Articles | Volume 16, issue 6
https://doi.org/10.5194/gmd-16-1755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and validation of a global 1∕32° surface-wave–tide–circulation coupled ocean model: FIO-COM32
Bin Xiao
First Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Fangli Qiao
CORRESPONDING AUTHOR
First Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
First Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Xunqiang Yin
First Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Guansuo Wang
First Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Shihong Wang
First Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Related authors
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-52, https://doi.org/10.5194/gmd-2022-52, 2022
Revised manuscript not accepted
Short summary
Short summary
A new global surface wave-tide-circulation coupled ocean model FIO-COM32 with resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are proved to be important contributors to the significant improvements of FIO-COM32 simulations. It should be the time to merge these separated model components (surface wave, tidal current and ocean circulation) for new generation ocean model development.
Xiaole Li, Zhenya Song, Xiongbo Zheng, Zhanpeng Zhuang, Fangli Qiao, Haibin Zhou, and Mingze Ji
EGUsphere, https://doi.org/10.5194/egusphere-2025-2636, https://doi.org/10.5194/egusphere-2025-2636, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Based on the variable-limit integration method, this study developed a novel numerical approach for the thermohaline equations in ocean models. This method significantly enhances the simulation accuracy of temperature and salinity, improves model stability, and better simulates seawater overflow dynamics across steep ridges. The variable-limit integral method designed herein for thermohaline equations can be readily applied to other ocean numerical models.
Yongzeng Yang, Fuwei Wang, Meng Sun, Xingjie Jiang, Xunqiang Yin, Yongfang Shi, and Yong Teng
EGUsphere, https://doi.org/10.5194/egusphere-2025-2671, https://doi.org/10.5194/egusphere-2025-2671, 2025
Short summary
Short summary
The purpose of this study is to investigate the ocean wave energy dissipation induced by wave-generated turbulence and random wave-breaking. Dissipation is one of the less known processes and still remains poor, so there is a notable gap in mechanism research pertaining to varied parameterizations in wave models. Our results point the way toward better understanding of the dissipation induced by wave-generated turbulence and random wave-breaking, allowing future improvements, applications, etc.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Meng Sun, Yongzeng Yang, Xunqiang Yin, Jisheng Ding, Tianqi Sun, and Nan Jia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2905, https://doi.org/10.5194/egusphere-2023-2905, 2023
Preprint withdrawn
Short summary
Short summary
The understanding of wave-current interactions is important for comprehending the dynamics of the ocean. Among them, the mechanisms of vertical shear of background current and topographic fluctuations are two research issues with limited attention. In this study, based on the unified wave theory, an analytical model is proposed to describe the modification of the amplitude of orbital velocities for surface waves in presence of background current and topographic fluctuations.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-52, https://doi.org/10.5194/gmd-2022-52, 2022
Revised manuscript not accepted
Short summary
Short summary
A new global surface wave-tide-circulation coupled ocean model FIO-COM32 with resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are proved to be important contributors to the significant improvements of FIO-COM32 simulations. It should be the time to merge these separated model components (surface wave, tidal current and ocean circulation) for new generation ocean model development.
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021, https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
Chao Sun, Li Liu, Ruizhe Li, Xinzhu Yu, Hao Yu, Biao Zhao, Guansuo Wang, Juanjuan Liu, Fangli Qiao, and Bin Wang
Geosci. Model Dev., 14, 2635–2657, https://doi.org/10.5194/gmd-14-2635-2021, https://doi.org/10.5194/gmd-14-2635-2021, 2021
Short summary
Short summary
Data assimilation (DA) provides better initial states of model runs by combining observations and models. This work focuses on the technical challenges in developing a coupled ensemble-based DA system and proposes a new DA framework DAFCC1 based on C-Coupler2. DAFCC1 enables users to conveniently integrate a DA method into a model with automatic and efficient data exchanges. A sample DA system that combines GSI/EnKF and FIO-AOW demonstrates the effectiveness of DAFCC1.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Cited articles
Adcroft, A., Hill, C., and Marshall, J.: Representation of topography by
shaved cells in a height coordinate ocean model, Mon. Weather Rev., 125,
2293–2315, 1997.
