

Supplement of

Multidecadal and climatological surface current simulations for the southwestern Indian Ocean at $1\,/\,50^\circ$ resolution

Noam S. Vogt-Vincent and Helen L. Johnson

Correspondence to: Helen L. Johnson (helen.johnson@earth.ox.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Tables

Site	Longitude	Latitude	Tide	WINDS (cm)	WINDS - TPXO9 (cm)
Coastal sites					
Réunion	55.2	-20.9	M2	17.2	2.6
France			S2	6.7	-1.0
			N2	4.5	0.6
			K1	5.1	-0.2
			01	2.9	0.1
Mayotte	45.3	-13.0	M2	105.4	-3.0
France			S2	55.9	6.1
			N2	17.6	-1.4
			K1	13.7	-1.1
			01	7.9	0.1
Glorioso Islands	47.3	-11.5	M2	91.3	-2.3
France			S2	47.3	5.0
			N2	16.8	-0.2
			K1	14.6	-1.4
			01	8.1	-0.1
Mauritius	57.8	-20.4	M2	25.5	1.8
Mauritius			S2	14.2	2.1
			N2	5.2	0.4
			K1	6.0	-0.8
			01	2.5	-0.2
St. Brandon	59.6	-16.6	M2	23.6	2.7
Mauritius			S2	13.6	5.1
			N2	5.7	0.5
			K1	6.5	-1.8
			01	3.6	-0.8
Rodrigues	63.4	-19.6	M2	41.3	1.4
Mauritius			S2	22.8	3.3
			N2	8.1	0.9
			K1	5.9	-1.5
			01	3.3	0.2
Vingt Cina	56.6	-10.4	M2	30.5	0.5
Mauritius			52	13.3	3.0
			N2	7.7	0.5
			K1	10.4	-1.9
			01	6.4	-0.3
Diego Garcia	72.4	-7.4	M2	47.6	0.1
Chagos	,		S2	28.2	3.6
0.70.900			N2	87	0.4
			K1	3.6	-1 7
			01	3 3	-0.2
Grand Chagos Bnk	72.0	-6.2	M2	42.6	-0.2
Chagos	, 210	0.2	S2	25.7	2.9
			N2	7.9	0.3
			K1	6.0	-0.5
			01	3.6	-0.1

Blenheim Reef	72.5	-5.2	M2	42.7	3.5
Chagos			S2	25.5	4./
			N2	/.4	0.6
			K1	6.4	-0.2
			01	3.9	0.2
Fuvahmulah Atoll	73.4	-0.4	M2	29.4	0.0
Maldives			S2	18.4	2.6
			N2	4.9	0.4
			K1	8.9	-0.5
			01	3.9	-0.6
Coëtivy	56.3	-7.2	M2	35.2	-1.0
Seychelles			S2	16.4	3.0
			N2	8.8	1.0
			K1	16.3	0.6
			01	7.8	-0.1
Platte	55.3	-5.9	M2	40.8	-1.6
Seychelles			S2	19.4	2.7
,			N2	8.7	0.2
			K1	16.1	-1.4
			01	9.0	0.4
Mahé	55.4	-4.7	M2	41.8	-2.5
Sevchelles			S2	19.6	1.6
			N2	8.4	-0.5
			K1	18.6	-0.4
			01	91	0.1
Bird Island	55.2	-37	M2	36.7	-1.8
Sevchelles	0012	017	52	16.6	0.7
Seyenenes			N2	7.6	0.3
			K1	21.1	-0.7
			01	10.2	0.3
D Δrros	533	-55	M2	53.4	-0.9
Sevchelles	33.5	5.5	\$2	24.0	1 1
Seyenenes			N2	24.0 9 Л	-0.9
			K1	18 0	-1 5
			01	93	-0.1
Alphonse Island	527	-7.0	M2	55.6	1 /
Souchallas	52.7	7.0	52	26.4	3.9
Seyenenes			52 N2	10.1	-0 A
			K1	16.6	-0.4 _1 1
			01	20	1 1
Eargubar Atoll	510	10.2	M2	527	-1.1 5.6
Sauchallas	51.0	-10.2	52	25.7	-5.0 1 Q
Seychenes			32 ND	10 5	1.0
				10.5	-1.1
			N1 01	13.1 7 5	-1.3
Aldabra Atall	16.2	0.2		7.5 04.0	1.0
	40.5	-3.5	1112	94.U 17 1	
Seychenes			52	47.4 16 F	0.0
			NZ	10.2	-0.4

