nils Brüggemann, Jan P. Gärtner, Oliver Gutjahr, Helmuth Haak, Dian Putrasahan, and Karl-Hermann Wieners
EGUsphere, https://doi.org/10.5194/egusphere-2024-3493, https://doi.org/10.5194/egusphere-2024-3493, 2024
Preprint archived
Short summary
Short summary
Climate models contain coding mistakes, which may look mundane, but can affect the results of interconnected and complex models in unforeseen ways. We describe a sea ice bug in the coupled atmosphere-ocean-sea ice model ICON, giving an example of visual and concise bug communication. This bug represents a novel species of resolution-dependent bugs. The case illustrates the value of open documentation of bugs in climate models and to encourage our community to adopt a similar approach.
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
Geosci. Model Dev., 17, 261–273, https://doi.org/10.5194/gmd-17-261-2024, https://doi.org/10.5194/gmd-17-261-2024, 2024
Short summary
Short summary
We enabled the weather and climate model ICON to run in a high-resolution coupled atmosphere–ocean setup on the JUWELS supercomputer, where the ocean and the model I/O runs on the CPU Cluster, while the atmosphere is running simultaneously on GPUs. Compared to a simulation performed on CPUs only, our approach reduces energy consumption by 45 % with comparable runtimes. The experiments serve as preparation for efficient computing of kilometer-scale climate models on future supercomputing systems.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
Tim Rohrschneider, Johanna Baehr, Veit Lüschow, Dian Putrasahan, and Jochem Marotzke
Ocean Sci., 18, 979–996, https://doi.org/10.5194/os-18-979-2022, https://doi.org/10.5194/os-18-979-2022, 2022
Short summary
Short summary
This paper presents an analysis of wind sensitivity experiments in order to provide insight into the wind forcing dependence of the AMOC by understanding the behavior of its depth scale(s).
Oliver Gutjahr, Nils Brüggemann, Helmuth Haak, Johann H. Jungclaus, Dian A. Putrasahan, Katja Lohmann, and Jin-Song von Storch
Geosci. Model Dev., 14, 2317–2349, https://doi.org/10.5194/gmd-14-2317-2021, https://doi.org/10.5194/gmd-14-2317-2021, 2021
Short summary
Short summary
We compare four ocean vertical mixing schemes in 100-year coupled simulations with the Max Planck Institute Earth System Model (MPI-ESM1.2) and analyse their model biases. Overall, the mixing schemes modify biases in the ocean interior that vary with region and variable but produce a similar global bias pattern. We therefore cannot classify any scheme as superior but conclude that the chosen mixing scheme may be important for regional biases.
Cited articles
Accad, Y., Pekeris, C. L., and Jeffreys, H.: Solution of the tidal equations for the m2 and s2 tides in the world oceans from a knowledge of the tidal potential alone, Philos. T. Roy. Soc. Lond.
A, 290, 235–266,
https://doi.org/10.1098/rsta.1978.0083, 1978. a
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004. a
Arbic, B. K., Garner, S. T., Hallberg, R. W., and Simmons, H. L.: The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep-Sea Res. Pt. II, 51, 3069–3101, https://doi.org/10.1016/j.dsr2.2004.09.014, 2004. a, b, c, d
Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J., and Wallcraft, A. J.: Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25, 20–29, https://doi.org/10.5670/oceanog.2012.38, 2012. a, b, c
Barton, K. N., Pal, N., Brus, S. R., Petersen, M. R., Arbic, B. K., Engwirda, D., Roberts, A. F., Westerink, J. J., Wirasaet, D., and Schindelegger M.: Global barotropic tide modeling using inline self‐attraction and loading in MPAS-Ocean, J. Adv. Model. Earth Sy., 14, e2022MS003207, https://doi.org/10.1029/2022MS003207, 2022. a
Brus, S. R., Barton, K. N., Pal, N., Roberts, A. F., Engwirda, D., Petersen, M. R., Arbic, B. K., Wirasaet, D., Westerink, J. J., and Schindelegger, M.:
Scalable self attraction and loading calculations for unstructured ocean tide models, Ocean Model., 182, 102160, https://doi.org/10.1016/j.ocemod.2023.102160, 2023. a
Buijsman, M. R., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. A. M., Richman, J. G., Shriver, J. F., Vic, C., Wallcraft, A. J., and Zhao, Z.: On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations, Ocean Model., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656, 2020.
