Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4699-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4699-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forcing the Global Fire Emissions Database burned-area dataset into the Community Land Model version 5.0: impacts on carbon and water fluxes at high latitudes
Hocheol Seo
Department of Civil and Environmental Engineering, Yonsei University,
Seoul 03722, South Korea
Department of Civil and Environmental Engineering, Yonsei University,
Seoul 03722, South Korea
Related authors
No articles found.
Jungho Seo, Mahdi Panahi, Ji Hyun Kim, Sayed M. Bateni, and Yeonjoo Kim
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-349, https://doi.org/10.5194/essd-2024-349, 2025
Manuscript not accepted for further review
Short summary
Short summary
This study introduces a machine learning-based daily global gridded snow water equivalent (SWE) product (SWEML) at 0.25° from 1980 to 2020. Comparison of SWEML to other global SWE datasets showed that SWEML exhibited high accuracy, especially in mountainous and high-elevation areas, such as the Rocky Mountains in the US. In addition, SWEML effectively depicted snow accumulation during winters and snow melting during springs.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Suyeon Choi and Yeonjoo Kim
Geosci. Model Dev., 15, 5967–5985, https://doi.org/10.5194/gmd-15-5967-2022, https://doi.org/10.5194/gmd-15-5967-2022, 2022
Short summary
Short summary
Here we present the cGAN-based precipitation nowcasting model, named Rad-cGAN, trained to predict a radar reflectivity map with a lead time of 10 min. Rad-cGAN showed superior performance at a lead time of up to 90 min compared with the reference models. Furthermore, we demonstrate the successful implementation of the transfer learning strategies using pre-trained Rad-cGAN to develop the models for different dam domains.
Cited articles
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Arora, V. K. and Boer, G. J.: Fire as an interactive component of dynamic
vegetation models, J. Geophys. Res.-Biogeo., 110,
G02008, https://doi.org/10.1029/2005jg000042, 2005.
Arora, V. K. and Melton, J. R.: Reduction in global area burned and
wildfire emissions since 1930s enhances carbon uptake by land, Nat. Commun., 9, https://doi.org/10.1038/s41467-018-03838-0, 2018.
Black, C., Tesfaigzi, Y., Bassein, J. A., and Miller, L. A.: Wildfire smoke
exposure and human health: Significant gaps in research for a growing public
health issue, Environ. Toxicol. Phar., 55, 186–195,
https://doi.org/10.1016/j.etap.2017.08.022, 2017.
Bowman, D., Balch, J., Artaxo, P., Bond, W., Carlson, J., Cochrane, M.,
Antonio, C., Defries, R., Doyle, J., Harrison, S., Johnston, F., Keeley, J.,
Krawchuk, M., Kull, C., Marston, J., Moritz. M., Prentice,I., Roos, C.,
Scott, A., Swetnam, T., van der Werf, G., and Pyne, S.: Fire in the Earth
System, Science, 324, 481–484, https://doi.org/10.1126/science.1163886,
2009.
Cascio, W. E.: Wildland fire smoke and human health, Sci. Total Environ.,
624, 586–595, https://doi.org/10.1016/J.SCITOTENV.2017.12.086, 2018.
Conklin, D. R., Lenihan, J. M., Bachelet, D., Neilson, R. P., and Kim, J. B.: MCFire model technical description, Gen. Tech. Rep, Portland, OR, PNW-GTR-926, 75 pp., 2016.
Deb, P., Moradkhani, H., Abbaszadeh, P., Kiem, A. S., Engström, J.,
Keellings, D., and Sharma, A.: Causes of the Widespread 2019–2020
Australian Bushfire Season, Earth's Future, 8, e2020EF001671,
https://doi.org/10.1029/2020EF001671, 2020.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeo.,
118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013.
Haque, Md. K., Azad, Md. A. K., Hossain, Md. Y., Ahmed, T., Uddin, M., and
Hossain, Md. M.: Wildfire in Australia during 2019-2020, Its Impact on
Health, Biodiversity and Environment with Some Proposals for Risk
Management: A Review, J. Environm. Protect., 12, 391–414,
https://doi.org/10.4236/jep.2021.126024, 2021.
Holloway, J. E., Lewkowicz, A. G., Douglas, T. A., Li, X., Turetsky, M. R.,
Baltzer, J. L., and Jin, H.: Impact of wildfire on permafrost landscapes: A
review of recent advances and future prospects, Permafrost Periglac.
Process., 31, 371–382, https://doi.org/10.1002/ppp.2048, 2020.
Jiang, Y., Rocha, A. v., O'Donnell, J. A., Drysdale, J. A., Rastetter, E.
