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Abstract. The Oceanic Regional Circulation and Tide Model
(ORCTM), including a nonhydrostatic dynamics module
which can numerically reproduce internal solitary wave
(ISW) dynamics, is presented in this paper. The performance
of a baroclinic tidal simulation is also examined in regional
modeling with open boundary conditions.

The model control equations are characterized by three-
dimensional and fully nonlinear forms considering incom-
pressible Boussinesq fluid in Z coordinates. The pres-
sure field is decomposed into the surface, hydrostatic, and
nonhydrostatic components on the orthogonal curvilinear
Arakawa-C grid. The nonhydrostatic pressure determined by
the intermediate velocity divergence field is obtained via
solving a three-dimensional Poisson equation based on a
pressure correction method. Model validation experiments
for ISW simulations with the topographic change in the two-
layer and continuously stratified ocean demonstrate that OR-
CTM has a considerable capacity for reproducing the life cy-
cle of internal solitary wave evolution and tide–topography
interactions.

1 Introduction

Internal wave (also called internal gravity waves) activities
have been observed frequently across the stratified ocean and
play a significant role in the multiscale energy cascade (Mt-
fller, 1976). Observations reveal that internal waves, espe-
cially high-frequency internal solitary waves, could contain
significant potential energy with strong vertical shear, mix-
ing, and wave breaking, leading to a dramatic change in the

currents and density structures (Ramp et al., 2004; Vlasenko
et al., 2010; Huang et al., 2016), violent overturning bringing
sediment and nutrients from the seafloor to the surface (Wang
et al., 2007), and even damage to some underwater vehicles
(Duda et al., 2006) and deep-water drilling projects (Osborne
et al., 1978). Basically, astronomical tides passing abrupt to-
pography can cause the generation of baroclinic tides (also
called internal tides, hereafter ITs) with multi-modal struc-
tures then capable of propagation, disintegration, and dis-
sipation in the ocean (Vlasenko et al., 2005, 2010). The
low mode of baroclinic tides can travel thousands of kilo-
meters with long horizontal wavelengths of tens of kilome-
ters (Baines, 1982). Furthermore, the inclusion of nonlinear
and nonhydrostatic effects permits the evolution of nonlinear
internal waves (hereafter NIWs) and even internal solitary
waves (hereafter ISWs) derived from the steepening of low-
mode internal tides as the consequence of the ever-changing
terrain and background stratification (Gerkema and Zimmer-
man, 1995; Legg and Adroft, 2003).

Numerical ocean models are one of the most effec-
tive tools to study internal waves compared to theoretical
methods, in situ observations, and laboratory investigations.
Ocean models with the hydrostatic balance approximation
have been used to explore the regional circulation and tide
dynamics across the stratified ocean. The hydrostatic balance
manages to take the large scales to mesoscales into consider-
ation due to the fairly high accuracy (Marshall et al., 1997b;
Chen et al., 2003; Shchepetkin and McWilliams, 2005; Ko et
al., 2008). However, In the hydrostatic balance scheme, omit-
ting some essential terms in the vertical momentum equa-
tion results in the inapplicability of nonhydrostatic dynamics
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(Lai et al., 2010). For example, the subsequent steepening
of the internal tides and the later high-frequency nonlinear
ISW formation cannot be depicted by a hydrostatic model-
ing whereby only internal jumps are formed but no soliton
appears (Li, 2014) because the strong vertical current with
its order of magnitude equals the horizontal one via the scale
analysis method (Marshall et al., 1997a). In other words, the
three-dimensional Navier–Stokers equations should be con-
sidered thoroughly. It is indispensable for simulating the non-
linear and large-amplitude ISWs to develop a nonhydrostatic
ocean model in consideration of nonhydrostatic dynamics.

A robust ocean model with nonhydrostatic dynamics re-
alizations should satisfy at least two requirements syn-
chronously: (1) high enough accuracy of mesoscale to
large-scale simulations must be guaranteed, such as large-
scale wind-induced circulation and mesoscale eddies recon-
structed and mainly influenced by the hydrostatic balance.
(2) Meanwhile, they should be concerned with small scales to
mesoscales with higher spatial and temporal resolution that
are resolved finely under the nonhydrostatic balance; for in-
stance, there is a simulation able to describe the cradle-to-
grave process for tide–topography interactions, the disper-
sive effects and nonlinear steepening of baroclinic tides, and
the breaking and dissipation of strong nonlinear ISWs. The
nonhydrostatic simulation can apply to the small to large
scales across the stratified ocean simultaneously, which is
identified as one of the main directions for research and
development of the nonhydrostatic ocean model. In reality,
there have been some nonhydrostatic ocean models or ones
considering nonhydrostatic dynamics coming out in the past
decades, such as MITgcm (Marshall et al., 1997a, b, 1998),
SUNTANS (Fringer et al., 2006), and ROMS (Kanarska et
al., 2007). All of the above have been used to realize a se-
ries of two- or three-dimensional nonhydrostatic numerical
studies, including the instability of small-scale flows in lab-
oratory experiments (Lai et al., 2010; Li et al., 2022), inter-
nal solitary waves in the continental shelves (Vlasenko et al.,
2010; Zeng et al., 2019), and the hydraulic lee wave around
the seamount (Kanarska et al., 2007; Liu et al., 2016). Nev-
ertheless, the primary reason why there is still no widespread
use for the nonhydrostatic ocean model is that the nonhy-
drostatic solution to an extensive sparse linear equation is
too demanding to solve directly for the 3-D oceanic environ-
ment. That usually demands large iteration times, fast con-
vergence speed, and large PC storage. For this reason, Ai
and Ding (2016) employed a novel model grid arrangement
to render the sparse linear equation discretized form simpler
to solve where the bottom-fitted coordinate ensures the ho-
mogeneous boundary condition. Moreover, numerical errors
can be avoided via the immersed boundary method to treat
uneven bottoms in the calculation of the baroclinic pressure
force (Ai et al., 2021). Generally, whether the boundary con-
ditions are matched with the whole nonhydrostatic algorithm
can shape the performance of complex nonhydrostatic dy-
namics in the regional ocean model. In addition, the different

kinds of sub-grid parameterization schemes have a profound
impact on the model performance with a necessity for appro-
priate ones to be assessed, and most of these model codes
are seldom shared or open-source. Supposing we develop a
nonhydrostatic ocean model based on an original hydrostatic
framework model. In that case, the nonhydrostatic dynamics
module should involve a complete vertical momentum equa-
tion. Some terms associated with the vertical velocity are re-
quired to be complemented simultaneously in the other equa-
tion. Also, based on the idea of the fractional step method
(Press et al., 1988; Armfield and Street, 2002), the total pres-
sure is to be decomposed into hydrostatic and nonhydrostatic
components (Marshall et al., 1997a; Lai et al., 2010). The
former corresponds to the result of hydrostatic balance, and
the divergence for intermediate velocity limits the latter to
correct the local velocity fields, called the “pressure correc-
tion” method (Stansby and Zhou, 1998; Fringer et al., 2006;
Kanarska et al., 2007; Lai et al., 2010). With these methods,
the nonhydrostatic dynamics simulation can be economically
fulfilled comparatively in harmony with the original physical
framework as an extension of the hydrostatic ocean model.

In this context, we have implemented the nonhydrostatic
dynamic algorithm into the Oceanic Regional Circulation
and Tide Model (hereafter ORCTM) and demonstrated its
capability and performance of reproducing the life cycle of
nonlinear internal solitary waves in distinct hydrodynamic
environments. The rest of the paper is organized as follows.
In Sect. 2, the basic framework of ORCTM including control
equations, open boundary conditions, and nonhydrostatic al-
gorithms is described. In Sect. 3, a series of numerical valida-
tion experiment results is presented, aiming at the simulation
of the overall processes of internal solitary waves. In the last
section, we have some further discussions and come to con-
clusions.

2 Model development

The Max Planck Institute Ocean Model (MPI-OM) is a
global ocean circulation and tide model based on the ocean
primitive equations discretized on the orthogonal curvilin-
ear Arakawa-C grid with hydrostatic balance approximation
(Marsland et al., 2003; Chen et al., 2005). Rooted from MPI-
OM, in this paper, an oceanic regional circulation and tide
model (ORCTM) has been developed to realize the simu-
lation for nonhydrostatic internal solitary wave modeling,
which will be referred to hereafter as ORCTM version 1.0.
The z-level grid applied has the partial filled cell capability
to adjust the distance of the vertical grid on the seabed for
fitting into the realistic terrain, and the tidal forcing flow can
be implemented via a relaxation scheme at the open bound-
ary with an area of sponge layers. It is under the laws of the
Boussinesq, rotating, and fully nonlinear Navier–Stokes fluid
that ORCTM can be used to reproduce and explore the non-
hydrostatic dynamics such as large-amplitude ISWs, nonlin-
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ear tidal internal waves, and downwelling and upwelling pro-
cesses of real oceans.

