Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-109-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-109-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation
Hao Huang
Frontier Science Center for Deep Ocean Multispheres and Earth System
(FDOMES) and Physical Oceanography Laboratory, Ocean University of China,
Qingdao, 266100, China
Pengyang Song
Frontier Science Center for Deep Ocean Multispheres and Earth System
(FDOMES) and Physical Oceanography Laboratory, Ocean University of China,
Qingdao, 266100, China
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
Shi Qiu
Frontier Science Center for Deep Ocean Multispheres and Earth System
(FDOMES) and Physical Oceanography Laboratory, Ocean University of China,
Qingdao, 266100, China
Jiaqi Guo
Frontier Science Center for Deep Ocean Multispheres and Earth System
(FDOMES) and Physical Oceanography Laboratory, Ocean University of China,
Qingdao, 266100, China
Xueen Chen
CORRESPONDING AUTHOR
Frontier Science Center for Deep Ocean Multispheres and Earth System
(FDOMES) and Physical Oceanography Laboratory, Ocean University of China,
Qingdao, 266100, China
Related authors
No articles found.
Yankun Gong, Xueen Chen, Jiexin Xu, Zhiwu Chen, Qingyou He, Ruixiang Zhao, Xiao-Hua Zhu, and Shuqun Cai
Geosci. Model Dev., 18, 5413–5433, https://doi.org/10.5194/gmd-18-5413-2025, https://doi.org/10.5194/gmd-18-5413-2025, 2025
Short summary
Short summary
A new internal solitary wave (ISW) numerical model in the northern South China Sea (ISWNM-NSCS v2.0) improves ISW predictions by incorporating background currents and inhomogeneous stratifications. Additionally, viscosity and diffusivity coefficients are optimized to maintain stable stratifications, extending the forecasting period. Sensitivity experiments show that ISWNM-NSCS v2.0 significantly enhances predictions of various wave properties.
Yugeng Chen, Pengyang Song, Xianyao Chen, and Gerrit Lohmann
Clim. Past, 20, 2001–2015, https://doi.org/10.5194/cp-20-2001-2024, https://doi.org/10.5194/cp-20-2001-2024, 2024
Short summary
Short summary
Our study examines the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM), a period with higher tidal dissipation. Despite increased tidal mixing, our model simulations show that the AMOC remained relatively shallow, consistent with paleoproxy data and resolving previous inconsistencies between proxy data and model simulations. This research highlights the importance of strong ocean stratification during the LGM and its interaction with tidal mixing.
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023, https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
Short summary
Tides have essential effects on the ocean and climate. Most previous research applies parameterised tidal mixing to discuss their effects in models. By comparing the effect of a tidal mixing parameterisation and tidal forcing on the ocean state, we assess the advantages and disadvantages of the two methods. Our results show that tidal mixing in the North Pacific Ocean strongly affects the global thermohaline circulation. We also list some effects that are not considered in the parameterisation.
Zheen Zhang, Thomas Pohlmann, and Xueen Chen
Ocean Sci., 17, 393–409, https://doi.org/10.5194/os-17-393-2021, https://doi.org/10.5194/os-17-393-2021, 2021
Short summary
Short summary
In this study, we found that the interannual subsurface temperature and salinity variability of the Bay of Bengal (BoB) shows a remarkable delayed correlation with the Indian Ocean Dipole mode. We employed a regional model and determined the contributions of the coastal Kelvin waves and the westward-moving Rossby waves to this correlation. An analysis of the salinity budget revealed that the advection terms dominate the subsurface salinity changes in the BoB.
Cited articles
Ai, C., and Ding, W.: A 3D unstructured non-hydrostatic ocean model for
internal waves, Ocean Dyn., 66, 1253–1270, https://doi.org/10.1007/s10236-016-0980-9, 2016.
Ai, C., Ma, Y., Yuan, C., and Dong, G.: Non-hydrostatic model for internal
wave generations and propagations using immersed boundary method, Ocean.
Eng., 225, 108801, https://doi.org/10.1016/j.oceaneng.2021.108801, 2021.
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., and Lynch, J. F.:
Internal solitons in the ocean and their effect on underwater sound, J.