Adcroft, A. J. and Campin, J. M.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean
Model., 7, 269–284, 2004.
Ajayi, A., Le Sommer, J., Chassignet, E., Molines, J.-M., Xu, X., Albert,
A., and Cosme, E.: Spatial and temporal variability of the north Atlantic
eddy field from two kilometric-resolution ocean models, J. Geophys. Res.,
125, e2019JC015827, https://doi.org/10.1029/2019JC015827, 2020.
Amores, A., Jordà, G., Arsouze, T., and Le Sommer, J.: Up to what extent
can we characterize ocean eddies using present-day gridded altimetric
products?, J. Geophys. Res., 123, 7220-7236,
https://doi.org/10.1029/2018JC014140, 2018.
Ansong, J. K., Arbic, B. K., Simmons, H. L., Alford, M. H., Buijsman, M. C.,
Timko, P. G., Richman, J. G., Shriver, J. F., and Wallcraft, A. J.:
Geographical Distribution of diurnal and semidiurnal parametric subharmonic
instability in a Global Ocean Circulation Model, J. Phys.
Oceanogr., 48, 1409–1431, https://doi.org/10.1175/jpo-d-17-0164.1, 2018.
Arbic, B. K., Garner, S. T., Hallberg, R. W., and Simmons, H. L.: The
accuracy of surface elevations in forward global barotropic and baroclinic
tide models, Deep-Sea Res. Pt. II, 51, 3069–3101, 2004.
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of
the eddying general circulation and tides in a global ocean model, Ocean
Model., 32, 175–187, 2010.
Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J.,
and Wallcraft, A. J.: Global modeling of internal tides within an eddying
Ocean General Circulation Model, Oceanography, 25, 20–29, https://doi.org/10.5670/oceanog.2012.38, 2012.
Arbic, B., Alford, M., Ansong, J., Buijsman, M., Ciotti, R., Farrar, J.,
Hallberg, R., Henze, C., Hill, C., Luecke, C., Menemenlis, D., Metzger, E.,
Müeller, M., Nelson, A., Nelson, B., Ngodock, H., Ponte, R., Richman,
J., Savage, A., and Zhao, Z.: A primer on global internal tide and internal
gravity wave continuum modeling in HYCOM and MITgcm, in: New Frontiers in Operational Oceanography, GODAE OceanView, 307–392,
https://doi.org/10.17125/gov2018.ch13, 2018.
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N.,
Chapron, B., Gula, J., and Molemaker, J.: Small-scale open ocean currents
have large effects on wind wave heights, J. Geophys. Res.-Oceans, 122, 4500–4517, https://doi.org/10.1002/2016JC012413, 2017.
Biri, S., Serra, N., Scharffenberg, M. G., and Stammer, D.: Atlantic sea
surface height and velocity spectra inferred from satellite altimetry and a
hierarchy of numerical simulations, J. Geophys. Res., 121, 4157–4177,
https://doi.org/10.1002/2015JC011503, 2016.
Bryan, K. and Cox, M. D.: A numerical investigation of the oceanic general
circulation, Tellus A, 19, 54–80, https://doi.org/10.1111/j.2153-3490.1967.tb01459.x, 1967.
Buijsman, M. C., Arbic, B. K., Green, J. A. M., Helber, R. W., Richman, J.
G., Shriver, J. F., Timko, P. G., and Wallcraft, A.: Optimizing internal
wave drag in a forward barotropic model with semidiurnal tides, Ocean
Model., 85, 42–55, 2015.
Capet, X., Roullet, G., Klein, P., and Maze, G.: Intensification of
Upper-Ocean Submesoscale Turbulence through Charney Baroclinic Instability,
J. Phys. Oceanogr., 46, 3365–3384, https://doi.org/10.1175/jpo-d-16-0050.1, 2016.
Chassignet, E. P. and Xu, X.: Impact of horizontal resolution
(1/12∘ to ∘) on Gulf Stream separation,
penetration, and variability, J. Phys. Oceanogr., 47, 1999–2021,
https://doi.org/10.1175/JPO-D-17-0031.1, 2017.
Chassignet, E. P. and Xu, X.: On the importance of high-resolution in
large-scale ocean models, Adv. Atmos. Sci., 38, 1621–1634,
https://doi.org/10.1007/s00376-021-0385-7, 2021.
