Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5131-2023
https://doi.org/10.5194/gmd-16-5131-2023
Model description paper
 | 
08 Sep 2023
Model description paper |  | 08 Sep 2023

Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability

Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek

Related authors

A long-term high-resolution air quality reanalysis with a public-facing air quality dashboard over the Contiguous United States (CONUS)
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data, 17, 1807–1834, https://doi.org/10.5194/essd-17-1807-2025,https://doi.org/10.5194/essd-17-1807-2025, 2025
Short summary
Urban Weather Modeling using WRF: Linking Physical Assumptions, Code Implementation, and Observational Needs
Parag Joshi, Tzu-Shun Lin, Cenlin He, and Katia Lamer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1751,https://doi.org/10.5194/egusphere-2025-1751, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Impact of runoff schemes on global flow discharge: a comprehensive analysis using the Noah-MP and CaMa-Flood models
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025,https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
Benchmarking and evaluating the NASA Land Information System (version 7.5.2) coupled with the refactored Noah-MP land surface model (version 5.0)
Cenlin He, Tzu-Shun Lin, David M. Mocko, Ronnie Abolafia-Rosenzweig, Jerry W. Wegiel, and Sujay V. Kumar
EGUsphere, https://doi.org/10.5194/egusphere-2024-4176,https://doi.org/10.5194/egusphere-2024-4176, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary

Related subject area

Climate and Earth system modeling
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary

Cited articles

Abolafia-Rosenzweig, R., He, C., Burns, S. P., and Chen, F.: Implementation and Evaluation of a Unified Turbulence Parameterization Throughout the Canopy and Roughness Sublayer in Noah-MP Snow Simulations, J. Adv. Model Earth Sy., 13, e2021MS002665, https://doi.org/10.1029/2021MS002665, 2021. 
Abolafia-Rosenzweig, R., He, C., and Chen, F.: Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area, Environ. Res. Lett., 17, 054030, https://doi.org/10.1088/1748-9326/ac6886, 2022a. 
Abolafia-Rosenzweig, R., He, C., McKenzie Skiles, S., Chen, F., and Gochis, D.: Evaluation and Optimization of Snow Albedo Scheme in Noah-MP Land Surface Model Using In Situ Spectral Observations in the Colorado Rockies, J. Adv. Model Earth Sy., 14, e2022MS003141m https://doi.org/10.1029/2022MS003141, 2022b. 
Abolafia-Rosenzweig, R., He, C., Chen, F., Ikeda, K., Schneider, T., and Rasmussen, R.: High resolution forecasting of summer drought in the western United States, Water Resour. Res., 59, e2022WR033734, https://doi.org/10.1029/2022WR033734, 2023a. 
Abolafia-Rosenzweig, R., He, C., Chen, F., Zhang, Y., Dugger, A., Livneh, B., and Gochis, D.: Evaluating Noah-MP simulated runoff and snowpack in heavily burned Pacific-Northwest snow-dominated catchments, J. Geophys. Res.-Atmos., in review, 2023b. 
Download
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Share