Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-1163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multidecadal and climatological surface current simulations for the southwestern Indian Ocean at 1∕50° resolution
Noam S. Vogt-Vincent
Department of Earth Sciences, South Parks Road, University of Oxford, Oxford, UK
Helen L. Johnson
CORRESPONDING AUTHOR
Department of Earth Sciences, South Parks Road, University of Oxford, Oxford, UK
Related authors
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Noam S. Vogt-Vincent, Satoshi Mitarai, and Helen L. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2023-778, https://doi.org/10.5194/egusphere-2023-778, 2023
Preprint archived
Short summary
Short summary
Coral larvae can drift through ocean currents between coral reefs, establishing connectivity, which plays an important role in coral reef resilience. However, larval transport is chaotic. We simulate coral spawning events across the tropical southwest Indian Ocean for almost three decades, and find that larval transport can vary massively from day-to-day. This variability is largely random, and this introduces a lot of uncertainty in connectivity predictions.
Oliver J. Tooth, Helen L. Johnson, and Chris Wilson
Ocean Sci., 21, 2101–2123, https://doi.org/10.5194/os-21-2101-2025, https://doi.org/10.5194/os-21-2101-2025, 2025
Short summary
Short summary
The North Atlantic subpolar gyre (SPG) forms dense water as part of the Atlantic Meridional Overturning Circulation. To explore the factors controlling dense-water formation around the SPG, we trace the pathways of virtual water parcels in a high-resolution ocean model. We show that the amount of dense water formed around the SPG depends principally on the availability of light waters flowing northward, such that a stronger SPG circulation results in more dense-water formation along-stream.
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024, https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Short summary
The Gulf Stream system is essential for northward ocean heat transport. Here, we use observations along the path of the extended Gulf Stream system and an observationally constrained ocean model to investigate variability in the Gulf Stream system since the 1990s. We find regional differences in the variability between the subtropical, subpolar, and Nordic Seas regions, which warrants caution in using observational records at a single latitude to infer large-scale circulation change.
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024, https://doi.org/10.5194/os-20-521-2024, 2024
Short summary
Short summary
We examine factors affecting variability in the volume of Labrador Sea Water (LSW), a water mass that is important for the uptake and storage of heat and carbon in the Atlantic Ocean. We find that LSW accumulated in the Labrador Sea exhibits a lagged response to remote conditions: surface wind stress, heat flux, and freshwater flux anomalies, especially along the pathways of the North Atlantic Current branches. We use our results to reconstruct and attribute historical changes in LSW volume.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
Short summary
This study uses the trajectories of water parcels traced within an ocean model simulation to identify the pathways responsible for the seasonal cycle of dense water formation (overturning) in the eastern subpolar North Atlantic. We show that overturning seasonality is due to the fastest water parcels circulating within the eastern basins in less than 8.5 months. Slower pathways set the average strength of overturning in this region since water parcels cannot escape intense wintertime cooling.
Noam S. Vogt-Vincent, Satoshi Mitarai, and Helen L. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2023-778, https://doi.org/10.5194/egusphere-2023-778, 2023
Preprint archived
Short summary
Short summary
Coral larvae can drift through ocean currents between coral reefs, establishing connectivity, which plays an important role in coral reef resilience. However, larval transport is chaotic. We simulate coral spawning events across the tropical southwest Indian Ocean for almost three decades, and find that larval transport can vary massively from day-to-day. This variability is largely random, and this introduces a lot of uncertainty in connectivity predictions.
Cited articles
Auclair, F., Benshila, R., Bordois, L., Boutet, M., Brémond, M., Caillaud, M., Cambon, G., Capet, X., Debreu, L., Ducousso, N., Dufois, F., Dumas, F., Ethé, C., Gula, J., Hourdin, C., Illig, S., Jullien, S., Le Corre, M., Le Gac, S., Le Gentil, S., Lemarié, F., Marchesiello, P., Mazoyer, C., Morvan, G., Nguyen, C., Penven, P., Person, R., Pianezze, J., Pous, S., Renault, L., Roblou, L., Sepulveda, A., and Theetten, S.: Coastal and Regional Ocean COmmunity model (1.1), Zenodo [code], https://doi.org/10.5281/zenodo.7415133, 2019. a, b
Beal, L. M., Vialard, J., and Roxy, M. K.: Full Report. IndOOS-2: A roadmap to
sustained observations of the Indian Ocean for 2020–2030,
http://www.clivar.org/sites/default/files/documents/IndOOS_report_small.pdf (last access: 14 February 2023),
2019. a
Connolly, S. R. and Baird, A. H.: Estimating dispersal potential for marine
larvae: Dynamic models applied to scleractinian corals, Ecology, 91,
3572–3583, https://doi.org/10.1890/10-0143.1, 2010. a
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from
continents: Latitudinal and seasonal variations, J.