2.1 Control equations

The three-dimensional ocean primitive control equations
involve the momentum, continuity, potential temperature,
salinity, and density equations given as follows.
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In the local Cartesian framework of reference on the rotat-
ing Earth for a geophysical flow, t is the time; ∂/∂t is the
time partial derivative; x,y, and z axes are directed eastward,
northward, and upward, respectively; the horizontal veloc-
ity vector is uh = (u,v); and w is the vertical velocity. With
the linearized kinematic boundary condition and the freshwa-
ter forcing term Qς from the evaporation and precipitation
(Marsland et al., 2003), the free surface elevation equation
can be proposed as follows.

∂ς

∂t
=−∇h ·

∫ ς

−H

uHdz+Qς (8)

ς is the change in the free surface elevation; P , θ , and S
are pressure, potential temperature, and salinity; and ρc is
the reference density of seawater. The first and second Cori-
olis parameters are f = 2�sinϕ and f̃ = 2�cosϕ, where
� is the rotational angular speed and ϕ is the geographic
latitude. ∇H is the horizontal divergence operator; Qθ and
Qs are source or sink terms about potential temperature
and salinity. The equation of seawater state is the polyno-
mial form for the density ρ advocated by the Joint Panel on
Oceanographic Tables and Standards (Fofonoff and Millard,
1983). The additional forcing term vector F =

(
Fx,Fy,Fz

)
can consider tidal potential forcing. The horizontal eddy vis-
cosity vector is FH =

(
FHx,FHy,FHz

)
described with the

scale-dependent biharmonic formulation (Wolff et al., 1997;

Marsland et al., 2003), and the horizontal diffusivity terms
of temperature and salinity are FHθ and FHS , supporting the
harmonic forms. In addition, the vertical eddy viscosity vec-
tor is FV =

(
FVx,FVy,FVz

)
and eddy diffusivity terms are

FVθ and FVS . Here, the vertical eddy turbulent frictions are
specified to depend on the Richardson number Ri via the
modified PP81 parameterization scheme (Pacanowski and
Philander, 1981). The viscous terms above are expressed as
follows.
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Here,1=∇h ·∇h is the horizontal Laplace operator, BH and
DH are parameterized with the horizontal grid resolution, and
N (z) is the buoyancy frequency.An+1

V andDn+1
V are updated

on Eqs. (11) and (12) with the time relaxation coefficient λ
at every time step. Apart from the background viscous coeffi-
cientsAb andDb due to internal wave breaking, the modified
PP81 scheme also considers the wind-induced turbulent co-
efficients Aw and Dw associated with the local mixed layer
depth and 10 m wind speed (Marsland et al., 2003). Here, the
constant number α is set to be 5. And the adjustable param-
eters AV0 and DV0 can be determined by estimating energy
flux at every grid point. As for the boundary condition, the
slip conditions are specified at surface and bottom boundaries
where the wind stress τw is based on the model input, and the
bottom drags τb are described by linear and quadratic func-
tions (Arbic and Scott, 2008). The top and bottom boundary
conditions can be written as

τw/ρc = AV
∂uh

∂z
|z=ς , τ b/ρc = AV

∂uh

∂z
|z=−H

=

(
γ +Cd

√
u2+ v2

)
uh, (14)

where γ and Cd are the bottom friction and drag coefficients
representing the linear and quadratic relation expressions, re-
spectively.

2.2 Settings of open boundary conditions

It is fundamental for the regional model to be configured by
an open boundary condition that avoids reflection waves ef-
fectively so that the outward waves can freely flow through
the boundaries. Meanwhile, external inputs such as tidal
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waves can stably force the model domain through the bound-
aries, satisfying the need for consistency in hydrodynamics
and computational mathematics. Here, we use the relaxation
boundary conditions with sponge layers by consulting Zhang
et al. (2011) that can dampen the reflection waves back into
the interior domain and avoid the sharp gradients of water
properties caused by the prescribed values on the boundaries.
Specifically, we add a relaxation term M(x,y,z, t) formula-
rized with the exponential function in the specified sponge
zones. At each time step, the model variables are updated
with an explicit scheme expressed as follows.

M(x,y,z, t)=−

(
m(x,y,z, t)−mb (x,y,z, t)

τ

)
· e−δ, m= u,v,w,θ,S (15)

m= (1−β)m∗+βmb, β =
1t e−δ

τ
, δ =

4 r (x,y)
Lsp

(16)

In Eqs. (15) and (16), mb is the boundary value of requi-
site model variables including velocity, potential tempera-
ture, and salinity; m is the corresponding relaxation result in
the interiors;m∗ is the intermediate variable; r is the distance
from the boundary; and 1t is the model time step. Here, it
should be noted that τ and Lsp are artificially prescribed ad-
justment parameters referring to the timescale coefficient and
the thickness of the sponge relaxation layers. The model tar-
get variables over the sponge layer will relax exponentially
to the boundary values through the relaxation term, with re-
laxation modulated by τ and Lsp in the exponential shape.
To restrain the reflection of outflow current, τ and Lsp need
to be determined in advance via estimating the energy flux
of internal signals through the boundaries. This open bound-
ary relaxation condition is suitable for the numerical study of
the large-amplitude ISWs so that the outward strong, nonlin-
ear, and nonhydrostatic wave and current signals will dampen
gradually.

2.3 Implementation of nonhydrostatic algorithms

According to the momentum equations (Eqs. 1–3), the total
pressure P consists of sea surface pressure ps, hydrostatic
pressure ph, and nonhydrostatic pressure pnh given as fol-
lows.

P = ps (x,y)+ph (x,y,z)+pnh (x,y,z) (17)
∂ph

∂z
=−ρg (18)

It is negligible for the change in the sea surface pressure term
ps to impact the water column if the external atmospheric
forcing is excluded. Hydrostatic pressure ph can be calcu-
lated from the hydrostatic balance equation (Eq. 18), and the

vertical momentum equation (Eq. 3) at this stage becomes
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where the left term refers to the local time rate of change,
and the right term is the sum of the other forces without the
additional forcing term vector. Compared with Eq. (18), the
vertical momentum equation (Eq. 19) can also be called the
nonhydrostatic balance equation. Furthermore, with the idea
of the fractional step method (Press et al., 1988; Kanarska et
al., 2007), the intermediate velocity field ũ= (ũ, ṽ, w̃) will
be updated via the nonhydrostatic pressure pnnh gradients,
which can be obtained via Eqs. (20) to (22) discretized as
follows.
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Here, the superscript n means the current time step and the
vector G=

(
Gx,Gy,Gz

)
represents the sum of the advec-

tion term, Coriolis term, eddy viscosity term, and hydro-
static pressure gradient term. The discretized partial equa-
tions (Eqs. 23–25) are subsequently established under the
relationship between the nonhydrostatic pressure perturba-
tion p′nh gradients and the next time step n+1 velocity field.
Then nonhydrostatic pressure at the next time step is defined
as Eq. (26) in light of the pressure correction method. To
acquire nonhydrostatic pressure perturbation the continuity
equation (Eq. 4) needs to be substituted into Eqs. (23) to
(25) to eliminate the following time step n+ 1 velocity field
with the three-dimensional Poisson equation (Eq. 27), which
demonstrates that the nonhydrostatic pressure depends on the
vanishing of the divergence-free velocity fields.
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n
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The Poisson equation (Eq. 27) can be discretized into a
linear matrix equation (Eq. 28); the right-hand-side B is
determined by the divergence of the intermediate velocity
field. The adjoint matrix A represents the discrete three-
dimensional Laplacian operator with a size of the number of
model cells. Their specific discrete processes are introduced
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in Appendix A.
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The proper boundary conditions need to be given to solve
this Poisson equation (Eq. 27). Here, the homogeneous Neu-
mann boundary condition at the solid boundaries, also called
the zero-gradient condition (Eq. 29), is used with good com-
patibility with the no-flux normal to slope, where n is the nor-
mal unit vector (Marshall et al., 1997a). We assume that non-
hydrostatic dynamic processes are weak enough at the sea
surface and open boundaries. In other words, the input sig-
nals through the boundaries are dominantly hydrostatic with
nonhydrostatic pressure perturbation close to zero. The non-
hydrostatic dynamic framework is restricted to the interiors.
Hence, the zero-gradient condition is utilized to hold back
sharp nonhydrostatic pressure gradients at the open bound-
aries. With the above boundary conditions, this linear sys-
tem (Eq. 28) can be solved via the Krylov subspace method
with PETSc’s assistance on parallel computers under the
standard MPI-based framework (Balay et al., 2020). Also,
a highly efficient method needs to be devised to precondition
the huge and sparse matrix A. Here, the multigrid precondi-
tioner (Smith et al., 1996) and flexible generalized minimal
residual algorithm (Saad, 1993) are employed in numerical
validation experiments in this paper to minimize computa-
tional costs.