B., Shaver, G. R., and Zhuang, Q.: Contrasting soil thermal responses to
fire in Alaskan tundra and boreal forest, J. Geophys. Res.-Earth Surf., 120, 363–378, https://doi.org/10.1002/2014JF003180, 2015.
Jiao, Y., Lei, H. M., Yang, D. W., Huang, M. Y., Liu, D. F., and Yuan, X.: Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model, J. Hydrol., 551, 116–131, https://doi.org/10.1016/j.jhydrol.2017.05.060, 2017.
Kępski, D. and Kubicki, M.: Thunderstorm activity at high
latitudes observed at manned WMO weather stations, Int. J.
Climatol., 42, 7794–7816, https://doi.org/10.1002/joc.7678,
2022.
Knelman, J. E., Graham, E. B., Trahan, N. A., Schmidt, S. K., and Nemergut,
D. R.: Fire severity shapes plant colonization effects on bacterial
community structure, microbial biomass, and soil enzyme activity in
secondary succession of a burned forest, Soil Biol. Biochem., 90,
161–168, https://doi.org/10.1016/j.soilbio.2015.08.004, 2015.
Lasslop, G., Hantson, S., and Kloster, S.: Influence of wind speed on the global variability of burned fraction: a global fire model’s perspective, Int. J. Wildland Fire, 24, 989–1000, https://doi.org/10.1071/WF15052, 2015.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J.,
Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A.,
Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P.,
Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B.,
Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox,
R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey,
A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M.,
Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of
New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv.
Model. Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583,
2019.
Lawrence, P. J. and Chase, T. N.: Representing a MODIS Consistent Land Surface in the Community Land Model (CLM 3.0): Part 1 Generating MODIS Consistent Land Surface Parameters, J. Geophys. Res., 112, G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lehner, B. and Döll, P.: Development and validation of a global database
of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model, Biogeosciences, 9, 2761–2780, https://doi.org/10.5194/bg-9-2761-2012, 2012.
Li, F., Lawrence, D. M., and Bond-Lamberty, B.: Impact of fire on global
land surface air temperature and energy budget for the 20th century due to
changes within ecosystems, Environ. Res. Lett., 12, 044014,
https://doi.org/10.1088/1748-9326/aa6685, 2017.
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., and Luce, C. H.: A
review of the relationships between drought and forest fire in the United
States, Glob. Change Biol., 22, 2353–2369, 2016.
Madani, N., Parazoo, N. C., Kimball, J. S., Reichle, R. H., Chatterjee, A.,
Watts, J. D., Saatchi, S., Liu, Z., Endsley, A., Tagesson, T., Rogers, B.
M., Xu, L., Wang, J. A., Magney, T., and Miller, C. E.: The Impacts of
Climate and Wildfire on Ecosystem Gross Primary Productivity in Alaska,
J. Geophys. Res.-Biogeo., 126, e2020JG006078,
https://doi.org/10.1029/2020JG006078, 2021.
Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., and Folberth, G.: INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model, Geosci. Model Dev., 9, 2685–2700, https://doi.org/10.5194/gmd-9-2685-2016, 2016.
McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G.,
Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M.,
Mescherskaya, A. V., Kruger, A. C., Rehman, S., and Dinpashoh, Y.: Global
review and synthesis of trends in observed terrestrial near-surface wind
speeds: Implications for evaporation, J. Hydrol., 416, 182–205, 2012.
Mętrak, M., Malawska, M., Kamiński, J., Błocka, A., and Wiłkomirski, B.: Plant secondary succession patterns after 2002 wildfire in the
Biebrza National Park, Phytopedon, 7, 109–114, 2008.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-Driven Increases
in Global Terrestrial Net Primary Production from 1982 to 1999, Science,
300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.
Netzer, Y., Yao, C., Shenker, M., Bravdo, B. A., and Schwartz, A.: Water use
and the development of seasonal crop coefficients for Superior Seedless
grapevines trained to an open-gable trellis system, Irrig. Sci.,
27, 109–120, https://doi.org/10.1007/s00271-008-0124-1, 2009.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E.,
Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y.,
Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial
Ecoregions of the World: A New Map of Life on Earth, BioScience, 51,
933–938, 2001.
Ott, L.: GEOS-Carb CASA-GFED 3-hourly Ecosystem Exchange Fluxes 0.5 degree x 0.625 degree V3, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/VQPRALE26L20, 2020.
Park, S. W., Kim, J. S., and Kug, J. S.: The intensification of Arctic
warming as a result of CO2 physiological forcing, Nat. Commun.,
11, 2098, https://doi.org/10.1038/s41467-020-15924-3, 2020.