Hydrometeorol., 3, 660–687,
https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002. a, b
Dask Development Team: Dask: Library for dynamic task scheduling,
https://dask.org (last access: 14 February 2023), 2016. a
Dauhajre, D. P., McWilliams, J. C., and Renault, L.: Nearshore Lagrangian
Connectivity: Submesoscale Influence and Resolution Sensitivity, J.
Geophys. Res.-Oceans, 124, 5180–5204, https://doi.org/10.1029/2019JC014943,
2019. a, b
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a
Dunne, R.: Tides and sea level in the Chagos Archipelago, Tech. Rep.
September,
https://sites.google.com/site/thechagosarchipelago2/chagos-science/sea-level/tides-sea-level-2021 (last access: 14 February 2023),
2021. a
Edmunds, P. J., McIlroy, S. E., Adjeroud, M., Ang, P., Bergman, J. L.,
Carpenter, R. C., Coffroth, M. A., Fujimura, A. G., Hench, J. L., Holbrook,
S. J., Leichter, J. J., Muko, S., Nakajima, Y., Nakamura, M., Paris, C. B.,
Schmitt, R. J., Sutthacheep, M., Toonen, R. J., Sakai, K., Suzuki, G.,
Washburn, L., Wyatt, A. S. J., and Mitarai, S.: Critical Information Gaps
Impeding Understanding of the Role of Larval Connectivity Among Coral Reef
Islands in an Era of Global Change, Front. Marine Sci., 5, 1–16,
https://doi.org/10.3389/fmars.2018.00290, 2018. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a, b
GEBCO Compilation Group: GEBCO 2019 Grid, National Oceanography Centre,
https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e, 2019. a
Good, S., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R.,
Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The
current configuration of the OSTIA system for operational production of
foundation sea surface temperature and ice concentration analyses, Remote
Sens., 12, 1–20, https://doi.org/10.3390/rs12040720, 2020. a
Grimaldi, C. M., Lowe, R. J., Benthuysen, J. A., Cuttler, M. V. W., Green, R. H., Radford, B., Ryan, N., and Gilmour, J.: Hydrodynamic drivers of fine-scale connectivity within a coral reef atoll, Limnol.
Oceanogr., 67, 2204–2217, https://doi.org/10.1002/lno.12198, 2022. a, b
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python,
J. Open Research Softw., 5, 10, https://doi.org/10.5334/jors.148, 2017. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jackett, D. R. and Mcdougall, T. J.: Minimal Adjustment of Hydrographic
Profiles to Achieve Static Stability, J. Atmos. Ocean. Tech., 12, 381–389,
https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2, 1995. a
Jones, W. and Launder, B.: The prediction of laminarization with a
two-equation model of turbulence, Int. J. Heat Mass
Transf., 15, 301–314, https://doi.org/10.1016/0017-9310(72)90076-2, 1972. a
Jullien, S., Caillaud, M., Benshila, R., Bordois, L., Cambon, G., Dumas, F., Le Gentil, S., Lemarié, F., Marchesiello, P., Theetten, S., Dufois, F., Le Corre, M., Morvan, G., Le Gac, S., Gula, J., and Pianezze, J.: CROCO Technical and Numerical Documentation (1.3), Zenodo [code], https://doi.org/10.5281/zenodo.7400922, 2022. a, b
Lange, M. and van Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age, Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, 2017. a, b
Laurindo, L. C., Mariano, A. J., and Lumpkin, R.: An improved near-surface
velocity climatology for the global ocean from drifter observations,
Deep-Sea Res. Pt. I, 124, 73–92,
https://doi.org/10.1016/j.dsr.2017.04.009, 2017. a
Lellouche, J.-M., Greiner, E., Bourdallé Badie, R., Garric, G., Melet,
A., Drévillon, M., Bricaud, C., Hamon, M., Le Galloudec, O., Regnier,
C., Candela, T., Testut, C.-E., Gasparin, F., Ruggiero, G., Benkiran, M.,
Drillet, Y., and Le Traon, P.-Y.: The Copernicus Global 1/12∘