3 Model applications and assessments

In this section, we present a series of ideal numerical vali-
dation experiments to explore the correctness and compati-
bility of nonhydrostatic algorithms together with ORCTM.
In allusion to the internal solitary wave dynamics, these test
cases range from laboratory-scale cases in an enclosed tank
to field-scale ones like the northern South China Sea with
open boundaries. The first case is the lock-exchange prob-
lem as the preliminary validation. The second to fourth cases
are designed to explore the nonlinear evolution of internal
solitary waves induced by their interactions with the chang-
ing terrain. The last one is the generated nonlinear internal
wave case in a double-ridge environment analogous to the
Luzon Strait, which aims at the generation and disintegra-
tion of nonlinear internal waves to examine the effectivity
of the open tidal forcing condition module under the nonhy-
drostatic algorithms. Analyses of all test experiments above
indicate that ORCTM can reproduce nonlinear and nonhy-
drostatic internal solitary waves in different oceanic environ-
ments, which shows the robustness and reliability of this non-
hydrostatic ocean model.

3.1 The lock-exchange problem

When shear currents flow between two different density
fluids, the Kelvin–Helmholtz instability (hereafter K-H in-
stability) will appear to cause turbulent diapycnal mixing
(Lawrence et al., 1991; Cushman-Roisin, 2005). The per-
turbation on the interface gradually develops and stimulates
numerous small eddies due to energy dissipation. The mag-
nitude order of vertical flow is comparable to the horizon-
tal one, so the nonhydrostatic effect matters throughout the
whole process. We set a rectangular enclosed tank separated
by a vertical board in the middle at the x-axis origin. Both
sides of the tank are separately filled with two different den-
sity fluids in Fig. 1a. The gravitational adjustment will pro-
ceed when the central board is disengaged just like a lock
gate. Here, we refer to the previous configurations (Härtel et
al., 2000; Fringer et al., 2006; Lai et al., 2010) as a 2-D prob-
lem. The horizontal length L is set to 50 cm, and the static
water height is 10 cm without topographic change in the tank.
The grid resolution is 0.001 m in the horizontal and vertical
directions. Several sensitivity experiments were explored to
reduce the dissipations out of solid boundary friction, so the
bottom friction coefficients are finally set to zero; both AV0
and DV0 in Eqs. (11) and (12) are 2× 10−6 m2 s−1. In addi-
tion, water density averages are calculated based on the pre-
scribed salinity difference on the left and right sides of the
tank: ρl = 1023.05 kg m−3 and ρr = 1026.95 kg m−3.

The K-H instability process grows rapidly with good eddy
reconstruction and outstanding wave breaking. In contrast,
in that model configuration, we also run the same configu-
ration experiment above but under the hydrostatic balance
scheme. Figure 1b and c show the results of density σ (de-
fine σ = ρ−1000 kg m−3) at the same time under the hydro-
static and nonhydrostatic balance framework. The compar-
ison proves that the K-H instability cannot proceed result-
ing from the inapplicability of the hydrostatic balance. The
perturbation on the density interface is so tiny that the den-
sity fronts cannot evolve in the upper and lower layer, so the
mixing caused by the overturning and shear is too weak to
be seen. On the contrary, via the nonhydrostatic scheme, the
eddies can proliferate with energy dissipation due to the asso-
ciated shear on the perturbation, vigorously mixing the high-
and low-density water on the interface. More specifically, the
energy is transmitted to the small-scale eddies across the den-
sity fronts due to dispersion and nonlinearity.

The evolution process of K-H instability is shown in Fig. 2.
It is out of gravitational adjustment that the density front
movement is accompanied by heavy water in the bottom and
light water in the upper level moving to the left and right,
respectively, causing a velocity shear field and clockwise ro-
tating interface in Fig. 2a. The shear strength gradually in-
creases until breaking the critical point of restoring force that
depends on the density gradient, and later a series of eddies
grows from the middle to both sides of the tank with the tur-
bulent rolling and overturning. These eddies mix the water
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Figure 1. (a) The initial density σ (hereafter the same expression) field of the lock-exchange case and contour plots of density at t = 4.5 s,
where the contour interval is 0.1 kg m−3 under the hydrostatic (a) and nonhydrostatic (b) model framework.

body with high density at the bottom and the upper one with
low density, forming multiple considerable density mixing
areas in Fig. 2b and c. When the bottom density flow is re-
flected on the left wall, a similar adjustment process begins
to develop in reverse of Fig. 2d and e, but the strength of
subsequent eddies is significantly weakened due to energy
dissipation.

These density distributions display the generation of den-
sity fronts and numerous eddies throughout the gravitational
adjustment process. Based on the point of energy dynamics,
the gravitational potential energy (PE) is converted to kine-
matic energy (KE) for the water parcel, while the total energy
dissipates continuously in the tank. Here, KE and PE of the
entire 2-D tank are calculated from the following formulas.

KE=

L∫
0

ς∫
−H

1
2
ρ
(
u2
+w2

)
dxdz (30)

PE=

L∫
0

ς∫
−H

ρgzdxdz (31)

The three curves show the fluctuation of PE, KE, and total
energy during the K-H instability simulation in Fig. 3. The
PE and KE correspond to the maximum and zero due to the
initial density distribution and static field in Fig. 3a. After-
ward, the PE declines sharply with an opposite change in KE.
Both rates of change are almost the same based on the curve
slopes, which demonstrate that PE is converted to KE, reach-
ing mutual peaks of about 9.5 s at the end of the first grav-
itational adjustment. From then on, both of them still main-
tain the opposite trends with an oscillation of roughly 25 s. It
is worth noting that all kinds of energy exhibit a downward

trend, with their oscillation period increasing steadily due to
energy dissipation so that KE will drop to zero, and PE and
total energy (PE+KE) will reach constant values in the end.
The results above are equivalent to previous works (Härtel et
al., 2000; Fringer et al., 2006; Lai et al., 2010), implying the
correctness of the nonhydrostatic dynamic module.

3.2 Internal solitary wave in a tank

Internal solitary wave activities are ubiquitous in the ocean,
with strong nonlinearity and nonhydrostatic effects. Labora-
tory experiments are usually carried out to study the ISWs
to make up for the deficiencies of field observations. Nu-
merical ISW experiments in a laboratory-scale background
need to be combined simultaneously (Grue et al., 2000). We
follow the previous experimental configuration (Ma et al.,
2020). A schematic diagram of the ISW experiment is given
in Fig. 4. The tank length is 2.0 m with the x-axis origin
located on the left; the static height is 10 cm without topo-
graphic change; the horizontal and vertical resolutions are
2× 10−3 and 1× 10−3 m; both bottom friction and drag co-
efficients are set to 3×10−3 with the effect of a fairly robust
friction to the ISW; AV0 and DV0 are the same as in the ex-
periment configuration in Sect. 3.1. Here, a gravity collapse
method is used to generate the depression ISW. Specifically,
the low- and high-density fluids initially fill the upper and
lower layers of the tank with the collapse area on the left
side. The collapse height and width are 5.0 and 4.0 cm. Wa-
ter density averages are calculated in the upper and lower
layer with ρ1 = 1003.62 kg m−3 and ρ2 = 1026.95 kg m−3.
Additionally, a diagnostic module is employed to character-
ize the high-frequency variation. The high-frequency outputs
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Figure 2. Density field evolution at t = (a) 5.0, (b) 7.5, (c) 10.0, (d) 12.5, and (e) 15.0 s.

Figure 3. (a) The time series of kinematic energy (red dashed line), potential energy (blue solid line), and (b) total energy (black dotted line)
(units: kg m2 s−2).

are positioned at points x = 0.4, 0.8, 1.2, and 1.6 m with a
time interval of 0.05 s.

Figure 5 distinctly illustrates the evolution of the ISW
packet in the tank based on the pycnocline fluctuation. The
isopycnic of 1026 kg m−3 can characterize the maximum
strength of the depression ISW in Fig. 5a. The eastward start-
ing wave packet originating from the west gravity collapse

area comprises the depression heading wave and several tail
waves whose amplitudes decrease successively. The heading
wave with the maximum amplitude propagates much faster
than the tails behind so that the distance expands promptly
between them. As shown in Table 1 about the heading wave
characteristics at the four locations, we find the wave am-
plitude with almost little change and then a slight fluctua-
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Figure 4. Schematic diagram of the ISW case. The light and dark gray indicate the low- and high-density water with 1003.62 and
1026.95 kg m−3; four white dots refer to the high-frequency output points.

tion but no more than 0.1 cm after x = 0.8 m. The quanti-
tative evaluation of the wave speed based on the slope of
the blue dashed area in Fig. 5b reveals that the wave speed
increases slowly after x = 0.2 m but with its increment less
than 0.01 m s−1. This indicates that the starting ISW pack-
ets are still at the stage of gravity adjustment before arriving
at x = 0.2 m and then propagating to the east steadily in our
simulation. Also, the characteristic westward-reflected waves
(the blue line in Fig. 5a) with the larger amplitude prove that
wave–wave interactions happen between the reflected and
starting tail waves.