Chen, S., Qiao, F., Huang, C., and Song, Z.: Effects of the non-breaking
surface wave-induced vertical mixing on winter mixed layer depth in
subtropical regions, J. Geophys. Res., 123, 2934–2944,
https://doi.org/10.1002/2017JC013038, 2018.
Chereskin, T. K., Rocha, C. B., Gille, S. T., Menemenlis, D., and Passaro, M.: Characterizing thetransition from balanced to unbalanced motions in the southern California Current, J. Geophys. Res.-Oceans, 124, 2088–2109, https://doi.org/10.1029/2018JC014583, 2019.
Dong, J., Fox-Kemper, B., Zhang, H., and Dong, C.: The seasonality of
submesoscale energy production, content, and cascade, Geophys. Res. Lett.,
47, e2020GL087388, https://doi.org/10.1029/2020GL087388, 2020a.
Dong, J., Fox-Kemper, B., Zhang, H., and Dong, C.: The scale of submesoscale
baroclinic instability globally, J. Phys. Oceanogr., 50, 2649–2667,
https://doi.org/10.1175/JPO-D-20-0043.1, 2020b.
Egbert, G. D., Ray, R. D., and Bills, B. G.: Numerical modeling of the
global semidiurnal tide in the present day and in the last glacial maximum,
J. Geophys. Res., 109, C03003, https://doi.org/10.1029/2003JC001973, 2004.
Fan, Y. and Griffies, S. M.: Impacts of parameterized Langmuir turbulence
and nonbreaking wave mixing in global climate simulations, J. Climate,
27, 4752–4775, 2014.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Garrett, C. J. R., Loder, J. W., Swallow, J. C., Currie, R. I., Gill, A. E.,
and Simpson, J. H.: Dynamical aspects of shallow sea fronts, Philos. T. Roy.
Soc. A, 302, 563–581, https://doi.org/10.1098/rsta.1981.0183, 1981.
GFDL: The Modular Ocean Model version 5, GitHub [code], https://github.com/mom-ocean/MOM5, last access: 17 March 2023.
Griffies, S. M.: Elements of the Modular Ocean Model (MOM), NOAA Geophysical
Fluid Dynamics Laboratory, NJ, USA, 614–627, 2012.
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103,
https://doi.org/10.1016/J.OCEMOD.2013.08.007, 2013.
Huang, P. Q., Lu Y. Z., and Zhou S. Q.: An objective method for determining
ocean mixed layer depth with applications to WOCE Data, J.
Atmos. Ocean. Tech., 35.3, 441–458,
https://doi.org/10.1175/JTECH-D-17-0104.1, 2018.
Holt, J. and Umlauf, L.: Modelling the tidal mixing fronts and seasonal
stratification of the Northwest European Continental shelf, Cont. Shelf
Res., 28, 887–903, https://doi.org/10.1016/j.csr.2008.01.012, 2008.
International Hydrographic Organization, Intergovernmental Oceanographic Commission (IHO-IOC): The IHO-IOC GEBCO Cook Book, IHO Publication B-11, Monaco, 416 pp., 2018.
Jayne, S. R. and St Laurent, L. C.: Parameterizing tidal dissipation over
rough topography, Geophys. Res. Lett., 28, 811–814, 2001.
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies (No. NCAR/TN-460+STR), University Corporation for Atmospheric Research, https://doi.org/10.5065/D6KK98Q6, 2004.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, 1994.
Lévy, M., Klein, P., Tréguier, A. M., Iovino, D., Madec, G., Masson,
S., and Takahashi, K.: Modifications of gyre circulation by sub-mesoscale
physics, Ocean Model., 34, 1–15,
https://doi.org/10.1016/j.ocemod.2010.04.001, 2010.
Lin, L., Liu, D., Guo, X., Luo, C., and Cheng, Y.: Tidal effect on water
export rate in the eastern Shelf Seas of China, J. Geophys. Res., 125,
e2019JC015863, https://doi.org/10.1029/2019JC015863, 2020.