Acoust. Soc. Am., 121, 695–722, https://doi.org/10.1121/1.2395914, 2007.
Arakawa, A., and Lamb, V. R.: Computational design of the basic dynamical
processes of the UCLA general circulation model, Methods. Comput. Phys., 17,
173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.
Arbic, B. K. and Scott, R. B.: On quadratic bottom drag, geostrophic
turbulence, and oceanic mesoscale eddies, J. Phys. Oceanogr., 38, 84–103,
https://doi.org/10.1175/2007JPO3653.1, 2008.
Armfield, S. and Street, R.: An analysis and comparison of the time accuracy
of fractional-step methods for the Navier–Stokes equations on staggered
grids, Int. J. Numer. Meth. Fl., 38, 255–282,
https://doi.org/10.1002/fld.217, 2002.
Baines, P. G.: On internal tide generation models, Deep Sea. Res., 29,
307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982.
Balay, S., Abhyankar, S., Adams, Mark F., Brown, J., Brune, P., Buschelman,
K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik,
D., Knepley, M., May, D., McInnes, L. Curfman, Mills, R., Munson, T., Rupp,
K., Sanan, P., Smith, B., Zampini, S., Zhang, H., and Zhang, H.: PETSc Users
Manual, Argonne National Laboratory, Tech. Rep. ANL-95/11-Revision 3.13,
https://doi.org/10.2172/1614847, 2020.
Benjamin, T. B.: Internal waves of finite amplitude and permanent form, J.
Fluid. Mech., 25, 241–270, https://doi.org/10.1017/S0022112066001630, 1966.
Berntsen, J., Xing, J., and Alendal, G.: Assessment of non-hydrostatic ocean
models using laboratory scale problems, Cont. Shelf. Res., 26, 1433–1447,
https://doi.org/10.1016/j.csr.2006.02.014, 2006.
Bourgault, D. and Kelley, D. E.: A laterally averaged nonhydrostatic ocean
model, J. Atmos. Ocean. Tech., 21, 1910–1924,
https://doi.org/10.1175/JTECH-1674.1, 2004.
Buijsman, M. C., Kanarska, Y., and McWilliams, J. C.: On the generation and
evolution of nonlinear internal waves in the South China Sea, J. Geophys.
Res.-Oceans, 115, C02012, https://doi.org/10.1029/2009JC005275, 2010a.
Buijsman, M. C., McWilliams, J. C., and Jackson, C. R.: East-west asymmetry
in nonlinear internal waves from Luzon Strait, J. Geophys. Res.-Oceans, 115,
C10057, https://doi.org/10.1029/2009JC006004, 2010b.
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid,
finite-volume, three-dimensional, primitive equations ocean model:
application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20,
159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003.
Chen, X., Jungclaus, J., Thomas, M., Maier-Reimer, E., Haak, H., and Suendermann, J.: An oceanic general circulation and tide model in orthogonal curvilinear coordinates, Amer. Geophys. Union., Fall Meeting 2005, San Francisco, CA, December 2005, Abstract OS41B-0600, https://ui.adsabs.harvard.edu/abs/2005AGUFMOS41B0600C/abstract (last access: 25 December 2022), 2005.
Chen, Z., Nie, Y., Xie, J., Xu, J., He, Y., and Cai, S.: Generation of
internal solitary waves over a large sill: From Knight Inlet to Luzon
Strait, J. Geophys. Res.-Oceans, 122, 1555–1573.
https://doi.org/10.1002/2016JC012206, 2017.
Chorin, A. J.: Numerical solution of the Navier–Stokes equations, Math.
Comput., 22, 745–762, https://doi.org/10.2307/2004575, 1968.
Cushman-Roisin, B.: Kelvin–Helmholtz instability as a boundary-value
problem, Environ. Fluid. Mech., 5, 507–525,
https://doi.org/10.1007/s10652-005-2234-0, 2005.
Duda, T. F., Morozov, A. K., Howe, B. M., Brown, M. G., Speer, K., Lazarevich, P., Worcester, P. F., and Cornuelle, B. D.: Evaluation of a long-range joint acoustic navigation/thermometry system, Oceans 2006 IEEE, 1–6, https://doi.org/10.1109/OCEANS.2006.306999, 2006.