We select a snapshot result for characteristic verification
shown in Fig. 6 when the heading wave arrives at around
x = 0.8 m. The strongest horizontal velocity of the depres-
sion wave is 0.023 m s−1, and the vertical flow can reach up
to 0.0065 m s−1. The characteristic velocity fields are in line
with the clockwise structure of a theoretical depression in-
ternal solitary wave. Furthermore, the nonlinearity ε = a/h
and dispersion µ= (h/λ)2 are calculated at the different lo-
cations in Table 1, where a, h, and λ are the amplitude, water
height, and characteristic wavelength. The KdV (Korteweg–
de Vries) model (Benjamin, 1966) described in Appendix B
is utilized to predict theoretical waveforms at the four loca-
tions. The comparison depicted in Fig. 7 demonstrates that
the results are more consistent with the KdV model than
the m-KdV (modified KdV) model. According to the non-
linearity ε from Michallet and Barthélemy (1998), small-
and large-amplitude ISWs can be classified when ε < 0.05
and ε > 0.05, respectively, whereas the application of the
KdV model requires a balance between weak nonlinearities
and dispersion (Ono, 1975), which namely needs to satisfy
this condition: µ=O (ε)� 1. Despite the large-amplitude
waves simulated from our model with ε > 0.05, the nonlin-
earity and dispersion are of the same order and small enough
that the heading wave can be deemed under weak nonlin-
earity. This can explain why the waveforms are better de-
scribed by the KdV model. Therefore, analyses of the theo-
retical model indicate that the simulation of internal solitary
waves can be fulfilled authentically using our nonhydrostatic
model.

3.3 Internal solitary wave shoaling on a Gaussian
terrain

Based on the experiment configuration in Sect. 3.2 (also
called Exp. 3.2), a slowly varying terrain is implemented to
explore the nonlinear evolution of internal solitary waves in
Sect. 3.3 (also called Exp. 3.3), especially the wave shoal-
ing. As shown in Fig. 8, the left half of the Gaussian curve is
reserved as the slope-shelf terrain starting between x = 1.0
and 1.3 m with a height of 5.0 cm, and then the water depth
remains unchanged from x = 1.3 to 2.0 m corresponding to
the shallow-water zone. High-frequency outputs are acquired
during the climbing process of ISWs at points x = 0.4, 0.8,
1.0, 1.2, 1.3, 1.4, 1.6, and 1.8 m with the same output interval
as Exp. 3.2.

The evolution of internal solitary waves with varying to-
pography is displayed in Fig. 9. The heading ISW holds a
stable packet at x = 0.4 m and initiates shoaling after reach-
ing x = 1.0 m. Afterward, the heading ISW undergoes topo-
graphic change so that the speed of the wave trough is less
than the wave rear. Consequently, the contrasting effects on
the wave front and wave rear contribute to the former gentle
sloping but the latter gradual steepening, which shows a sim-
ilarity with Vlasenko et al. (2002). Then the closed isopycnic
contour mirrors the backward overturning and rolling due to
the wave breaking at x = 1.2 m in Fig. 9a. Apart from the
wave breaking process above, it is also found in Fig. 9b that
the reflected waves propagate back to the deep-water zone
from x = 1.2 m. In other words, both wave breaking and re-
fection substantially attenuate the original depression ISW
energy. When arriving east of x = 1.2 m, the original depres-
sion wave is past the critical point where the upper layer is
thicker than the lower one in Fig. 10a, so an elevation wave
springs up in the wave rear. The elevation wave then contin-
ues to propagate eastward, which leads to increasing accu-
mulation of high-density water in the upper water in the right
region close to the wall of the tank. Hence, a new collapse
area between x = 1.8 m and the east wall comes into being
where the thickness of the upper layer is larger than the lower
layer. Ultimately, the westward-reflected waves, including
a series of elevation tail waves, are released at x = 1.6 m.
In detail, the first elevation is the leading one with a rank-
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Figure 5. (a) The density time series of 1026 kg m−3 at the four high-frequency output locations from the west to east. The left red and blue
arrow lines indicate the eastward and westward waves, and the right arrow line after 120 s indicates the eastward-reflected waves from the
channel start. (b) Hovmöller diagram showing the density σ at z= 2.0 cm, where the time interval is 0.1 s.

Table 1. The characteristics of the depression heading wave at the four points.

Location (x/cm)

0.4 0.8 1.2 1.6

Parameters

amplitude (a/cm) 2.369 2.362 2.392 2.469
characteristic wavelength (L/cm) 19.632 21.643 23.206 25.822
nonlinearity (ε) 0.237 0.236 0.239 0.250
dispersion (µ) 0.259 0.213 0.186 0.150

ordered structure in the rear. After reaching the deep-water
zone left to 1.3 m, the wave rear begins to steepen and sink,
and a depression wave forges behind the wave rear. Namely,
the soliton wave passes the critical point inversely due to the
wave deepening.

For further exploration of the evolution of the depression
wave, the distributions of the vorticity (ζ = ∂w/∂x−∂u/∂z)
with velocity vector are depicted in Fig. 10. The depression
wave core features negative vorticity with an anticyclonic ve-
locity structure before reaching the shelf topography. When
the ISW approaches the top of the slope in Fig. 10a and b, the
vertical shear increases promptly and strengthens the posi-
tive vorticity at the bottom. Then the backward overturning
springs up between x = 1.2 and 1.3 m, marking the ISW en-
tering the breaking instability stage (Helfrich and Melville,
1986) due to the shoaling. At this time, even though wave
breaking and reflection render partial wave energy dissipa-
tion, a fraction of the depression wave can reach the shallow-
water zone, leaving a cyclonic vortex behind above the slope
shelf in Fig. 10c. This partial soliton wave is adjusted instan-
taneously when the upper layer thickness is more significant

than the lower in light of the boundary of the negative vor-
ticity area in Fig. 10d. As a result, after the reverse situation
occurs, the elevation wave begins to emerge at the back of
the original wave. Its core corresponds to the positive vortic-
ity with a cyclonic velocity structure. In addition, the vortex
from the wave breaking weakens slowly and motivates nu-
merous small-scale waves with high wavenumber propagat-
ing to both sides in Fig. 10e and f, which is consistent with
the propagation characteristics of the reflected waves near
x = 1.2 m in Fig. 9b.

It is also worth highlighting the evolution of the reflected
westward waves. We also visualize the process of the sec-
ond reverse situation due to the wave deepening in Fig. 11.
It can be noticed that there is a leading elevation wave at
x = 1.4 m followed by a series of rank-order waves exhibit-
ing a likewise sinusoidal variation. They propagate together
to the deep-water zone with the wave crest corresponding to
positive vorticity. Particularly, the wave train is considered
approximately linear based on the alternating positive and
negative vorticity regions, since the cores of these waves are
located almost in the middle layer where the nonlinear pa-
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Figure 6. From top to bottom: density as well as the horizontal and vertical velocity fields of the ISWs at t = 24.5 s.

Figure 7. The interface displacement induced by heading ISW at four high-frequency output locations. The red lines indicate the 1026 kg m−3

isopycnic, and the blue and cyan lines represent the KdV and m-KdV model results.

Geosci. Model Dev., 16, 109–133, 2023 https://doi.org/10.5194/gmd-16-109-2023



H. Huang et al.: A nonhydrostatic oceanic regional model, ORCTM v1 119

Figure 8. As in Fig. 4, but with half-Gaussian topography in the east of the tank; eight white dots refer to the high-frequency output points.

Figure 9. As in Fig. 5, (a) the solid and dashed arrow lines indicate the depression and elevation waves, and the red and blue mean the
eastward and reflected westward waves. (b) Hovmöller diagram showing the density σ at z= 2.0 cm.

rameter α is close to zero in terms of the KdV model. As the
water depth becomes deeper, the crest of the elevation wave
gradually grows down and flattens with the wave rear sink-
ing. The original elevation cannot be maintained in the deep
water, transforming into a depression wave with the velocity
fields adjusted accordingly.

The ISW is not stable enough to coincide with the KdV
model after passing the critical point into the adjustment
stage. Hence, we select the two types of soliton results for
verification before the reverse situation occurs. The compar-
ison results between theoretical and numerical model are il-
lustrated in Fig. 12 at x = 0.8 and 1.4 m before the wave
shoaling and deepening, respectively. We can find that the
depression waveform conforms to the KdV model results be-
fore climbing the slope, whereas the elevation is closer to
the m-KdV model. Compared with ε = 0.233 at x = 0.8 m,
the interaction between the ISW and the shoaling topography
renders a stronger nonlinearity (ε = 0.331) of the elevation
heading wave in the shallow water. Namely, the larger wave
amplitude ratio in the shallow-water results can be charac-
terized with m-KdV theory, which compares well with the

conclusions of Michallet and Barthélemy (1998) in a satis-
factory way.