Danilov, S.: On the resolution of triangular meshes, J. Adv. Model. Earth Sy., 14, e2022MS003177,
https://doi.org/10.1029/2022MS003177, 2022. a
Egbert, G. D., Bennett, A. F., and Foreman, M. G. G.: Topex/poseidon tides estimated using a global inverse model, J. Geophys. Res.-Oceans, 99, 24821–24852,
https://doi.org/10.1029/94JC01894, 1994. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Technol., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Egbert, G. D., Ray, R. D., and Bills, B. G.: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum, J. Geophys. Res., 109, C03003, https://doi.org/10.1029/2003JC001973, 2004.
a
Exarchou, E., von Storch, J. S., and Jungclaus, J. H.: Impact of tidal mixing with different scales of bottom roughness on the general circulation, Ocean Dynam., 62, 1545–1563, https://doi.org/10.1007/s10236-012-0573-1, 2012. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys.,
45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007. a
Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks, Annu. Rev. Fluid Mech., 41, 253–282, 2009. a
Foreman, M. G. G., Cherniawsky, J. Y., and Ballantyne, V. A.: Versatile harmonic tidal analysis: Improvements and applications, J. Atmos. Ocean. Tech., 26, 806–817,
https://doi.org/10.1175/2008JTECHO615.1, 2009. a
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station papa and long-term upper ocean study site, J. Geophys. Res.-Oceans, 95, 16179–16193,
https://doi.org/10.1029/JC095iC09p16179, 1990. a
Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J.,
Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast,S., Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur, R., Silvers, L., Wan, H., Zängl, G., and Stevens, B.: ICON-A, the atmosphere component of the ICON Earth system model: I. Model description, J. Adv. Model. Earth Sy., 10, 1613–1637, https://doi.org/10.1029/2017MS001242, 2018. a, b
Gordeev, R. G., Kagan, B. A., and Polyakov, E. V.: The effects of loading and self-attraction on global ocean tides: The model and the results of a numerical experiment, J. Phys. Oceanogr., 7, 161–170, https://doi.org/10.1175/1520-0485(1977)007<0161:TEOLAS>2.0.CO;2, 1977. a, b
Griffies, S. M.: The Gent-McWilliams skew flux, J. Phys. Oceanogr., 28, 831–841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2, 1998. a
Hendershott, M. C.: The effects of solid earth deformation on global ocean tides, Geophys. J. Roy. Astr. S., 29, 389–402, https://doi.org/10.1111/j.1365-246x.1972.tb06167.x, 1972. a
Hertwig, E. and von Storch, J.-S.: TPXO9 data used for ICON-O tides evaluation, Zenodo [data set], https://doi.org/10.5281/zenodo.8074917, 2023. a
Hertwig, E., von Storch, J.-S., Haak, H., and Lüschow, V.: Tides simulated by the global ocean model ICON-O in various set-ups, World Data Center for Climate (WDCC) at DKRZ, https://doi.org/10.26050/WDCC/Tides_ICON-O, 2022. a, b
Hertwig, E., von Storch, J.-S., and Brüggemann, N.: Scripts used for Open-ocean tides simulated by ICON-O, Zenodo [data set], https://doi.org/10.5281/zenodo.8135416, 2023. a
Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S., Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N., Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr, O., Haak, H., Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh, L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T., Naumann, A. K., Paccini, L., Peinado, A., Praturi, D. S., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H., Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C. C., von Storch, J.-S., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J., and Stevens, B.: ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales, Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, 2023. a
Jayne, S. R. and St. Laurent, L. C.: Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28, 811–814, https://doi.org/10.1029/2000gl012044, 2001. a, b, c, d
Jungclaus, J., Lorenz, S. J., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crüger, T., De-Vrese, P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W. A., Nabel, J. E. M. S., Notz, D., Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., . von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B., Marotzke, J., and Claussen, M.: The ICON Earth System Model Version 1.0, J. Adv. Model. Earth Sy., 14, e2021MS002813, 2022. a, b