Oceanic and Sea Ice GLORYS12 Reanalysis, Front. Earth Sci., 9,
1–27, https://doi.org/10.3389/feart.2021.698876, 2021. a, b, c
Li, J., Knapp, D. E., Fabina, N. S., Kennedy, E. V., Larsen, K., Lyons, M. B.,
Murray, N. J., Phinn, S. R., Roelfsema, C. M., and Asner, G. P.: A global
coral reef probability map generated using convolutional neural networks,
Coral Reefs, 39, 1805–1815, https://doi.org/10.1007/s00338-020-02005-6, 2020. a
Lowry, R., Pugh, D., and Wijeratne, E.: Observations of Seiching and Tides
Around the Islands of Mauritius and Rodrigues, Western Indian Ocean J. Marine Sci., 7, 15–28, https://doi.org/10.4314/wiojms.v7i1.48251, 2008. a
Lumpkin, R. and Centurioni, L.: Global Drifter Program quality-controlled
6-hour interpolated data from ocean surface drifting buoys., Tech. rep.,
NOAA National Centers for Environmental Information,
https://doi.org/10.25921/7ntx-z961, 2019. a
Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., and Weatherall, P.: The Nippon Foundation–GEBCO Seabed 2030 Project: The Quest to See the World's Oceans Completely Mapped by 2030, Geosciences, 8, 63, https://doi.org/10.3390/geosciences8020063, 2018. a
Mayorga-Adame, C. G., Ted Strub, P., Batchelder, H. P., and Spitz, Y. H.:
Characterizing the circulation off the Kenyan-Tanzanian coast using an ocean
model, J. Geophys. Res.-Oceans, 121, 1377–1399,
https://doi.org/10.1002/2015JC010860, 2016. a
Mayorga-Adame, C. G., Batchelder, H. P., and Spitz, Y. H.: Modeling larval
connectivity of coral reef organisms in the Kenya-Tanzania region, Front. Marine Sci., 4, 92, https://doi.org/10.3389/fmars.2017.00092, 2017. a
McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S.,
Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., and Yu, W.: RAMA: The
research moored array for African-Asian-Australian monsoon analysis and
prediction, B. Am. Meteorol. Soc., 90, 459–480,
https://doi.org/10.1175/2008BAMS2608.1, 2009. a
Miramontes, E., Penven, P., Fierens, R., Droz, L., Toucanne, S., Jorry, S. J.,
Jouet, G., Pastor, L., Silva Jacinto, R., Gaillot, A., Giraudeau, J., and
Raisson, F.: The influence of bottom currents on the Zambezi Valley
morphology (Mozambique Channel, SW Indian Ocean): In situ current
observations and hydrodynamic modelling, Marine Geol., 410, 42–55,
https://doi.org/10.1016/j.margeo.2019.01.002, 2019. a
Monismith, S. G., Barkdull, M. K., Nunome, Y., and Mitarai, S.: Transport
Between Palau and the Eastern Coral Triangle: Larval Connectivity or Near
Misses, Geophys. Res. Lett., 45, 4974–4981,
https://doi.org/10.1029/2018GL077493, 2018. a
Painter, S. C.: The biogeochemistry and oceanography of the East African
Coastal Current, Prog. Oceanogr., 186, 102374,
https://doi.org/10.1016/j.pocean.2020.102374, 2020. a
Poje, A. C., Haza, A. C., Özgökmen, T. M., Magaldi, M. G., and
Garraffo, Z. D.: Resolution dependent relative dispersion statistics in a
hierarchy of ocean models, Ocean Model., 31, 36–50,
https://doi.org/10.1016/j.ocemod.2009.09.002, 2010. a
Pugh, D.: Sea levels at Aldabra Atoll, Mombasa and Mahé, western
equatorial Indian Ocean, related to tides, meteorology and ocean
circulation, Deep-Sea Res. Pt. A, 26,
237–258, https://doi.org/10.1016/0198-0149(79)90022-0, 1979. a
Ridderinkhof, H., Van Der Werf, P. M., Ullgren, J. E., Van Aken, H. M.,
Van Leeuwen, P. J., and De Ruijter, W. P.: Seasonal and interannual
variability in the Mozambique Channel from moored current observations,
J. Geophys. Res.-Oceans, 115, C6, https://doi.org/10.1029/2009JC005619,
2010. a
Rio, M. H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides
new insight into geostrophic and Ekman currents, Geophys. Res.