3.4 Internal solitary wave breaking on a slope.

To further characterize a complete breaking and dissipative
process of ISWs, we set a linear slope identical to Michallet
and Ivey (1999). As is shown in Fig. 13, the tank length is
2.0 m; The height is 15 cm with the linear terrain placed on
the east side. The model configuration (i.e., spatial resolu-
tion and viscous coefficients) is identical to Exp. 3.2, which
can ensure the same time step according to the Courant–
Friedrichs–Lewy (CFL) condition, and the depression ISW
is about to be dissipated due to increasing bottom fric-
tion at the shelf break. In contrast with Bourgault and Kel-
ley (2004), water density averages are calculated to be ρ1 =

1000.01 kg m−3 and ρ2 = 1047.00 kg m−3 in the upper and
lower layers. Via several sensitivity experiments about col-
lapse area, the amplitude of the depression wave can reach
approximately 2.8 cm when the collapse height is 9.0 cm with
its width identical to Exp. 3.2. Although the stimulated wave
strength is slightly greater than the results from Bourgault
and Kelley (2004) due to the different wave generation meth-
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Figure 10. The shoaling of a depression soliton with the velocity fields (black arrow) and the vorticity results (color) shown at t = (a) 35,
(b) 40, (c) 45, (d) 50, (e) 55, and (f) 60 s.

Figure 11. As in Fig. 10, the elevation wave propagates westward to the deep water; the x axis is inverse for convenience at t = (a) 115,
(b) 120, (c) 125, and (d) 130 s.

ods, it is predictable that the breaking of the larger-amplitude
ISW will be more dramatic with a prominent performance for
model verification.

The associated density and velocity fields produced by the
depression ISW are presented in Fig. 14 at t = 15 s before
wave shoaling. The horizontal velocity is about 3.0 cm s−1

at the surface and varies up to 3.5 cm s−1 at the wave
core. Meanwhile, the vertical velocity distribution presents a
double-core structure reaching ±0.8 cm s−1. The unique an-
ticyclonic velocity characteristic just like an eastward rolling

wheel is consistent with the model results of Bourgault and
Kelley (2004). We select the four moments of the evolu-
tion of wave shoaling illustrated in Fig. 15. In addition to
wave breaking accompanied by the waveform steepening in
the rear, a significant density front rolling in the wave front
evolves along the linear slope during the overall shoaling
process in Fig. 15a and b. Specifically, while the depres-
sion wave continues to get closer to the shallow zone, the
effect of bottom friction can maintain the vertical shear and
increase the potential energy, which intensifies the diapyc-
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Figure 12. Wave profiles at x = 0.8 (a) and 1.4 m (b). The left (right) refers to the depression (elevation) heading wave before shoaling
(deepening); the results are plotted with the red line. The blue and cyan lines represent the KdV and m-KdV model results.

Figure 13. As in Fig. 4, the low and high densities are set to 1000.01 and 1047.00 kg m−3 with a linear slope terrain placed in the east of the
tank; for the related configuration, refer to Bourgault and Kelley (2004).

nal mixing and dissipation on the density interface. Then the
wave-induced diapycnal flow contributes to high-density wa-
ter under the interface transported continuously to the shal-
low zone in Fig. 15c. On the other hand, there is another pro-
nounced peculiarity in Fig. 15d compared to Exp. 3.2. A few
small-scale eddies emerge along with the sheared interface
due to the shear instability.

To further evaluate and validate the wave breaking pro-
cess, we compare the velocity field distributions with the ob-
servation results via PIV (particle image velocimetry) tech-
nology from Michallet and Ivey (1999) and nonhydrostatic
numerical experiments from Bourgault and Kelley (2004)
in Fig. 16. Accordingly, when the depression wave arrives
over the slope, its depression waveform and anticyclonic flow
field are modulated by the topographic shoaling to flatten
the wave front and enhance the downward current along the
slope due to the bottom friction. Meanwhile, a smaller cy-
clonic eddy appears and clings to the slope under the steep-
ened wave rear in Fig. 16a. As the deformed depression wave
persists in shoaling, the cyclonic eddy is reinforced and ex-
tends its scope of influence, resulting in a strong overturning
from near the bottom layer to promote the wave steepening

in Fig. 16b, which presents good agreement with the results
from Exp. 3.3. Afterward, the anticyclonic flow structure has
been ruined since bottom friction commences, hindering the
current down the slope. In contrast, the coverage of the cy-
clonic eddy continues to expand and moves the shallow zone
with the waveform distorted further. All the above nonlin-
ear processes are similar to previous laboratory and model
results. Our nonhydrostatic model can also resolve the non-
linear evolution of the internal solitary waves at shelf break
with high enough accuracy.

3.5 Nonlinear internal waves in a double-ridge system

The last validation experiment is to examine the generated
nonlinear internal waves via tidal flow over the varying to-
pography. We set up an underwater double-ridge system
comparable to the Luzon Strait in the northern South China
Sea (SCS), where the largest internal solitary waves in the
world can exist (Huang et al., 2016). This validation case is
a 2-D problem for the reduction of computational resources
as well. The topography in this double-ridge system is fitted
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Figure 14. As in Fig. 6, but with the time referring to t = 15 s before the wave shoaling.

Figure 15. Wave breaking with density front rolling at t = (a) 22, (b) 23, (c) 24, and (d) 25 s.

approximately with the Gaussian function given as

H (x)= 3000−hw× exp

(
−

(
x− xw

20× 103

)2
)
−he

× exp

(
−

(
x− xe

20× 103

)2
)
. (32)

In Eq. (32), H (x) is the water depth; the height of the east
ridge and west ridge (he and hw) is 2500 and 1300 m in

sequence with an interval and widths of 100 km, which is
similar to the fundamental topographic characteristics in the
Luzon Strait. As shown in Fig. 17a, the static water height
is 3000 m; the east ridge and west ridge (hereafter ER and
WR) are located at the coordinate origin and x =−100 km;
the horizontal and vertical grid resolutions are uniformly 200
and 10 m throughout; AV0 and DV0 in Eqs. (11) and (12) are
set to 2× 10−4 and 2× 10−5 m2 s−1; the bottom friction co-
efficients are both 3× 10−3. As for the tidal categories, the
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Figure 16. Comparison of velocity fields during the wave breaking on a linear slope between (left) the PIV observations in the laboratory
(Michallet and Ivey, 1999), (middle) the numerical model simulation (Bourgault and Kelley, 2004), and (right) ORCTM simulation at
t = (a) 21.7, (b) 22.2, and (c) 23.2 s from top to bottom. The red contours indicate the isopycnic lines.

generation of semidiurnal ITs and the modulation effect of
diurnal ITs in the Luzon Strait determine the evolution of
the larger-amplitude ISW packet in the northern South China
Sea (Buijsman et al., 2010a; Zeng et al., 2019), so we define
theM2 andK1 tidal current amplitudes as 5.0 and 4.0 cm s−1

corresponding to the semidiurnal and diurnal components at
the open boundaries; the sponge thicknesses Lsp of the west
and east boundaries are both approximately 40 km, and the
timescale coefficient τ is set to 500 s. These model config-
urations in the validation experiment are analogous to the
control test from Li (2014) and Zhang et al. (2011) to re-
produce the major structures of NIWs in the South China
Sea. In addition, to simplify the background environment, we
also use horizontally uniform stratification as the initial field
for our model. Here, the representative stratification in Fig.
17b to d stems from the GLORYS12V1 reanalysis product in
CMEMS (Copernicus Marine Environment Monitoring Ser-
vice). The initial field is based on the spatial mean around
the source of generated ISWs in the Luzon Strait during the
summer of 2011, since large-amplitude ISWs are observed
during this period on the SCS continental shelf (Ramp et al.,
2019) and the strong thermocline structure in summer is con-
ducive to the formation of baroclinic tides in the Luzon Strait
(Zheng et al., 2007; Buijsman et al., 2010b;). Additionally,
the slope criticality γ (Gilbert and Garrett, 1989; Shaw et al.,
2009) no less than 1 is usually essential with the formation
of linear internal waves:

γ =
dH
dx

/√
ω2
− f 2

N2−ω2 , (33)

in which ω is the tidal angular frequency,N2 is the buoyancy
frequency squared, and the Coriolis parameter f is set to zero
for the Earth’s rotation, which is neglected due to the 2-D
environment. Around the east ridge γ is always larger than
unity regardless of theM2 andK1 tide, which means the east
ridge belongs to the supercritical topography. Therefore, it is
predictable to generate internal waves due to the interactions
with barotropic flow over the east ridge. We run the model
for 10 d from an initial static field. The diagnostic module is
also used to characterize the high-frequency variation with
the output interval of 1 min at x =−250, −350 km.