			K1	16.4	-1.3	
			01	8.9	0.0	
Ngazidja	43.2	-11.6	M2	110.4	1.1	
Comoros			S2	58.1	8.5	
			N2	20.0	0.7	
			K1	14.6	-1.1	
			01	8.4	0.1	
Manakara	48.1	-22.2	M2	10.9	0.0	
Madagascar			S2	6.1	0.3	
			N2	2.8	-0.1	
			K1	2.9	0.3	
			01	1.8	0.1	
Fenerive	49.5	-17.3	M2	23.9	1.6	
Madagascar			S2	10.3	2.4	
			N2	5.7	0.0	
			K1	3.7	0.3	
			01	3.5	0.2	
Antongil Bay	49.9	-16.0	M2	29.4	-1.5	
Madagascar			S2	13.6	3.7	
			N2	7.1	-0.7	
			K1	5.2	0.0	
			01	4.3	0.3	
Helodr. Nar. Bay	47.5	-14.9	M2	114.5	-3.4	
Madagascar			S2	61.4	6.4	
			N2	19.9	-1.0	
			K1	14.1	-0.7	
			01	7.1	-0.6	
Hell-Ville	48.2	-13.6	M2	107.9	0.8	
Madagascar			S2	56.8	7.7	
			N2	19.5	-0.5	
			K1	14.3	-1.2	
			01	7.9	-0.1	
Cape Amber	49.2	-11.9	M2	75.6	-3.4	
Madagascar			S2	36.8	2.6	
			N2	14.6	0.0	
			K1	13.8	-1.2	
			01	7.2	-0.5	
Ankerefo	44.4	-16.2	M2	122.6	-9.0	
Madagascar			S2	66.7	4.8	
			N2	21.3	-1.0	
			K1	11.7	-1.1	
			01	6.8	0.4	
Belo Tsiribihina	44.4	-19.5	M2	113.8	-2.5	
Madagascar			S2	65.9	7.7	
			N2	19.0	-0.1	
			K1	6.1	-0.3	
			01	4.3	0.0	
Morombe	43.3	-21.8	M2	98.1	0.9	
Madagascar			S2	57.3	8.2	

			N2	16.2	0.5
			K1	5.0	-0.1
			01	3.1	-0.1
Beira	34.9	-20.0	M2	129.1	-15.5
Mozambiaue			S2	76.1	4.5
			N2	20.8	-3.9
			K1	1 4	0.7
			01	4.0	-0.1
Quelimane	37 1	-18.0	M2	112.6	0.4
Mozambiaue	57.1	10.0	\$2	64.3	4.6
Mozambique			52 N2	18 5	-0.1
			K1	22	-0.1
			01	3.3	0.3
Magala	40.0	14 5		4.7	0.2
Nacala	40.9	-14.5		111.0	-2.4
wozambique			52	60.6	7.3
			N2	19.3	-0.5
			KI	10.9	-0.9
			01	7.3	0.2
South Quirimbas	40.6	-12.5	M2	113.2	-2.6
Mozambique			S2	59.0	5.7
			N2	19.6	-0.7
			K1	13.2	-1.1
			01	7.8	-0.1
North Quirimbas	40.6	-11.0	M2	109.9	-7.1
Mozambique			S2	56.9	3.8
			N2	18.9	-1.4
			K1	15.1	-1.0
			01	8.6	0.2
Lindi	39.9	-9.9	M2	107.7	-1.0
Tanzania			S2	55.5	7.1
			N2	18.4	-0.8
			K1	16.7	-0.5
			01	8.8	0.1
Mafia Island	39.7	-7.8	M2	111.4	-11.5
Tanzania			S2	57.0	1.5
			N2	20.1	-1.8
			K1	18.1	-1 2
			01	9.2	-0.4
Zanzihar Channel	39.0	-63	M2	116 5	-11.0
Tanzania	55.0	0.5	\$2	59 5	1 5
Tunzunnu			52 N2	21.0	-2.0
			K1	18.6	-2.0
			01	10.0	-2.0
Demoka Jalawal	20.0	ГО		10.0	1.0
	39.9	-5.0	1012	100.9	-1.9
Tanzania			52	52.2	6.8
			N2	18.8	0.5
			K1	19.9	-0.5
			01	9.8	-0.1
Watamu	40.1	-3.5	M2	101.5	1.5
Kenya			S2	50.8	6.8
			N2	18.2	0.4

