Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-109-2023
https://doi.org/10.5194/gmd-16-109-2023
Model description paper
 | 
04 Jan 2023
Model description paper |  | 04 Jan 2023

A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation

Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen

Related authors

ISWFM-NSCS v2.0: advancing the internal solitary wave forecasting model with background currents and horizontally inhomogeneous stratifications
Yankun Gong, Xueen Chen, Jiexin Xu, Zhiwu Chen, Qingyou He, Ruixiang Zhao, Xiao-Hua Zhu, and Shuqun Cai
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-165,https://doi.org/10.5194/gmd-2024-165, 2024
Preprint under review for GMD
Short summary
Glacial AMOC shoaling despite vigorous tidal dissipation: vertical stratification matters
Yugeng Chen, Pengyang Song, Xianyao Chen, and Gerrit Lohmann
Clim. Past, 20, 2001–2015, https://doi.org/10.5194/cp-20-2001-2024,https://doi.org/10.5194/cp-20-2001-2024, 2024
Short summary
An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS)
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023,https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
The tidal effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023,https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
Correlation between subsurface salinity anomalies in the Bay of Bengal and the Indian Ocean Dipole and governing mechanisms
Zheen Zhang, Thomas Pohlmann, and Xueen Chen
Ocean Sci., 17, 393–409, https://doi.org/10.5194/os-17-393-2021,https://doi.org/10.5194/os-17-393-2021, 2021
Short summary

Related subject area

Oceanography
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev., 18, 1561–1573, https://doi.org/10.5194/gmd-18-1561-2025,https://doi.org/10.5194/gmd-18-1561-2025, 2025
Short summary
The Ross Sea and Amundsen Sea Ice–Sea Model (RAISE v1.0): a high-resolution ocean–sea ice–ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev., 18, 1375–1393, https://doi.org/10.5194/gmd-18-1375-2025,https://doi.org/10.5194/gmd-18-1375-2025, 2025
Short summary
Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025,https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary

Cited articles

Ai, C., and Ding, W.: A 3D unstructured non-hydrostatic ocean model for internal waves, Ocean Dyn., 66, 1253–1270, https://doi.org/10.1007/s10236-016-0980-9, 2016. 
Ai, C., Ma, Y., Yuan, C., and Dong, G.: Non-hydrostatic model for internal wave generations and propagations using immersed boundary method, Ocean. Eng., 225, 108801, https://doi.org/10.1016/j.oceaneng.2021.108801, 2021. 
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., and Lynch, J. F.: Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121, 695–722, https://doi.org/10.1121/1.2395914, 2007. 
Arakawa, A., and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods. Comput. Phys., 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. 
Arbic, B. K. and Scott, R. B.: On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies, J. Phys. Oceanogr., 38, 84–103, https://doi.org/10.1175/2007JPO3653.1, 2008. 
Download
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
Share