Figure 18 shows the maps of horizontal baroclinic ve-
locity u′ = u−U , where u is the total velocity and U is
the barotropic flow velocity. From the characteristics of the
source field, the generation of an internal tide beam propa-
gating eastward and westward centered from the eastern side
of the east ridge is found. The eastward barotropic flood-
ing current flows continuously over the east ridge with a
maximum barotropic current up to 0.0531 m s−1. A signif-
icant hydraulic jump can appear with the isotherm fluctua-
tion up to roughly 200 m on the eastern side, which indi-
cates the formation of lee waves to a certain extent. The
above internal wave generation due to tide–topography in-
teractions can be described with the below nondimensional
parameters at the source: (1) the tidal excursion parameter
ε = U0/Lω, which can be associated with the generation of
an internal tide beam under critical or supercritical topog-
raphy, where U0 is barotropic current amplitude from the far
field and L is the characteristic length for topography (Garret
and Kunze, 2007; Chen et al., 2017); (2) the Froude number
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Figure 17. (a) A sketch of generated NIWs over the submerged double-ridge system case; the gray zones indicate the sponge layers. The
summer stratification in 2011 including (b) temperature, (c) salinity, and (d) buoyancy frequency squared is from the spatial mean within
20.25–20.85◦ N, 121.7–122.08◦ E corresponding to the source of internal waves in the Luzon Strait (Zhang et al., 2011).

Figure 18. Distributions of horizontal baroclinic velocity with temperature (◦C) contours for the western far field (a) and source field (b) when
the maximum eastward tidal current at the east ridge reaches the end of ebb on the sixth day; the blue (black) dashed box means the second-
mode (first-mode) ISW packets.
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Fr = U/c and its topographic form Frz = ω/N(dH/dx), in
which c is the mode-1 linear speed for the eigenvalue prob-
lem (Legg and Adcroft, 2003; see Appendix B). Specifically,
Legg and Klymak (2008) found that the nonlinear hydraulic
jump will develop with lee wave generation when Frz < 1/3.
It is worth noticing that the tidal excursion far less than unity
agrees with the formation of the linear internal tide beam on
the critical or supercritical topography but cannot ensure the
formation of lee waves altogether. For instance, the lee waves
remain strong in the Luzon Strait despite the tidal excursion
under unity (ε ≈ 0.4) in previous model results (Buijsman et
al., 2010b). The tidal excursion parameter ε and the Froude
number Fr are estimated to be 0.025 and 0.018 in Fig. 18.
That demonstrates that the multi-modal baroclinic tides and
upstream propagation of internal waves will generate around
the source field when the subcritical barotropic current flows
over the east ridge. Furthermore, the maximum topographic
Froude number is just 0.3362 around the east ridge with the
approach to the regime transition value 1/3, which ensures
that the nonlinear hydraulic jump can grow with lee waves
on the east of the east ridge. All of the above can explain
the generation of the internal tide beam and hydraulic jump
well in our simulation and confirm the mixed tidal lee wave
regime in the Luzon Strait (Chen et al., 2017).

After the westward internal tide beam emitting from the
east ridge reaches the sea surface and reflects into the deep
sea, the partial downward internal tide beam can propagate
to the top of west ridge below 1500 m depth and reflect into
the upper layer again. Between the double ridges, such a
significant portion of beam energy captured by the pycno-
cline waveguide together with the upstream influence can
strengthen the westward-propagating internal wave energy
in Fig. 18b, which can trace back to the source of the in-
ternal solitary wave packets in the far field. However, the
strong dissipation for the high modal internal waves con-
tributes to the vanishing of the internal tide beam structure
and allows the nonlinear evolution of low-mode baroclinic
tides. The low modal internal solitary wave packets can grow
and propagate westward from x =−150 km, marking the
disintegration of the multi-modal nonlinear internal wave en-
ergy. Specifically, the first-mode ISW packet emerges from
x =−250 to −200 km. Meanwhile, the second-mode ISW
between x =−350 and −300 km performs the convex wave
packet.

We can acquire the propagation characteristics of these
ISWs via analyzing the global temperature time series at
400 m depth. As is illustrated in Fig. 19, the second-mode
ISW packet propagates slower, and its strength is much
weaker than the first-mode wave one. Also, it can be deter-
mined that the two first-mode wave packets can propagate
westward in 1 d, one of which is stronger with the struc-
ture of several tail waves, and the other is almost solitary
and weak. These two types of first-mode wave packets refer
to type-a and type-b waves (hereafter a-wave and b-wave),
respectively, in the northern South China Sea (Ramp et al.,

Figure 19. Hovmöller diagram about the global temperature time
series at z= 400 m, where the time interval is 15 min. The black
solid curve indicates the tidal current at the east ridge, and the blue
solid line means the west ridge location. The black and magenta
dashed lines are the first- and second-mode internal solitary waves.

2004). In addition, their occurrence time can be connected to
the ebb of the eastward flood current around the east ridge.
These simulated results in the strength and timing prove that
a- and b-waves originate from the double ridge in Luzon
Strait (Ramp et al., 2004, 2019; Zhao and Alford, 2006).
Additionally, the relatively weak second-mode concave wave
can be found distinctly following the a-wave from the west of
−300 km. To sum up, the multi-modal baroclinic tide struc-
tures from the double-ridge system can propagate to the far
fields. The low-mode internal waves gradually perform the
corresponding ISWs due to nonlinear enhancement, which
displays good agreement with the other two-dimensional ex-
perimental results (Buijsman et al., 2010a, b; Vlasenko et al.,
2010).

To evaluate the comparison between the numerical ISWs
with internal wave theory, we select the results of the first-
mode ISW at x =−250 km. In Fig. 20, it is found that a
first-mode ISW packet including three tail waves arrives at
the position after 10:00 on the sixth day. The maximum fluc-
tuation of the first-mode ISW packet can reach 206 m located
between 650 and 900 m water depths. The westward hori-
zontal baroclinic velocity associated with the wave packet
prevails above 200 m with a maximum strength of roughly
1.41 m s−1, and the corresponding downwelling region is lo-
cated between 200 and 1500 m depths with the strongest
downward velocity up to 0.22 m s−1. According to the sea
surface height gradient (SSHG, SSHG is defined

√
(∇ς)2) in

Fig. 20d, the average propagation speed of this wave packet
is approximately 3.17 m s−1 based on the slope of the SSHG
contour. Moreover, we solve the Taylor–Goldstein equation
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Figure 20. (a) The temperature (◦C), (b) horizontal baroclinic velocity (m s−1), and (c) vertical velocity (m s−1) structures of the first-mode
ISW packet at x =−250 km on the sixth day. (d) The SSHG Hovmöller diagram during the associated period, with the black and magenta
dashed lines indicating the first- and second-mode ISW packets. (e) The normal-mode profiles of vertical velocity for the first three modes
using the Taylor–Goldstein equation.

(Miles, 1961; Liu, 2010; see Appendix B) 10 min before this
wave packet reaches x =−250 km, and the normal mode of
vertical velocity is subject to the rigid-lib boundary condi-
tion. We found that the location of the maximum modal func-
tion is 710 m, in agreement with the model results in Fig. 20e.
However, the propagation speed is greater than the first-mode
linear result of 2.69 m s−1, which is probably attributed to the
underestimated effect in linear theory. Therefore, the KdV
model is also utilized to analyze the depression wave packet.
The nonlinear and dispersion parameters are−3.4×10−3 s−1

and 2.4×105 m3 s−1, which indicates that the theoretical de-
pression wave is consistent with the simulated results (Hel-
frich and Melville, 1986). Nevertheless, the theoretical non-
linear velocity of about 2.88 m s−1 is slightly lower than the
simulated results. It is probable that the increasing nonlinear-
ity with the steepening of internal tides ultimately leads to the
larger propagation speed of this first-mode ISW packet.

It is also noticeable that the multi-modal internal soli-
tary wave field is generated and strengthened gradually due
to nonlinear enhancement. In Fig. 21a, we can recognize
the distinct ISW packets from the isotherm displacement
that refers to type-a waves, second-mode waves, and type-

b waves from the source to the far field. The a-wave packet
features the most substantial strength with tail waves when
its vertical excursion induced by the heading wave can reach
up to 120 m. In contrast, the weaker b-wave contains one de-
pression soliton in the west to x =−400 km. They both orig-
inate from a multi-modal internal tide caused by the tide–
topography interactions in the double-ridge system, but the
b-wave is more associated with the west ridge (Buijsman et
al., 2010a; Zeng et al., 2019). Between a- and b-waves, there
is a second-mode ISW packet evidently classified as hav-
ing the structure of a concave wave whose upper and lower
isotherms fluctuate downward and upward. The maximum
isotherm fluctuations are located in roughly 180 and 1000 m
depths and can reach up to −57.2 and 140.6 m. The propa-
gation speed of this second-mode ISW is about 1.36 m s−1

from the SSHG slope in Fig. 20d. It is predictable that the
a-wave packet will follow the second-mode signal due to the
more considerable speed. Figure 21b and c show the second-
mode ISW packet and related velocity field time series at
x =−350 km. The horizontal baroclinic velocity field has
a sandwich-shaped vertical structure, and the maximum of
0.42 m s−1 is located in the middle layer between 200 and
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Figure 21. (a) The temperature (◦C) field from the west side of the east ridge at 13:00 on the seventh day; dashed rectangles refer to the
respective wave types. (b) The horizontal baroclinic velocity (m s−1) and (c) vertical velocity (m s−1) structures of the second-mode ISW at
x =−350 km. (d) The normal-mode profiles about vertical velocity for the first three modes using the Taylor–Goldstein equation.

