Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2811-2023
https://doi.org/10.5194/gmd-16-2811-2023
Development and technical paper
 | 
25 May 2023
Development and technical paper |  | 25 May 2023

Enhanced ocean wave modeling by including effect of breaking under both deep- and shallow-water conditions

Yue Xu and Xiping Yu

Related authors

A numerical study of near-inertial motions in the Mid-Atlantic Bight area induced by Hurricane Irene (2011)
Peida Han and Xiping Yu
Ocean Sci., 18, 1573–1590, https://doi.org/10.5194/os-18-1573-2022,https://doi.org/10.5194/os-18-1573-2022, 2022
Short summary

Related subject area

Oceanography
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024,https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024,https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024,https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
An optimal transformation method applied to diagnose the ocean carbon budget
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024,https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024,https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary

Cited articles

Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and Collard, F.: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation, J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010. 
Babanin, A. and Young, I.: Two-phase behaviour of the spectral dissipation of wind waves, Proceedings of the 5th International Symposium Ocean Wave Measurement and Analysis, Madrid, June 2005, 51, 2005. 
Babanin, A. V., Banner, M. L., Young, I. R., and Donelan, M. A.: Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking, J. Phys. Oceanogr., 37, 2764–2775, https://doi.org/10.1175/2007JPO3757.1, 2007. 
Badulin, S. I., Babanin, A. V., Zakharov, V. E., and Resio, D.: Weakly turbulent laws of wind-wave growth, J. Fluid Mech., 591, 339–378, https://doi.org/10.1017/S0022112007008282, 2007. 
Banner, M. L. and Melville, W. K.: On the separation of air flow over water waves, J. Fluid Mech., 77, 825–842, https://doi.org/10.1017/S0022112076002905, 1976. 
Download
Short summary
An accurate description of the wind energy input into ocean waves is crucial to ocean wave modeling, and a physics-based consideration of the effect of wave breaking is absolutely necessary to obtain such an accurate description, particularly under extreme conditions. This study evaluates the performance of a recently improved formula, taking into account not only the effect of breaking but also the effect of airflow separation on the leeside of steep wave crests in a reasonably consistent way.