Phillips, C. A., Rogers, B. M., Elder, M., Cooperdock, S., Moubarak, M., Randerson, J. T.,
and Frumhoff, P. C.: Escalating carbon emissions from North American boreal
forest wildfires and the climate mitigation potential of fire management,
Sci. Adv., 8, eabl7161, https://doi.org/10.1126/sciadv.abl7161, 2022.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A., Ducharne, A., and Hastie, A.: Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488), Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, 2019.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Rabin, S. S., Ward, D. S., Malyshev, S. L., Magi, B. I., Shevliakova, E., and Pacala, S. W.: A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1, Geosci. Model Dev., 11, 815–842, https://doi.org/10.5194/gmd-11-815-2018, 2018.
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire Emissions Database, Version 4.1 (GFEDv4), ORNL DAAC [data set], Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1293, 2018.
Reyer, C. P. O., Bathgate, S., Blennow, K., Borges, J. G., Bugmann, H., Delzon,
S., Faias, S. P., Garcia-Gonzalo, J., Gardiner, B., Gonzalez-Olabarria, J. R.,
Gracia, C., Hernández, J. G., and Kellomäki, S.: Are forest
disturbances amplifying or canceling out climate change-induced productivity
changes in European forests?, Environ. Res. Lett., 12, 034027, https://doi.org/10.1088/1748-9326/aa5ef1,
2017.
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and Veraverbeke,
S.: Overwintering fires in boreal forests, Nature, 593, 399–404, 2021.
Seo, H. and Kim, Y.: Interactive impacts of fire and vegetation dynamics on global carbon and water budget using Community Land Model version 4.5, Geosci. Model Dev., 12, 457–472, https://doi.org/10.5194/gmd-12-457-2019, 2019.
Seo, H. and Kim, Y.: Global Fire Emissions Database burned-area dataset into Community Land Model version 5.0 – Biogeochemistry, Zenodo [code], https://doi.org/10.5281/zenodo.7483115, 2022.
Swezy, D. M. and Agee, J. K.: Prescribed-fire effects on fine-root and tree
mortality in old-growth ponderosa pine, Can. J. Forest Res., 21, 626–634,
https://doi.org/10.1139/x91-086, 1991.
Tarnocai, C., Kettles, I. M., and Lacelle, B.: Peatlands of Canada, Geological Survey of Canada, Natural Resources Canada, Ottawa, Open File 6561, https://doi.org/10.4095/288786, 2011.
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Veraverbeke, S., Rogers, B. M., and Randerson, J. T.: Daily burned area and carbon emissions from boreal fires in Alaska, Biogeosciences, 12, 3579–3601, https://doi.org/10.5194/bg-12-3579-2015, 2015a.
Veraverbeke, S., Rogers, B. M., and Randerson, J. T.: CARVE: Alaskan Fire Emissions Database (AKFED), 2001–2013, ORNL DAAC [data set], Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1282, 2015b.
Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E.,
Wiggins, E. B., and Randerson, J. T.: Lightning as a major driver of
recent large fire years in North American boreal forests, Nat. Clim.
Change, 7, 529–534, https://doi.org/10.1038/nclimate3329, 2017.
Wang, Y., Cao, G., Wang, Y., Webb, A. A., Yu, P., and Wang, X.: Response of
the daily transpiration of a larch plantation to variation in potential
evaporation, leaf area index and soil moisture, Sci. Rep., 9, 4697,
https://doi.org/10.1038/s41598-019-41186-1, 2019.
Wu, Z., Li, M., Wang, B., Quan, Y., and Liu, J.: Using artificial
intelligence to estimate the probability of forest fires in heilongjiang,
Northeast China, Remote Sens., 13, 1813, https://doi.org/10.3390/rs13091813,
2021.
Xiao, J. and Zhuang, Q.: Drought effects on large fire activity in Canadian
and Alaskan forests, Environ. Res. Lett., 2, 044003,
https://doi.org/10.1088/1748-9326/2/4/044003, 2007.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402, https://doi.org/10.1029/2010GL043584, 2010.
Short summary
Wildfire is a crucial factor in carbon and water fluxes on the Earth system. About 2.1 Pg of carbon is released into the atmosphere by wildfires annually. Because the fire processes are still limitedly represented in land surface models, we forced the daily GFED4 burned area into the land surface model over Alaska and Siberia. The results with the GFED4 burned area significantly improved the simulated carbon emissions and net ecosystem exchange compared to the default simulation.
Wildfire is a crucial factor in carbon and water fluxes on the Earth system. About 2.1 Pg of...