600 m. The strength of baroclinic velocity with a small aver-
age of 0.2 m s−1 is distinct from the stronger first-mode ISW
packet above 200 m. Additionally, a double-peak structure
performs in the vertical velocity field, and it is distributed at
the depths of 150 and 1000 m where the strength in the deep
layer is stronger than the upper, resulting in a minor isotherm
fluctuation above 200 m. Here, the Taylor–Goldstein equa-
tion is also solved to acquire the eigenfunction of the vertical
velocity. In Fig. 21d, the second-mode eigenvalues have two
vertical peaks whose depths correspond to 150 and 1070 m,
with the latter strength stronger than the former, and the cor-
responding phase speed is about 1.34 m s−1. In summary,
first- and second-mode internal solitary waves as the leading
carriers can transfer baroclinic tidal energy from the source to
far fields until dissipating thoroughly. The multi-modal soli-
tary wave field conforms with the previous two-ridge experi-
mental result using MITgcm (Vlasenko et al., 2010). Internal
wave theoretical models can compare well with the distribu-
tion of stimulated results in our nonhydrostatic ocean model,
demonstrating an overall good performance of characterizing
the nonlinear evolution of multi-modal baroclinic tides.

4 Discussion and conclusion

The main focus of this paper is to introduce a new oceanic re-
gional nonhydrostatic circulation and tide model (ORCTM)
which is rooted from the MPI-OM and aims to character-
ize the internal solitary wave processes of real oceans, such
as in the northern South China Sea. We developed and im-
plemented the nonhydrostatic dynamics and open bound-
ary module under the original global hydrostatic frame-
work of MPI-OM. Based on the fractional step and finite-
difference methods, ORCTM involves the three-dimensional
fully nonlinear momentum equations under the Boussinesq
fluid. The three-dimensional Poisson equation subject to dif-
ferent boundary conditions needs to be solved before the
pressure correction method is employed to acquire the veloc-
ity field corrected via nonhydrostatic pressure gradient force.
In order to match the nonhydrostatic algorithm and realize
larger-amplitude ISW simulations in an ocean-scale case, an
exponential relaxation term is implemented to the control
equations through the sponge layers as the open boundary
condition.
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A series of two-dimensional ideal numerical experiments
associated with the nonlinear evolution of the internal soli-
tary waves and baroclinic tides is devised to verify this non-
hydrostatic ocean model. Here, the results of the validation
experiments are in accord with the theoretical framework of
the nonhydrostatic dynamics and demonstrate that ORCTM
can successfully characterize the generation, propagation,
and dissipation of internal solitary waves in laboratory-scale
cases. Specifically, the reverse situation due to wave shoal-
ing and deepening can be depicted completely when con-
sidering the topographic change. Meanwhile, the stimulated
internal solitary wave conforms with the previous numeri-
cal experiment and the direct observations in the laboratory
test. Also, ORCTM can capture the density fronts with the
cyclonic eddy induced by the wave breaking, which shows
good stability and high enough accuracy. Furthermore, based
on the real topographic features in the Luzon Strait of the
northern South China Sea, analyses of the validation exper-
iment indicate the multi-modal structure of baroclinic tides
in the double-ridge system. The nonhydrostatic ocean model
ORCTM is proven to be able to reproduce the life cycle of
multi-modal ISWs induced by tide–topography interactions
in the Luzon Strait and precisely capture the alternation pro-
cess of type-a and type-b internal solitary wave packets. The
first two-mode ISW structure compares well with the internal
wave theoretical model.

Even though these validation experiments have a strong re-
semblance to other nonhydrostatic model results (Bourgault
and Kelley, 2004; Berntsen et al., 2006; Lai et al., 2010),
some distinctions in grid structure or numerical methods may
have an opposite impact, especially when predicting a partic-
ular nonhydrostatic dynamics process. Berntsen et al. (2006)
indicated some noisy structures near the bottom layer due to
numerical errors of finite-volume treatment when predicting
internal solitary wave breaking via MITgcm (Marshall et al.,
1997a, b). They found that the Bergen Ocean Model (BOM)
can avoid this problem with a sigma coordinate, whereas
MITgcm needs a high-order filter to suppress the noise. How-
ever, artificial flow usually emerges and has a negative influ-
ence on ISW breaking simulations due to internal baroclinic
pressure errors in the sigma coordinate. These require model
users to have a refined grid when encountering an area of
changing topography. Compared to the nonhydrostatic un-
structured grid finite-volume coastal ocean model (FVCOM)
(Lai et al., 2010) and BOM (Berntsen et al., 2006), OR-
CTM is based on the finite-difference method and owns a
Z coordinate, which has the capability to avoid the above
errors. These numerical methods and validation experiments
demonstrate that ORCTM is able to approach or reach an ac-
ceptable or better level for a nonhydrostatic ocean model for
ISW simulation.

The simulation of internal solitary waves can mirror the
macroscopic structure and assist with the implementation of
in situ observations. It is noticed that the predictability of
nonlinear internal wave characteristics relies on the model

performance and external conditions such as realistic stratifi-
cation, bathymetry, and background circulation. Another ad-
vantage of ORCTM is the usage of an orthogonal curvilinear
mesh grid in the horizontal direction. It is competent enough
to maintain the small-scale nonhydrostatic dynamics well-
resolved in the concerned region via mesh refinement. Partic-
ularly, constructing practical and reliable background fields
via a nested technique remains the way forward for ISW sim-
ulations in the oceanic environment. Enhancing the fidelity of
ISW simulation remains challenging. Nevertheless, it can be
concluded that our regional nonhydrostatic ocean model is a
good choice for oceanography scientists interested in internal
wave research and numerical prediction.

Appendix A: Discretization algorithms of the Poisson
equation

According to the idea of fractional steps (Chorin, 1968; Press
et al., 1988), a pressure correction method on the nonhy-
drostatic dynamic component is employed to calculate the
intermediate velocity over the original hydrostatic balance
scheme (Fringer et al., 2006; Lai et al., 2010). If the flow
is close to the hydrostatic balance, the pressure of the non-
hydrostatic part will be so slight that the correction plays a
minor role. The key to the nonhydrostatic dynamics module
is to solve the Poisson equation below.

∂2p′nh

∂x2 +
∂2p′nh

∂y2 +
∂2p′nh

∂z2 =
ρc

1t

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
(A1)

The right-hand side (RHS) of Eq. (A.1) is the divergence
about the intermediate velocity as a source or sink term.
Here, based on the definition of divergence, the three com-
ponents calculated directly at each cell are specified in the
three orthogonal coordinates as follows.

∂ũ

∂x
=
ũki,j ·Auki,j − ũ

k
i−1,j ·Auki−1,j

�ki,j

(A2)

∂ṽ

∂y
=
ṽki,j−1 ·Avki,j−1− ṽ

k
i,j ·Avki,j

�ki,j

(A3)

∂w̃

∂z
=
w̃ki,j ·Awi,j − w̃k+1

i,j ·Awi,j

�ki,j

(A4)

Here, i,j, and k are the indices of increasing eastward, north-
ward, and downward along the x, y, and z axis, respectively;
z= 0 is defined on the undisturbed sea surface by means of
local Cartesian coordinates; ũ, ṽ, and w̃ are the intermedi-
ate velocity; Au, Av, and Aw represent the six faces area of
a cell in the i,j, and k directions; and � is the volume of a
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cell. These grid descriptors are defined as follows.

Auki,j = DZwki,j ·DYui,j ,

Auki−1,j = DZwki−1,j ·DYui−1,j ,

Avki,j = DZwki,j ·DYvi,j ,

Avki,j−1 = DZwki,j−1 ·DXvi,j−1j,

Awi,j = DXpi,j ·DYpi,j ,

�ki,j = DXpi,j ·DYpi,j ·DZwki,j (A5)

DX, DY, and DZ represent the spacing difference between
the adjacent grid cells in the x, y, and z axis. The suffixes as-
sociate u, v, and w at the cell face center and p′ at the body
center. Compared to the finite-difference method, the defi-
nition of the divergence of a cell is more accurate and reli-
able, especially when adjacent to the solid boundaries for the
RHS calculation. The left-hand side (LHS) of this equation
is discretized horizontally on the Arakawa-C grid (Arakawa
and Lamb, 1977) using the central difference method with
second-order accuracy. The vertical discretization is the same
as the Max Planck Institute Ocean Model (Marsland et al.,
2003), wherein the bottom grid has the capacity of the par-
tial filled cell to adjust the vertical distance for fitting into the
realistic terrain (Marshall et al., 1997b). We can acquire the
following finite-discrete equation about seven cells for non-
hydrostatic pressure perturbation as

LHS= (XW)p′
k
i−1,j + (XE)p′ki+1,j

+ (YN)p′ki,j+1+ (YS)p′ki,j−1+ (ZU)p′k−1
i,j

+ (ZD)p′k+1
i,j + (XC+YC+ZC)p′ki,j , (A6)

where the coefficients of the discretized LHS are given as
follows.

XW=
1

DXui−1,j ·DXpi,j
, XE=

1
DXui,j ·DXpi,j

YN=
1

DYvi,j−1 ·DYpi,j
, YS=

1
DYvi,j ·DYpi,j

ZU=
1

DZwki,j ·DZpki,j
, ZD=

1

DZwk+1
i,j ·DZpki,j

,

XC=−
(

1
DXui−1,j

+
1

DXui,j

)
1

DXpi,j

YC=−
(

1
DYvi,j−1

+
1

DYvi,j

)
1

DYpi,j

ZC=−

(
1

DZwk+1
i,j

+
1

DZwki,j

)
1

DZpki,j
(A7)

Invoking the boundary conditions (Eq. 29) and Eqs. (A.6)
to (A.7), the discretized Poisson equation with seven cells
can be derived with the matrix form below:

Ap′nh = B, (A8)

where A is a sparse and definite-positive matrix with seven
diagonals; p′nh and B are the column vectors with a size of
all cell numbers Nxyz=Nx×Ny×Nz in the model do-
main, whereNx,Ny, andNz are the cell numbers in the i,j,
and k directions. Actually, the sparse matrix A cannot easily
be handled directly with a size ofNxyz×Nxyz, which hence
needs to be designed with greater efficiency as a precondi-
tion. To apply the nonhydrostatic model to the real oceanic
environment on the original model base, the Portable, Exten-
sible Toolkit for Scientific Computation (PETSc) library is
implemented into the nonhydrostatic dynamic module. We
apply the numerical Krylov subspace methods for the matrix
solvers under an MPI-based framework (Balay et al., 2020).
Here, the flexible generalized minimal residual (FGMRES)
method (Saad, 1993) is applied to solve this problem in
conjunction with a multigrid preconditioner (Smith et al.,
1996) for the sparse matrix before iteration. Thus, the non-
hydrostatic pressure can be computed with these methods.
It should be emphasized that the nonhydrostatic and hydro-
static dynamics modules remain independent of each other
and not contradictory. The nonhydrostatic dynamics module
will make up for the deficiency of the hydrostatic module
only considered in this model, which means the nonhydro-
static and hydrostatic simulations can be simultaneous in this
model. In other words, the nonhydrostatic dynamics can be
fulfilled economically in harmony with the original numeri-
cal framework.

Appendix B: The Korteweg–de Vries (KdV) model in
shallow water

Based on the shallow-water approximation, a small-
amplitude internal solitary wave whose amplitude compared
with the total depth is small enough can be described by the
classical two-dimensional Korteweg–de Vries (KdV) equa-
tion given as follows (Apel et al., 2007).

∂η

∂t
+ c

∂η

∂x
+αη

∂η

∂x
+β

∂3η

∂x3 = 0 (B1)

Considering a two-fluid stratification system is more appro-
priate for the experiments in Sect. 3.1–3.3. ρ1 and ρ2 are the
upper and lower densities corresponding to the thickness h1
and h2; x is the horizontal coordinate. Several parameters
can be written here as (Benjamin, 1966; Wessels and Hutter,
1996)

α =−
3c
2

ρ1h
2
2− ρ2h

2
1

ρ1h1h
2
2+ ρ2h

2
1h2

,

β =
c

6
ρ1h

2
1h2+ ρ2h1h

2
2

ρ1h2+ ρ2h1
,

c =

√
g h1h2(ρ2− ρ1)

ρ1h2+ ρ2h1
, (B2)
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where nonlinear and dispersion parameters (α and β, respec-
tively) can represent the soliton polarity; c is the linear ve-
locity, and the solution of a solitary wave is expressed below
the interface displacement η(x, t):

η(x, t)= η0 sech2
(
x−V t

L

)
, (B3)

in which the η0 is the amplitude. The nonlinear velocity V
(also called phase velocity) and the characteristic length of
soliton L are given as

V = c+
α

3
η0, L=

√
12β
αη0

. (B4)

The dispersion parameter β is almost larger than zero for the
internal solitary waves in the ocean, but the sign for the non-
linear parameter α is relevant to the wave formation. When
α > 0, the interface displacement will show a waveform of
depression soliton. If negative, the isopycnal elevation will
appear. Therefore, the reverse situation for an internal soli-
tary wave is determined by the sign change of the nonlinear
parameter. The KdV model is suitable with weakly nonlinear
and dispersive waves, which is capable of being used to vali-
date the small-amplitude ISW results in the laboratory. Nev-
ertheless, when nonlinearity enhancement happens because
of shallower topography or stronger stratification, the modi-
fied KdV (m-KdV) model (Michallet and Barthélemy, 1998;
Grimshaw et al., 2004) can describe relatively stronger non-
linear solitons with the addition for the cubic nonlinearity
term as

∂η

∂t
+

(
c+αη−α1η

2
) ∂η
∂x
+β

∂3η

∂x3 = 0. (B5)

It is worth noting that the m-KdV equation takes the higher-
order nonlinear term into account and can degenerate into the
KdV equation when the cubic nonlinear parameter α1 = 0.
Here, the solution is given with the interface displacement
η(x, t):

η(x, t)=
η0 sech2 ( x−V t

L

)
1−µtanh2 ( x−V t

L

) , (B6)

where

hc =
h1+h2

1+
√
ρ1/ρ2

, h= h2−hc,

µ=

{
h′′/h′,h > 0
h′/h′′,h < 0

,

h′ =−h−
∣∣h+ η0

∣∣ ,

h′′ =−h+
∣∣h+ η0

∣∣ ,
V = c0 m

1−
1
2

(
h+ η0

h1+h2−hc

)2
 ,

c0 m =

{
g (h1+h2)

2
[1−

(
1−

4hc (h1+h2−hc)(ρ2− ρ1)

ρ2(h1+h2)
2

)1/2
]}1/2

,

L= 2(h1+h2−hc)

√
(h1+h2−hc)

3
+h3

c

3(h1+h2)h′h′′
. (B7)

More generally, when considering the continuously stratified
fluid, the linear velocity c refers to the long-wave velocity of
each mode for the Sturm–Liouville problem given as follows
(Apel et al., 2007):

d2W
dz2 +

N2

c2 W = 0
W = 0, z= 0
W = 0, z=−H

, (B8)

where H is the water depth, N is the buoyancy frequency,
and W is the nondimensional modal function when the non-
linear and dispersion parameters (α and β, respectively) are
obtained as

α =
3c
∫ 0
−H (dW/dz)

3dz

2
∫ 0
−H (dW/dz)

2dz
, β =

c
∫ 0
−H
W 2dz

2
∫ 0
−H (dW/dz)

2dz
. (B9)

In addition, if still considering the background current U (z),
the Taylor–Goldstein equation (Miles, 1961; Liu, 2010) can
describe the vertical modal function W when the nonlinear
and dispersion parameters are obtained under the Boussinesq
approximation expressed as (Grimshaw et al., 2002)

d2ϕ̂ (z)

dz2 +

[
N2(

U − c
)2 − U ′′(

U − c
) − k2

]
ϕ̂ (z)= 0 (B10)

α =
3
∫ 0
−H

(
c−U

)2( dW
dz

)3
dz

2
∫ 0
−H

(
c−U

)( dW
dz

)2
dz
,

β =

∫ 0
−H

(
c−U

)2
W 2dz

2
∫ 0
−H

(
c−U

)( dW
dz

)2
dz
, (B11)

where c is the n-mode linear speed, ϕ̂ (z) is the stream func-
tion, U ′′ represents the second derivative of background cur-
rents, and k is the horizontal wavenumber.
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Code and data availability. This study has been conducted
using the EU Copernicus Marine Service Information global
ocean. Specifically, the GLORYS12V1 product in CMEMS (EU
Copernicus Marine Service Information, 2022) eddy-resolving
reanalysis is extracted (GLOBAL_MULTIYEAR_PHY_001_030:
https://data.marine.copernicus.eu/product/GLOBAL_
MULTIYEAR_PHY_001_030/services, last access: 25 De-
cember 2022). The current version of the nonhydrostatic ocean
model (ORCTM v1) and the experiments with the internal
solitary wave simulations in this paper are available through
https://doi.org/10.5281/zenodo.6683597 (Huang, 2022), as are the
experiment configurations, preprocessing, and post-processing.
The PETSc library (The Portable, Extensible Toolkit for Scientific
Computation library, https://petsc.org/release/install/download/
#recommended-obtain-release-version-with-git, last access: 28
December 2022, Balay et al., 2020) needs to be installed before
building the model. Nevertheless, we also provide the PETSc
library of the version in use and the ORCTM quick manual for
users at the above link.
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