			K1	20.2	-0.6
			01	10.2	0.2
Lamu	41.1	-2.3	M2	92.4	1.6
Kenya			S2	48.0	8.5
			N2	16.9	0.8
			K1	20.4	-0.6
			01	10.8	1.1
Kismayo	42.6	-0.4	M2	85.0	-3.1
Somalia			S2	43.0	4.5
			N2	15.8	0.1
			K1	21.5	-1.7
			01	11.4	0.5
Open ocean sites					
Moz. Channel N	42.5	-15.0	M2	114.5	-1.3
			S2	62.9	8.6
			N2	19.0	-0.9
			K1	11.1	-0.5
			01	6.8	-0.1
Moz. Channel S	40.0	-20.0	M2	105.3	1.5
			S2	60.0	7.5
			N2	17.5	0.6
			K1	3.1	-0.1
			01	3.4	-0.5
W Seychelles	45.0	-5.0	M2	90.3	0.5
			S2	45.5	5.6
			N2	16.4	0.2
			K1	19.8	-1.0
			01	10.3	0.2
E Seychelles	65.0	-5.0	M2	21.8	0.1
			S2	13.0	1.2
			N2	4.9	0.5
			K1	13.4	-0.6
			01	6.8	0.0
N Mascarene	55.0	-12.5	M2	29.4	-1.7
			S2	11.3	0.7
			N2	7.8	0.3
			K1	9.9	-0.6
	<u></u>	107	01	6.4	0.4
Mascarene Plat.	61.4	-10.7	M2	26.0	0.0
			S2	14.4	1.8
			NZ	b.4	0.5
			K1	9.6	-0.6
		20.0	UT UT	5.5	U.1 1 4
5 iviascarene	52.5	-20.0		10.4	1.4
			5Z	/.⊥ / 1	0.5
				4.⊥ ⊃ ⊑	-0.2
			KL O1	3.5	-0.4
			UI	∠.b	-0.1

N Chagos	75.0	-2.5	M2 S2	36.8 22.1	0.0 2.8
			N2	6.7	0.6
			K1	4.8	-0.0
			01	3.1	0.2
S Chagos	70.0	-15.0	M2	52.6	-1.1
			S2	31.3	3.5
			N2	9.8	0.1
			K1	6.7	0.0
			01	3.6	0.0

Table S1: Amplitudes of the 5 largest tidal constituents at 50 coastal and open-ocean sites across the SWIO, extracted from WINDS (based on the first 55 days of WINDS-M_1994 with the free surface output at 2-hourly frequency) using t_tides, compared to predictions from TPXO9-atlas (Egbert & Erofeeva, 2002)

Supplementary Figures

Figure S1: EKE for January-April in WINDS (left) and Copernicus GlobCurrent (right).

Figure S2: EKE for May-August in WINDS (left) and Copernicus GlobCurrent (right).

Figure S3: EKE for September-December in WINDS (left) and Copernicus GlobCurrent (right).

Figure S4: Mean Kinetic Energy (MKE) computed from the time-mean velocity field, from WINDS (top), Copernicus GlobCurrent (centre), and surface velocities based on Global Drifter Program floats (bottom).

Figure S5: MKE for January-April from WINDS (left), Copernicus GlobCurrent (centre), and surface velocities from the Global Drifter Program (right).

Figure S6: MKE for May-August from WINDS (left), Copernicus GlobCurrent (centre), and surface velocities from the Global Drifter Program (right).

Figure S7: MKE for September-December from WINDS (left), Copernicus GlobCurrent (centre), and surface velocities from the Global Drifter Program (right).

Figure S8: Figures 7 and S9 show monthly mean surface currents averaged across the regions shown in this figure. The region codes are as follows. SECW: South Equatorial Current West; SECE: South Equatorial Current East; NMC: North Madagascar Current; EMC: East Madagascar Current; NWMC: Northwestern Mozambique Channel; SWMC: Southwestern Mozambique Channel; EACCN: East Africa Coastal Current North; EACCS: East Africa Coastal Current South; SECCW: South Equatorial Countercurrent East.

Figure S9: Low-pass filtered version of Figure 7, using a frequency cutoff of 1/480 days to remove intra-annual variability, and with the time-mean subtracted. As in Figure 7, WINDS is shown in black, CMEMS GLORYS12V1 in red, and Copernicus GlobCurrent in blue.

Figure S10: Equivalent to Figure 8 in the main text, but with the colourbar extended to span low-probability dispersal events simulated by WINDS.

Figure S11: Relative difference in virtual drifter presence likelihood (within 120 days) between WINDS-M (as in Figure 8 in the main text) and the CMEMS GLORYS12V1 1/12° global ocean reanalysis. Cells where only WINDS and only GLORYS12V1 predicted dispersal to are saturated in yellow and green respectively. Cells where neither product simulated dispersal to are coloured in grey. Note that agreement is generally very high between the two, and (with reference to Figure 8 in the main text) significant relative disagreements only occur in regions predicted as low-probability by both ocean models. The only significant exceptions are greater connectivity between the East Africa Coastal Current and the South Equatorial Countercurrent predicted by GLORYS12V1, and greater westward flow in the South Equatorial Current from the Chagos Archipelago predicted by WINDS (both of which are supported by GDP drifters).

Figure S12: Difference between monthly climatological SSS simulated by WINDS, and in-situ derived SSS estimates from ARMOR3D. Blues indicate that WINDS simulates lower salinity (fresher), reds indicate that WINDS simulates higher salinity (saltier).

Figure S13: (Top) Root mean square (RMS) and mean absolute error (MAE) between monthly averages of WINDS and OSTIA SST from 1993-2020. (Bottom) RMS and MAE between monthly averages of WINDS and ARMOR3D SSS from 1993-2020.

References

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. *Journal of Atmospheric and Oceanic Technology*, *19*(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2