Lü, X., Qiao, F., Xia, C., Zhu, J., and Yuan, Y.: Upwelling off Yangtze
River estuary in summer, J. Geophys. Res.-Oceans, 111, C11S08,
https://doi.org/10.1029/2005JC003250, 2006.
Lü, X., Qiao, F., Wang, G., Xia, C., and Yuan, Y.: Upwelling off the
west coast of Hainan Island in summer: Its detection and mechanisms,
Geophys. Res. Lett., 35, L02604, https://doi.org/10.1029/2007GL032440, 2008.
Lü, X., Qiao, F., Xia, C., Wang, G., and Yuan, Y.: Upwelling and surface
cold patches in the Yellow Sea in summer: Effects of tidal mixing on the
vertical circulation, Cont. Shelf Res., 30, 620–632, 2010.
McWilliams, J. C. and Fox-Kemper, B.: Oceanic wave-balanced surface fronts and
filaments, J. Fluid Mech., 730, 464–490, 2013.
Mellor, G. and Blumberg, A.: Wave breaking and ocean surface layer thermal
response, J. Phys. Oceanogr., 34, 693–698, 2004.
Murray, R. J.: Explicit generation of orthogonal grids for ocean models, J.
Comput. Phys., 126, 251–273, 1996.
NCEP: The Global Forecast System (GFS), NCEP [data set], https://www.nco.ncep.noaa.gov/pmb/products/gfs/, last access: 17 March 2023.
Qiao, F. and Huang, C. J.: Comparison between vertical shear mixing and surface wave-induced mixing in the extratropical ocean, J. Geophys. Res.-Oceans, 117, C00J16, https://doi.org/10.1029/2012JC007930, 2012.
Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., and Ma, J.: Wave-induced
mixing in the upper ocean: Distribution and application to a global ocean
circulation model, Geophys. Res. Lett., 31, L11303, https://doi.org/10.1029/2004GL019824, 2004.
Qiao, F., Yuan, Y., Deng, J., Dai, D., and Song, Z.: Wave–turbulence
interaction-induced vertical mixing and its effects in ocean and climate
models. Phil. Trans. R. Soc. A, 374, 20150201,
https://doi.org/10.1098/rsta.2015.0201, 2016.
Qiao, F., Zhao, W., Yin, X., Huang, X., Liu, X., Shu, Q., Wang, G., Song,
Z., Li, X., Liu, H., Yang, G., and Yuan, Y.: A highly effective global
surface wave numerical simulation with ultra-high resolution, International
Conference For High Performance Computing, Networking, Storage And Analysis,
Sc.345 E 47th St, New York, Ny 10017 Usa.Ieee.2017-03-13, 46–56, ISBN
978-1-4673-8815-3, http://dl.acm.org/citation.cfm?id=3014904.3014911 (last access: 17 March 2023), 2017.
Qiao, F., Wang, G., Yin, L., Zeng, K., Zhang, Y., Zhang, M., Xiao, B.,
Jiang, S., Chen, H., and Chen, G.: Modelling oil trajectories and
potentially contaminated areas from the Sanchi oil spill, Sci. Total.
Environ., 685, 856–866, https://doi.org/10.1016/j.scitotenv.2019.06.255, 2019.
Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.-L., and Menemenlis, D.: Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean, J. Phys. Oceanogr., 48, 591–605, https://doi.org/10.1175/JPO-D-17-0169.1, 2018.
Richman, J. G., Arbic, B. K., Shriver, J. F., Metzger, E. J., and Wallcraft,
A. J.: Inferring dynamics from the wavenumber spectra of an eddying global
ocean model with embedded tides, J. Geophys. Res., 117, C12012,
https://doi.org/10.1029/2012JC008364, 2012.
Rocha, C. B., Chereskin, T. K., Gille, S. T., and Menemenlis, D.: Mesoscale
to submesoscale wavenumber spectra in Drake Passage, J. Phys. Oceanogr.,
46, 601–620, https://doi.org/10.1175/JPO-D-15-0087.1, 2016.
Sasaki, H. and Klein, P.: SSH wavenumber spectra in the North Pacific from
a high-resolution realistic simulation, J. Phys. Oceanogr., 42, 1233–1241,
https://doi.org/10.1175/JPO-D-11-0180.1, 2012.