Knudsen, P. and Andersen, O.: Correcting grace gravity fields for ocean tide effects, Geophys. Res. Lett., 29, 19-1–19-4,
https://doi.org/10.1029/2001GL014005, 2002. a
Korn, P.: Formulation of an unstructured grid model for global ocean dynamics, J. Computat. Phys., 339, 525–552,
https://doi.org/10.1016/j.jcp.2017.03.009, 2017. a, b, c
Korn, P., Brüggemann, N., Jungclaus, J., Lorenz, S., Gutjahr, O., Haak, H., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Notz, D., Putrasahan, D. A., Singh, V., von Storch, J.-S., Zhu, X., and
Marotzke, J.: Icon-o: The ocean component of the icon earth system model – global simulation characteristics and local telescoping capability,
J. Adv. Model. Earth Sy., 14, e2021MS002952,
https://doi.org/10.1002/essoar.10509949.1, 2022. a, b
Li, Z. and von Storch, J.-S.: M2 internal-tide generation in STORMTIDE2, J. Geophys. Res.-Oceans, 125, e2019JC015453, https://doi.org/10.1029/2019jc015453, 2020. a, b
Li, Z., von Storch, J.-S., and Müller, M.: The m2 internal tide simulated by a 1/10° OGCM, J. Phys. Oceanogr., 45 (12), 3119–3135, https://doi.org/10.1175/jpo-d-14-0228.1, 2015. a, b
Li, Z., von Storch, J.-S., and Müller, M.: The k1 internal tide simulated by a 1/10° ogcm. Ocean Model., 113, 145–156,
https://doi.org/10.1016/j.ocemod.2017.04.002, 2017. a
Logemann, K., Linardakis, L., Korn, P., and Schrum, C.: Global tide simulations with icon-o: testing the model performance on highly irregular meshes, Ocean Dynam., 71, 43–57,
https://doi.org/10.1007/s10236-020-01428-7,
2021.
a, b, c, d
Munk, W. and Wunsch, C.: Abyssal recipes II: energetics of tidal and wind mixing, Deep-Sea Res. Pt. I, 45, 1977–2010, 1998. a
Müller, M., Cherniawsky, J. Y., Foreman, M. G. G., and von Storch, J.-S.:
GlobalM2internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett., 39, L19607,
https://doi.org/10.1029/2012gl053320, 2012. a, b, c
Pal, N., Barton, K. N., Petersen, M. R., Brus, S. R., Engwirda, D., Arbic, B. K., Roberts, A. F., Westerink, J. J., and Wirasaet, D.: Barotropic tides in MPAS-Ocean (E3SM V2): impact of ice shelf cavities, Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, 2023. a, b
Röske, F.: A global heat and freshwater forcing dataset for ocean models, Ocean Model., 11, 235–297,
https://doi.org/10.1016/j.ocemod.2004.12.005, 2006. a
Shum, C. K., Woodworth, P. L., Andersen, O. B., Egbert, G. D., Francis, O., King, C., Klosko, S. M., Le Provost, C., Li, X., Molines, J.-M., Parke, M. E., Ray, R. D., Schlax, M. G., Stammer, D., Tierney, C. C., Vincent, P., and Wunsch, C. I.: Accuracy assessment of recent ocean tide models, J. Geophys. Res.-Oceans, 102, 25173–25194, https://doi.org/10.1029/97jc00445, 1997. a
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrére, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.: Accuracy assessment of global barotropic ocean tide models, Rev. Geophys., 52, 243–282, https://doi.org/10.1002/2014rg000450, 2014. a, b, c, d, e
Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a high-quality arctic ocean, J. Climate, 14, 2079–2087,
https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2, 2001. a, b
Stevens, B., Satoh, M., and Auger, L. et al.: The DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains, Prog. Earth Planet. Sci., 6, 61, https://doi.org/10.1186/s40645-019-0304-z, 2019. a
von Storch, J.-S. and Haak, H.: icon-2.6.6-tides, https://doi.org/10.17617/3.VQB9N8, Edmond [code], V2, 2023. a
Wunsch, C. and Ferrari, R.: Vertical Mixing, Energy, and the General Circulation of the Oceans, Annu. Rev. Fluid Mech., 36, 281–314, 2004. a
Zarroug, M., Nycander, J., and Döös, K.: Energetics of tidally generated internal waves for nonuniform stratification, Tellus A, 62, 71–79, https://doi.org/10.1111/j.1600-0870.2009.00415.x, 2010. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4061 KB) - Full-text XML
Short summary
The new ocean general circulation model ICON-O is developed for running experiments at kilometer scales and beyond. One targeted application is to simulate internal tides crucial for ocean mixing. To ensure their realism, which is difficult to assess, we evaluate the barotropic tides that generate internal tides. We show that ICON-O is able to realistically simulate the major aspects of the observed barotropic tides and discuss the aspects that impact the quality of the simulated tides.
The new ocean general circulation model ICON-O is developed for running experiments at kilometer...