Lett., 41, 8918–8925, https://doi.org/10.1002/2014GL061773, 2014. a, b
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian
Ocean, Prog. Oceanogr., 51, 1–123,
https://doi.org/10.1016/S0079-6611(01)00083-0, 2001. a
Schott, F. A., Xie, S. P., and McCreary, J. P.: Indian ocean circulation and
climate variability, Rev. Geophys., 47, 1–46,
https://doi.org/10.1029/2007RG000245, 2009. a
Schulzweida, U.: CDO User Guide, Zenodo [code], https://doi.org/10.5281/zenodo.7112925, 2022. a
Shao-Jun, Z., Yu-Hong, Z., Wei, Z., Jia-Xun, L., and Yan, D.: Typical Surface
Seasonal Circulation in the Indian Ocean Derived from Argos Floats,
Atmos. Ocean. Sci. Lett., 5, 329–333,
https://doi.org/10.1080/16742834.2012.11447015, 2012. a
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal
pressure-gradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res.-Oceans, 108, 1–34,
https://doi.org/10.1029/2001jc001047, 2003. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): A split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Smagorinsky, J.: GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE
EQUATIONS, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Swallow, J., Fieux, M., and Schott, F.: The boundary currents east and north
of Madagascar: 1. Geostrophic currents and transports, J. Geophys. Res., 93, 4951, https://doi.org/10.1029/jc093ic05p04951, 1988. a
Swallow, J. C., Schott, F., and Fieux, M.: Structure and transport of the East
African Coastal Current, J. Geophys. Res., 96, 22245,
https://doi.org/10.1029/91jc01942, 1991. a
Thompson, D. M., Kleypas, J., Castruccio, F., Curchitser, E. N., Pinsky, M. L.,
Jönsson, B., and Watson, J. R.: Variability in oceanographic barriers
to coral larval dispersal: Do currents shape biodiversity?, Prog. Oceanogr., 165, 110–122, https://doi.org/10.1016/j.pocean.2018.05.007, 2018. a
Tozer, B., Sandwell, D. T., Smith, W. H., Olson, C., Beale, J. R., and Wessel,
P.: Global Bathymetry and Topography at 15 Arc Sec: SRTM15+, Earth
Space Sci., 6, 1847–1864, https://doi.org/10.1029/2019EA000658, 2019. a, b
van der Velden, E.: CMasher: Scientific colormaps for making accessible,
informative and `cmashing' plots, J. Open Source Softw., 5, 2004,
https://doi.org/10.21105/joss.02004, 2020. a
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary,
S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.,
Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, 121, 49–75,
https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R., Jones, E., Kern, R., Larson, E., Carey, C., Polat, I., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P.,
Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A.,
Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald,
C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin,
E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A.,
Ingold, G. L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich,
J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner,
J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer,
J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski,
J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M.,
Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O.,
Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier,
S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T.,
Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie,
T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., and
Vázquez-Baeza, Y.: SciPy 1.0: fundamental algorithms for scientific
computing in Python, Nature Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Vogt-Vincent, N.: WINDS validation scripts and run files, Zenodo [code],
https://doi.org/10.5281/zenodo.7548260, 2023a. a
Vogt-Vincent, N.: Supplementary Video 1: One year of SST from WINDS-C, https://youtu.be/txwekFS_G5Q (last access: 14 February 2023), Youtube [video], 2023b. a
Vogt-Vincent, N. and Johnson, H.: WINDS-C: A ∘ decadal regional simulation of the Southwestern Indian Ocean with high frequency surface currents for Lagrangian applications (climatological forcing based on 1993–2018), NERC British Oceanographic Data Centre [data set], https://doi.org/10.5285/b2b9bfe408f14ea7a79d9ff7aee0d0b8, 2022a. a, b, c
Vogt-Vincent, N. and Johnson, H.: WINDS-M: A ∘ multidecadal regional simulation of the Southwestern Indian Ocean with high frequency surface currents for Lagrangian applications (realistic forcing, 1993–2020), NERC British Oceanographic Data Centre [data set], https://doi.org/10.5285/BF6F0CFBD09E47498572F21081376702, 2022b.
a, b, c
Voldsund, A., Aguiar-González, B., Gammelsrød, T., Krakstad, J. O.,
and Ullgren, J.: Observations of the east Madagascar current system:
Dynamics and volume transports, J. Marine Res., 75, 531–555,
https://doi.org/10.1357/002224017821836725, 2017. a
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res.-Sol.
Ea., 101, 8741–8743, https://doi.org/10.1029/96jb00104, 1996. a
Short summary
Ocean currents transport things over large distances across the ocean surface. Predicting this transport is key for tackling many environmental problems, such as marine plastic pollution and coral reef resilience. However, doing this requires a good understanding ocean currents, which is currently lacking. Here, we present and validate state-of-the-art simulations for surface currents in the southwestern Indian Ocean, which will support future marine dispersal studies across this region.
Ocean currents transport things over large distances across the ocean surface. Predicting this...