Sasaki, H., Klein, P., Sasai, Y., and Qiu, B.: Regionality and seasonality of
submesoscale and mesoscale turbulence in the North Pacific Ocean, Ocean
Dynam., 67, 1195–1216, https://doi.org/10.1007/s10236-017-1083-y, 2017.
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T.,
Menemenlis, D., O'Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G.,
Wallcraft, A. J., and Zamudio, L.: Spectral decomposition of internal
gravity wave sea surface height in global models, J. Geophys.
Res.-Oceans, 122, 7803–7821, https://doi.org/10.1002/2017JC013009,
2017a.
Savage, A. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H.,
Buijsman, M. C., Thomas Farrar, J., Sharma, H., Voet, G., Wallcraft, A. J.,
and Zamudio, L.: Frequency content of sea surface height variability from
internal gravity waves to mesoscale eddies, J. Geophys. Res.-Oceans, 122, 2519–2538, https://doi.org/10.1002/2016JC012331, 2017b.
Schiller, A. and Fiedler, R.: Explicit tidal forcing in an ocean general
circulation model, Geophys. Res. Lett., 34, L03611, https://doi.org/10.1029/2006GL028363, 2007.
Shi, J., Yin, X., Shu, Q., Xiao, B., and Qiao, F.: Evaluation on data
assimilation of a global high resolution wave-tide-circulation coupled model
using the tropical Pacific TAO buoy observations, Acta Oceanol. Sin.,
37, 8–20, https://doi.org/10.1007/s13131-018-1196-2, 2018.
Shriver, J., Arbic, B. K., Richman, J., Ray, R., Metzger, E., Wallcraft, A.,
and Timko, P.: An evaluation of the barotropic and internal tides in a
high-resolution global ocean circulation model, J. Geophys. Res., 117, C10024,
https://doi.org/10.1029/2012JC008170, 2012.
Shu, Q., Qiao, F., Song, Z., Xia, C., and Yang, Y.: Improvement of MOM4 by
including surface wave-induced vertical mixing, Ocean Model., 40, 42–51,
2011.
Simpson, J. H. and Hunter, J. R.: Fronts in the Irish Sea, Nature,
250, 404–406, https://doi.org/10.1038/250404a0, 1974.
Song, Z., Qiao, F., and Song, Y.: Response of the equatorial basin-wide SST
to non-breaking surface wave-induced mixing in a climate model: An amendment
to tropical bias, J. Geophys. Res., 117, C00J26, https://doi.org/10.1029/2012JC007931, 2012.
Su, Z., Wang, J., Klein, P., Thompson, A. F., and Menemenlis, D.: Ocean
submesoscales as a key component of the global heat budget, Nat. Commun.,
9, 775, https://doi.org/10.1038/s41467-018-02983-w, 2018.
Sun, Y., Perrie, W., Qiao, F., and Wang, G.: Intercomparisons of
highresolution global ocean analyses: Evaluation of a new synthesis in
tropical oceans, J. Geophys. Res., 125, e2020JC016118,
https://doi.org/10.1029/2020JC016118, 2020.
Suzuki, N., Fox-Kemper, B., Hamlington, P. E., and Roekel, L.: Surface waves
affect frontogenesis, J. Geophys. Res.-Oceans, 121, 3597–3624, https://doi.org/10.1002/2015JC011563, 2016.
Teixeira, M. and Belcher, S. E.: On the distortion of turbulence by a progressive surface wave, J. Fluid Mech., 458, 229–267, https://doi.org/10.1017/S0022112002007838, 2002.
Thoppil, P. G., Richman, J. G., and Hogan, P. J.: Energetics of a Global
Ocean Circulation Model compared to observations, Geophys. Res. Lett.,
38, L15607, https://doi.org/10.1029/2011GL048347, 2011.
Timko, P. G., Arbic, B. K., Hyder, P., Richman, J. G., Zamudio, L., O'Dea,
E., Wallcraft, A. J., and Shriver, J. F.: Assessment of shelf sea tides and
tidal mixing fronts in a global ocean model, Ocean Model., 136, 66–84,
https://doi.org/10.1016/j.ocemod.2019.02.008, 2019.