EU Copernicus Marine Service Information: Global Ocean Physics Reanalysis: GLOBAL_MULTIYEAR_PHY_001_030, Copernicus.eu [data set], https://doi.org/10.48670/moi-00021, 2022.
Fofonoff, N. P. and Millard Jr., R. C.: Algorithms for computation of fundamental properties of seawater, Paris, France, UNESCO, 53 pp., https://doi.org/10.25607/OBP-1450, 1983.
Fringer, O. B., Gerritsen, M., and Street, R. L.: An unstructured-grid,
finite-volume, nonhydrostatic, parallel coastal ocean simulator, Ocean.
Model., 14, 139–173, https://doi.org/10.1016/j.ocemod.2006.03.006, 2006.
Garrett, C. and Kunze, E.: Internal tide generation in the deep ocean,
Annu. Rev. Fluid. Mech., 39, 57–87,
https://doi.org/10.1146/annurev.fluid.39.050905.110227, 2007.
Gerkema, T., and Zimmerman, J. T. F.: Generation of nonlinear internal tides and solitary waves, J. Phys. Oceanogr., 25, 1081–1094, https://doi.org/10.1175/1520-0485(1995)025<1081:GONITA>2.0.CO;2, 1995.
Gilbert, D., and Garrett, C.: Implications for ocean mixing of internal wave
scattering off irregular topography, J. Phys. Oceanogr., 19, 1716–1729,
https://doi.org/10.1175/1520-0485(1989)019<1716:IFOMOI>2.0.CO;2, 1989.
Grimshaw, R., Pelinovsky, E., and Poloukhina, O.: Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface, Nonlin. Processes Geophys., 9, 221–235, https://doi.org/10.5194/npg-9-221-2002, 2002.
Grimshaw, R., Pelinovsky, E., Talipova, T., and Kurkin, A.: Simulation of
the transformation of internal solitary waves on oceanic shelves, J. Phys. Oceanogr., 34, 2774–2791,
https://doi.org/10.1175/JPO2652.1, 2004.
Grue, J., Jensen, A., Rusås, P. O., and Sveen, J. K.: Breaking
and broadening of internal solitary waves, J. Fluid. Mech., 413, 181–217,
https://doi.org/10.1017/S0022112000008648, 2000.
Härtel, C., Meiburg, E., and Necker, F.: Analysis and direct numerical
simulation of the flow at a gravity-current head. Part 1. Flow topology and
front speed for slip and no-slip boundaries, J. Fluid. Mech., 418, 189–212,
https://doi.org/10.1017/s0022112000001221, 2000.
Huang, H.: HuangOCEAN02/ORCTM: ORCTM v1.1.1 (ORCTMv1.1.1), Zenodo [code],
https://doi.org/10.5281/zenodo.6683597, 2022.
Helfrich, K. R. and Melville, W. K.: On long nonlinear internal waves over
slope-shelf topography, J. Fluid. Mech., 167, 285–308,
https://doi.org/10.1017/S0022112086002823, 1986.
Huang, X., Chen, Z., Zhao, W., Zhang, Z., Zhou, C., Yang, Q., and Tian, J.:
An extreme internal solitary wave event observed in the northern South China
Sea, Sci. Rep.-UK, 6, 1–10, https://doi.org/10.1038/srep30041, 2016.
Kanarska, Y., Shchepetkin, A., and McWilliams, J. C.: Algorithm for
non-hydrostatic dynamics in the regional oceanic modeling system, Ocean.
Model., 18, 143–174, https://doi.org/10.1016/j.ocemod.2007.04.001, 2007.
Ko, D. S., Martin, P. J., Rowley, C. D., and Preller, R. H.: A real-time
coastal ocean prediction experiment for MREA04, J. Marine. Syst., 69, 17–28,
https://doi.org/10.1016/j.jmarsys.2007.02.022, 2008.
Lai, Z., Chen, C., Cowles, G. W., and Beardsley, R. C.: A nonhydrostatic
version of FVCOM: 1. Validation experiments, J. Geophys. Res.-Oceans, 115,
C11010, https://doi.org/10.1029/2009JC005525, 2010.