Ubelmann, C., Carrere, L., Durand, C., Dibarboure, G., Faugère, Y., Ballarotta, M., Briol, F., and Lyard, F.: Simultaneous estimation of ocean mesoscale and coherent internal tide sea surface height signatures from the global altimetry record, Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, 2022.
Uchida, T., Le Sommer, J., Stern, C., Abernathey, R. P., Holdgraf, C., Albert, A., Brodeau, L., Chassignet, E. P., Xu, X., Gula, J., Roullet, G., Koldunov, N., Danilov, S., Wang, Q., Menemenlis, D., Bricaud, C., Arbic, B. K., Shriver, J. F., Qiao, F., Xiao, B., Biastoch, A., Schubert, R., Fox-Kemper, B., Dewar, W. K., and Wallcraft, A.: Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models, Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, 2022.
Wang, G., Zhao, C., Xu, J., Qiao, F., and Xia, C.: Verification of an
operational ocean circulation-surface wave coupled forecasting system for
the China's seas, Acta Oceanol. Sin., 35, 19–28,
https://doi.org/10.1007/s13131-016-0810-4, 2016.
Wang, P., Jiang, J., Lin, P., Ding, M., Wei, J., Zhang, F., Zhao, L., Li, Y., Yu, Z., Zheng, W., Yu, Y., Chi, X., and Liu, H.: The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for portability (HIP) framework and its large-scale application , Geosci. Model Dev., 14, 2781–2799, https://doi.org/10.5194/gmd-14-2781-2021, 2021.
Wang, S., Wang, Q., Shu, Q., Scholz, P., Lohmann, G., and Qiao, F.:
Improving the upper-ocean temperature in an Ocean Climate Model (FESOM 1.4):
Shortwave Penetration Versus Mixing Induced by Nonbreaking Surface Waves, J.
Adv. Model. Earth. Sy., 11, 545–557,
https://doi.org/10.1029/2018MS001494, 2019.
Wang, Y., Qiao, F., Fang, G., and Wei, Z.: Application of wave-induced
vertical mixing to the K profile parameterization scheme, J. Geophys. Res.,
115, C09014, https://doi.org/10.1029/2009JC005856, 2010.
Winton, M.: A reformulated three-layer sea ice model, J. Atmos. Ocean Tech.,
17, 525–531, https://doi.org/10.1175/1520-0426(2000)017<0525:artlsi>2.0.co;2, 2000.
Xia, C., Qiao, F., Yang, Y., Ma, J., and Yuan, Y.: Three-dimensional
structure of the summertime circulation in the Yellow Sea from a
wave-tide-circulation coupled model, J. Geophys. Res., 111, C11S03, https://doi.org/10.1029/2005JC003218, 2006.
Xiao, B., Qiao, F., and Shu, Q.: The performance of a z-level ocean model in
modeling the global tide, Acta Oceanol. Sin., 35, 35–43,
https://doi.org/10.1007/s13131-016-0884-z, 2016.
Xiao, B., Qiao, F., Shu, Q., Yin, X., Wang, G., and Wang, S.: The development and validation of a global ∘ surface wave-tide-circulation coupled ocean model: FIO-COM32, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6221095, 2022.
Xu, Y. and Fu, L.-L.: The effects of altimeter instrument noise on the
estimation of the wavenumber spectrum of Sea Surface Height, J.
Phys. Oceanogr., 42, 2229–2233, https://doi.org/10.1175/jpo-d-12-0106.1, 2012.
Yang, Y., Qiao, F., Zhao, W., Teng, Y., and Yuan, Y.: MASNUM ocean wave
numerical model in spherical coordinates and its application, Acta Oceanol.
Sin., 27, 0253-4193(2005)02-0001-07, https://doi.org/10.3321/j.issn:0253-4193.2005.02.001, 2005 (in Chinese).
Short summary
A new global surface-wave–tide–circulation coupled ocean model (FIO-COM32) with a resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are shown to be important contributors to the significant improvements in FIO-COM32 simulations. It is time to merge these separated model components (surface waves, tidal currents and ocean circulation) and start a new generation of ocean model development.
A new global surface-wave–tide–circulation coupled ocean model (FIO-COM32) with a resolution of...