Lawrence, G. A., Browand, F. K., and Redekopp, L. G.: The stability of a
sheared density interface, Phys. Fluids. A-Fluid., 3, 2360–2370,
https://doi.org/10.1063/1.858175, 1991.
Legg, S., and Adcroft, A.: Internal wave breaking at concave and convex
continental slopes, J. Phys. Oceanogr., 33, 2224–2246,
https://doi.org/10.1175/1520-0485(2003)033<2224:IWBACA>2.0.CO;2, 2003.
Legg, S. and Klymak, J.: Internal hydraulic jumps and overturning generated
by tidal flow over a tall steep ridge, J. Phys. Oceanogr., 38, 1949–1964,
https://doi.org/10.1175/2008JPO3777.1, 2008.
Li, Q.: Numerical assessment of factors affecting nonlinear internal waves
in the South China Sea, Prog. Oceanogr., 121, 24–43,
https://doi.org/10.1016/j.pocean.2013.03.006, 2014.
Li, J., Zhang, Q., and Chen, T.: ISWFoam: a numerical model for internal solitary wave simulation in continuously stratified fluids, Geosci. Model Dev., 15, 105–127, https://doi.org/10.5194/gmd-15-105-2022, 2022.
Liu, Z.: Instability of baroclinic tidal flow in a stratified fjord, J.
Phys. Oceanogr., 40, 139–154, https://doi.org/10.1175/2009JPO4154.1, 2010.
Liu, Z., Lin, L., Xie, L., and Gao, H.: Partially implicit finite difference
scheme for calculating dynamic pressure in a terrain-following coordinate
non-hydrostatic ocean model, Ocean. Model., 106, 44–57,
https://doi.org/10.1016/j.ocemod.2016.09.004, 2016.
Ma, Q., Yuan, C., Lin, X., and Chen, X.: The investigation of internal
solitary waves over a continental shelf-slope, J. Oceanol. Limnol., 38,
695–706, https://doi.org/10.1007/s00343-019-9123-8, 2020.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic,
quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys.
Res.-Oceans, 102, 5733–5752, https://doi.org/10.1029/96JC02776, 1997a.
Marshall, J., Adcroft, A., Hill, C., Perelman L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean
on parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997b.
Marshall, J., Jones, H., and Hill, C.: Efficient ocean modeling using
non-hydrostatic algorithms, J. Marine. Syst., 18, 115–134,
https://doi.org/10.1016/S0924-7963(98)00008-6, 1998.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. and Röske, F.:
The Max-Planck-Institute global ocean/sea ice model with orthogonal
curvilinear coordinates, Ocean. Model., 5, 91–127,
https://doi.org/10.1016/S1463-5003(02)00015-X, 2003.
Michallet, H. and Barthélemy, E.: Experimental study of interfacial
solitary waves, J. Fluid. Mech., 366, 159–177,
https://doi.org/10.1017/S002211209800127X, 1998.
Michallet, H. and Ivey, G. N.: Experiments on mixing due to internal
solitary waves breaking on uniform slopes, J. Geophys. Res.-Oceans, 104,
13467–13477, https://doi.org/10.1029/1999JC900037, 1999.
Miles, J. W.: On the stability of heterogeneous shear flows, J. Fluid.
Mech., 10, 496–508, https://doi.org/10.1017/S0022112061000305, 1961.
Mtfller, P.: On the diffusion of momentum and mass by internal gravity
waves, J. Fluid. Mech., 77, 789–823,
https://doi.org/10.1017/S0022112076002899, 1976.
Ono, H.: Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn.,
39, 1082–1091, https://doi.org/10.1143/JPSJ.39.1082, 1975.
Osborne, A. R., Burch, T. L., and Scarlet, R. I.: The influence of internal
waves on deep-water drilling, J. Pet. Technol., 30, 1497–1504,
https://doi.org/10.2118/6913-PA, 1978.
Pacanowski, R. C., and Philander, S. G. H.: Parameterization of vertical
mixing in numerical models of tropical oceans, J. Phys Oceanogr., 11,
1443-1451, https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2, 1981.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, ISBN: 0-521-35465-X, 1988.
Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C. S., Bahr, F. L., Kim, H. R., and Yang, Y. J.: Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation, IEEE. J. Oceanic. Eng., 29, 1157–1181, https://doi.org/10.1109/JOE.2004.840839, 2004.
Ramp, S. R., Park, J. -H., Yang, Y. J., Bahr, F. L., and Jeon, C.:
Latitudinal Structure of Solitons in the South China Sea, J. Phys.
Oceanogr., 49, 1747–1767, https://doi.org/10.1175/JPO-D-18-0071.1, 2019.
Saad Y.: A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.
Comput., 14, 461–469, https://doi.org/10.1137/0914028, 1993.
Shaw, P. T., Ko, D. S., and Chao, S. Y.: Internal solitary waves induced by
flow over a ridge: With applications to the northern South China Sea, J.
Geophys. Res.-Oceans, 114, C02019, https://doi.org/10.1029/2008JC005007,
2009.
Shchepetkin, A. F., and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean. Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Smith, B., Bjørstad, P., and Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, https://doi.org/10.1016/S0898-1221(97)90035-3, 1996.
Stansby, P. K. and Zhou, J. G.: Shallow‐water flow solver with non‐hydrostatic pressure: 2D vertical plane problems, Int. J. Numer. Meth. Fluids, 28, 541–563, https://doi.org/10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0, 1998.
Vlasenko, V. and Hutter, K.: Numerical experiments on the breaking of solitary
internal waves over a slope–shelf topography, J. Phys. Oceannogr., 32,
1779–1793, https://doi.org/10.1175/1520-0485(2002)032<1779:NEOTBO>2.0.CO;2, 2002.
Vlasenko, V., Stashchuk, N., and Hutter, K.: Baroclinic tides: theoretical modeling and observational evidence, Cambridge University Press, ISBN: 978-0-521-84395-9, 2005.
Vlasenko, V., Stashchuk, N., Guo, C., and Chen, X.: Multimodal structure of baroclinic tides in the South China Sea, Nonlin. Processes Geophys., 17, 529–543, https://doi.org/10.5194/npg-17-529-2010, 2010.
Wang, Y. H., Dai, C. F., and Chen, Y. Y.: Physical and ecological processes
of internal waves on an isolated reef ecosystem in the South China Sea,
Geophys. Res. Lett., 34, 312–321, https://doi.org/10.1029/2007GL030658,
2007.
Wessels, F. and Hutter, K.: Interaction of internal waves with a
topographic sill in a two-layered fluid, J. Phys. Oceanogr., 26, 5–20,
https://doi.org/10.1175/1520-0485(1996)026<0005:IOIWWA>2.0.CO;2, 1996.
Wolff, J. -O., Maier-Reimer, E., and Legutke, S.: The Hamburg ocean primitive equation model, Tech. Rep. No. 13, German Climate Computer Center (DKRZ), Hamburg, Germany, ISSN: 0940-9327, https://hdl.handle.net/21.11116/0000-0009-1487-8 (last access: 25 December 2022), 1997.
Zhang, Z., Fringer, O. B., and Ramp, S. R.: Three-dimensional,
nonhydrostatic numerical simulation of nonlinear internal wave generation
and propagation in the South China Sea, J. Geophys. Res.-Oceans, 116, C05022,
https://doi.org/10.1029/2010JC006424, 2011.
Zhao, Z. and Alford, M. H.: Source and propagation of internal solitary
waves in the northeastern South China Sea, J. Geophys. Res.-Oceans, 111,
C11012, https://doi.org/10.1029/2006JC003644, 2006.
Zeng, Z., Chen, X., Yuan, C., Tang, S., and Chi, L.: A numerical study of
generation and propagation of type-a and type-b internal solitary waves in
the northern South China Sea, Acta Oceanol. Sin., 38, 20–30,
https://doi.org/10.1007/s13131-019-1495-2, 2019.
Zheng, Q., Susanto, R. D., Ho, C. R., Song, Y. T., and Xu, Q.: Statistical
and dynamical analyses of generation mechanisms of solitary internal waves
in the northern South China Sea, J. Geophys. Res.-Oceans, 112, C0302,
https://doi.org/10.1029/2006JC003551, 2007.
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal...