Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-6863-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-14-6863-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5)
Reinel Sospedra-Alfonso
CORRESPONDING AUTHOR
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, V8N 1V8, Canada
William J. Merryfield
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, V8N 1V8, Canada
George J. Boer
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, V8N 1V8, Canada
Viatsheslav V. Kharin
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, V8N 1V8, Canada
Woo-Sung Lee
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, V8N 1V8, Canada
Christian Seiler
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, V8N 1V8, Canada
James R. Christian
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, BC, V8N 1V8, Canada
Related authors
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
James R. Christian, Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart
Geosci. Model Dev., 15, 4393–4424, https://doi.org/10.5194/gmd-15-4393-2022, https://doi.org/10.5194/gmd-15-4393-2022, 2022
Short summary
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021, https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
Short summary
This study evaluates how well the CLASSIC land surface model reproduces the energy, water, and carbon cycle when compared against a wide range of global observations. Special attention is paid to how uncertainties in the data used to drive and evaluate the model affect model skill. Our results show the importance of incorporating uncertainties when evaluating land surface models and that failing to do so may potentially misguide future model development.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Cited articles
Adler, R. F., Huffman, G., Chang, A., Ferraro, R., Xie, P., Janowiak, J.,
Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J.,
and Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP)
Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol.,
4, 1147–1167, 2003. a
Arora, V. K.: Simulating energy and carbon fluxes over winter wheat using
coupled land surface and terrestrial ecosystem models, Agr.
Forest Meteorol., 118, 21–47, 2003. a
Arora, V. K. and Boer, G. J.: A representation of variable root distribution
in dynamic vegetation models, Earth Interact., 7, 1–19, 2003. a
Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W.: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies, Earth Syst. Sci. Data, 8, 165–176, https://doi.org/10.5194/essd-8-165-2016, 2016. a
Barlow, M., Cullen, H., and Lyon, B. R.: Drought in Central and Southwest
Asia: La Niña, the Warm Pool, and Indian Ocean Precipitation, J.
Climate, 15, 697–700, 2002. a
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42,
1–20, 1997. a
Biasutti, M.: Forced Sahel rainfall trends in the CMIP5 archive, J.
Geophys. Res.-Atmos., 118, 1613–1623, 2013. a
Biasutti, M. and Giannini, A.: Robust Sahel drying in response to late 20th
century forcings, Geophys. Res. Lett., 33, L11706, https://doi.org/10.1029/2006GL026067, 2006. a
Bishop, J. K. B., Rossow, W. B., and Dutton, E. G.: Surface solar irradiance
from the International Satellite Cloud Climatology Project 1983–1991,
J. Geophys. Res.-Atmos., 102, 6883–6910, 1997. a
Block, B. A., Jonsen, I. D., Jorgensen, S. J., Winship, A. J., Shaffer, S. A., Bograd, S. J., Hazen, E. L., Foley, D. G., Breed, G. A., Harrison, A.-L., Ganong, J. E., Swithenbank, A., Castleton, M., Dewar, H., Mate, B. R.,
Shillinger, G. L., Schaefer, K. M., Benson, S. R., Weise, M. J., Henry,
R. W., and Costa, D. P.: Tracking apex marine predator movements in a
dynamic ocean, Nature, 475, 86–90, 2011. a
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016. a, b, c, d, e, f, g
Bonfils, C. J. W., Santer, B. D., Fyfe, J. C., Marvel, K., Phillips, T. J., and Zimmerman, S. R. H.: Human influence on joint changes in temperature,
rainfall and continental aridity, Nat. Clim. Change, 10, 726–731,
https://doi.org/10.1038/s41558-020-0821-1, 2020. a
Bouillon, S., Maqueda, M. M., Legat, V., and Fichefet, T.: An
elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids,
Ocean Model., 27, 174–184, 2009. a
Carrassi, A., Guemas, V., Doblas‐Reyes, F. J., Volpi, D., and Asif, M.:
Sources of skill in near‐term climate prediction: generating initial
conditions, Clim. Dynam., 47, 3693–3712, 2016. a
Chan, F.: Ocean deoxygenation: Everyone's problem – Causes, impacts,
consequences and solutions, chap. Global and regional case studies of ocean
deoxygenation/Evidence for ocean deoxygenation and its patterns: Eastern
Boundary Upwelling Systems, IUCN, Gland, Switzerland, xxii+562 pp., 2019. a
Christian, J. R., Arora, V. K., Boer, G. J., Curry, C. L., Zahariev, K.,
Denman, K. L., Flato, G. M., Lee, W. G., Merryfield, W. J., Roulet, N. T.,
and Scinocca, J. F.: The global carbon cycle in the Canadian Earth system
model (CanESM1): Preindustrial control simulation, J. Geophys.
Res., 115, G03014, https://doi.org/10.1029/2008JG000920, 2010. a
Dee, P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, S., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani,
R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H.,
Hólm, E., Isaksen, L., Kȧllberg, P., Köhler, M., Matricardi, M.,
McNally, A., Monge-Sanz, B., Morcrette, J.-J., Park, B.-K., Peubey, C.,
de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, 2011. a, b
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E.,
Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S.,
Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from
Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020. a, b
Dirkson, A., Merryfield, W. J., and Monahan, A. H.: Impacts of sea ice
thickness initialization on seasonal Arctic sea ice predictions, J.
Climate, 30, 1001–1017, 2017. a
Doblas-Reyes, F. J., Balmaseda, M. A., Wisheimer, A., and Palmer, T. N.:
Decadal climate prediction with the European Centre for Medium-Range Weather
Forecasts coupled forecast system: Impact of ocean observations, J.
Geophys. Res., 116, 1–13, 2011. a
Dong, B. and Sutton, R.: Dominant role of greenhouse-gas forcing in the
recovery of Sahel rainfall, Nat. Clim. Change, 5, 757–760, https://doi.org/10.1038/nclimate2664, 2015. a
Dunstone, N. J., Smith, D. M., and Eade, R.: Multi‐year predictability of
the tropical Atlantic atmosphere driven by the high latitude North Atlantic
Ocean, Geophys. Res. Lett., 38, L14701, https://doi.org/10.1029/2011GL047949, 2011. a
Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., and Robinson, N.: Do seasonal to decadal climate predictions underestimate the predictability of the real world?, Geophys. Res. Lett., 41,
5620–5628, 2014. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fichefet, T. and Maqueda, M. M.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12609–12646, 1997. a
Garcia-Serrano, J., Doblas-Reyes, F. J., Haarsma, R. J., and Polo, I.: Decadal prediction of the dominant West African monsoon rainfall modes, J.
Geophys. Res., 118, 5260–5279, 2013. a
García-Serrano, J., Guemas, V., and Doblas-Reyes, F. J.: Added-value from
initialization in predictions of Atlantic multi-decadal variability, Clim.
Dynam., 44, 2539–2555, 2015. a
Goddard, G. J., Kumar, A., Solomon, A., Smith, D., Boer, G., González, P., Kharin, V., Merryfield, W., Deser, C., Mason, S. J., Kirtman, B. P., Msadek, R., Sutton, R., Hawkins, E., Fricker, T., Hegerl, G., Ferro, C. A. T., Stephenson, D. B., Meel, G. A., Stockdale, T., Burgman, R., Greene, A. M., Kushnir, Y., Newman, M., Carton, J., Fukumori, I., and Delworth, T.: A verification framework for interannual-to-decadal predictions experiments, Clim. Dynam., 40, 245–272, 2013. a, b, c, d
Gómez-Letona, M., Ramos, A. G., Coca, J., and Arístegui, J.: Trends in
Primary Production in the Canary Current Upwelling System – A Regional
Perspective Comparing Remote Sensing Models, Frontiers Marine Science, 4, 370, https://doi.org/10.3389/fmars.2017.00370,
2017. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res., 118, 6704–6716,
2013. a
Gough, C. M.: Terrestrial Primary Production: Fuel for Life, Nature Education Knowledge, 3, available at: https://www.nature.com/scitable/knowledge/library/terrestrial-primary-production-fuel-for-life-17567411/ (last access: 17 October 2021), 2011. a
Haarsma, R. J., Selten, F. M., Weber, S. L., and Kliphuis, M.: Sahel rainfall variability and response to greenhouse warming, Geophys. Res.
Letters, 32, L17702, https://doi.org/10.1029/2005GL023232, 2005. a
Haywood, J. M., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric
forcing from stratospheric aerosols impacts Sahelian rainfall, Nat.
Clim. Change, 3, 660–665, https://doi.org/10.1038/NCLIMATE1857, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R., J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a
Hua, W., Dai, A., Zhou, L., Qin, M., and Chen, H.: An externally forced
decadal rainfall seesaw pattern over the Sahel and southeast Amazon,
Geophys. Res. Lett., 46, 923–932, https://doi.org/10.1029/2018GL081406, 2019. a
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades,
validations, and intercomparisons, J. Climate, 30, 8179–8205, 2017. a
Ilyina, T., Li, H., , Spring, A., Müller, W. A., Bopp, L., Chikamoto, M. O.,
Danabasoglu, G., Dobrynin, M., Dunne, J., Fransner, F., Friedlingstein, P.,
Lee, W., Lovenduski, N. S., Merryfield, W., Mignot, J., Park, J.,
Séférian, R., Sospedra-Alfonso, R., Watanabe, M., and Yeager, S.:
Predictable variations of the carbon sinks and atmospheric CO2 growth in
a multi-model framework, Geophys. Res. Lett., 48, e2020GL090695, https://doi.org/10.1029/2020GL090695, 2020. a, b
Jackson, L. C., Dubois, C., Forget, G., Haines, K., Harrison, M., Iovino, D.,
Kohl, A., Mignac, D., Masina, S., Peterson, K. A., Piecuch, C. G., Roberts,
C. D., Robson, J., Storto, A., Toyoda, T., Valdivieso, M., Wilson, C., Wang,
Y., , and Zuo, H.: The mean state and variability of the North Atlantic
circulation: A perspective from Ocean Reanalyses, J. Geophys. Res.-Oceans, 124, 9141–9170, 2019. a, b
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019. a
Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the
Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242, 2006. a
Levitus, S., Antonov, J. I., Boyer, T. P., Garcia, H. E., and Locarnini, R. A.: EOF analysis of upper ocean heat content, 1956–2003, Geophys. Res.
Lett., 32, 1–4, 2005. a
Li, X. and Xiao, J.: Mapping Photosynthesis Solely from Solar-Induced
Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary
Production Derived from OCO-2, Remote Sens., 11, 2563, https://doi.org/10.3390/rs11212563, 2019. a
Lindzen, R. S. and Nigam, S.: On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics, J.
Atmos. Sci., 44, 2418–2436, 1987. a
Madec, G. and the NEMO team: NEMO ocean engine, version 3.4, Note du Pole de Modélisation 27, Institut Pierre-Simon Laplace, France, 367 pp., 2012. a
McKinnon, K. A., Rhines, A., Tingley, M. P., and Huybers, P.: Long-lead
predictions of eastern United States hot days from Pacific sea surface
temperatures, Nat. Geosci., 9, 389–394, 2016. a
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A., Greene, A. M., Hawkins, E., Hegerl, G., Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra, A., Pulwarty, R., Smith, D., Stammer, D., and Stockdale, T.: Decadal prediction: Can it be skillful, B. Am. Metheorol. Soc., 90, 1467–1485, 2009. a, b
Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C.,
Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A.,
Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A.,
Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton,
R., Teng, H., G. J. van Oldenborgh, G. V., and Yeager, S.: Decadal climate
prediction: An update from the trenches, B. Am. Metheorol. Soc., 95, 243–267, 2014. a
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981, 2020. a
Melton, J. R. and Arora, V. K.: Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0, Geosci. Model Dev., 9, 323–361, https://doi.org/10.5194/gmd-9-323-2016, 2016. a
Merryfield, W. J., Baehr, J., Batte, L., Becker, E. J., Butler, A. H., Coelho, C. A. S., Danabasoglu, G., Dirmeyer, P. A., Doblas-Reyes, F. J., Domeisen, D. I. V., Ferranti, L., Ilynia, T., Kumar, A., Muller, W. A., Rixen, M., Robertson, A. W., Smith, D. M., Takaya, Y., Tuma, M., Vitart, F., White, C. J., Alvarez, M. S., Ardilouze, C., Attard, H., Baggett, C., Balmaseda, M. A., Beraki, A. F., Bhattacharjee, P. S., Bilbao, R., de Andrade, F. M., DeFlorio, M. J., Diaz, L. B., Ehsan, M. A., Fragkoulidis, G., Grainger, S., Green, B. W., Hell, M. C., Infanti, J. M., Isensee, K., Kataoka, T., Kirtman, B. P., Klingaman, N. P., Lee, J.-Y., Mayer, K., McKay, R., Mecking, J. V., Miller, D. E., Neddermann, N., Ng, C. H. J., Osso, A., Pankatz, K., , Peatman, S., Pegion, K., Perlwitz, J., Recalde-Coronel, G. C., Reintges, A., Renk, C., Solaraju-Murali, B., Spring, A., Stan, C., Sun, Y. Q., Tozer, C. R., Vigaud, N., Woolnough, S., and Yeager, S.: Current and emerging developments in subseasonal to decadal prediction, B. Am. Metheorol. Soc., 101, E869–E896, https://doi.org/10.1175/BAMS-D-19-0037.1, 2020. a
Mohino, E., Rodriguez-Fonseca, B., Losada, T., Gervois, S., Janicot, S., Bader, J., Ruti, P., and Chauvin, F.: Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison, Clim. Dynam., 37,
1707–1725, 2011a. a
Mohino, E., Rodriguez-Fonseca, B., Mechoso, C. R., Gervois, S., Ruti, P., and
Chauvin, F.: Impacts of the Tropical Pacific/Indian Oceans on the Seasonal
Cycle of the West African Monsoon, J. Climate, 24, 3878–3891,
2011b. a
Monerie, P.-A., Robson, J., Dong, B., and Dunstone, N.: A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia, Clim. Dynam., 51, 473–491, 2018. a
Myhre, G., Forster, P. M., Samset, B. H., Hodnebrog, O., Sillmann, J.,
Aalbergsjo, S. G., Andrews, T., Boucher, O., Faluvegi, G., Flaschner, D.,
Iversen, T., Kasoar, M., Kharin, V. V., Kirkevag, A., Lamarque, J.-F.,
Olivie, D., Richardson, T. B., Shindell, D., Shine, K. P., Stjern, C. W.,
Takemura, T., Voulgarakis, A., and Zwiers, F.: PDRMIP: A Precipitation
Driver and Response Model Intercomparison Project – Protocol and Preliminary Results, B. Am. Metheorol. Soc., 98, 1185–1198,
2017. a
Nobre, P., Marengo, J. A., Cavalcanti, I. F. A., Obregon, G., Barros, V., and
Camilloni, I.: Seasonal-to-Decadal Predictability and Prediction of South
American Climate, J. Climate, 19, 5988–6004, 2005. a
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L., Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven, H., Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R. J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A., Tanhua, T., and Yool, A.: Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP), Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017. a
Pauly, D. and Christensen, V.: Primary production required to sustain global
fisheries, Nature, 374, 255–257, 1995. a
Rowell, D. P.: The impact of Mediterranean SSTs on the Sahelian rainfall
season, J. Climate, 16, 849–862, 2003. a
Rowell, D. P., Folland, C. K., Maskell, K., and Ward, M. N.: Variability of
summer rainfall over tropical north Africa (1906–92) Observations and
modelling, Q. J. Roy. Meteor. Soc., 121, 669–704, 1995. a
Ruprich-Robert, Y., Msadek, R., Castruccio, F., Yeager, S., Delworth, T., and
Danabasoglu, G.: Assessing the Climate Impacts of the Observed Atlantic
Multidecadal Variability Using the GFDL CM2.1 and NCAR CESM1 Global Coupled
Models, J. Climate, 30, 2785–2810, 2017a. a
Ruprich-Robert, Y., Msadek, R., Castruccio, F., Yeager, S., Delworth, T., and
Danabasoglu, G.: Assessing the climate impacts of the observed Atlantic
multidecadal variability using the GFDL CM2.1 and NCAR CESM1 Global Coupled
Models, J. Climate, 30, 2785–2809, 2017b. a
Ruprich-Robert, Y., Delworth, T., Msadek, R., Castruccio, F., Yeager, S., and
Danabasoglu, G.: Impacts of the Atlantic multidecadal variability on North
American summer climate and heat waves, J. Climate, 31, 3679–3700,
2018. a
Scaife, A. A. and Smith, S.: A signal-to-noise paradox in climate science,
npj Climate and Atmospheric Science, 1, 28, https://doi.org/10.1038/s41612-018-0038-4, 2018. a, b, c, d
Schiemann, R., Luthi, D., Vidale, P. L., and Schar, C.: The precipitation
climate of Central Asia – intercomparison of boservational and numerical
data sources in a remote semiarid region, Int. J.
Climatol., 28, 295–314, 2008. a
Sienz, F., Müller, W. A., and Pohlmann, H.: Ensemble size impact on the
decadal predictive skill assessment, Meteorol. Z., 25, 645–655, https://doi.org/10.1127/metz/2016/0670, 2016. a
Sigman, D. M. and Hain, M. P.: The Biological Productivity of the Ocean,
Nature Education, 3, available at:
https://www.nature.com/scitable/knowledge/library/the-biological-productivity-of-the-ocean-70631104/ (last access: 17 October 2021), 2012. a
Smith, D. M., Eade, R., Dunstone, N. J., Fereday, D., Murphy, J. M., Pohlmann, H., and Scaife, A. A.: Skilful climate model predictions of multi-year north Atlantic hurricane frequency, Nat. Geosci., 3, 846–849, 2010. a
Smith, D. M., Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G., DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X.: Robust skill of decadal climate predictions, npj Climate And Atmospheric Science, 13, 1–10, 2019. a, b, c, d
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P.-A., Muller, W. A., Nicoli, D., Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw, D., Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic climate far more predictable than models imply, Nature, 583, 796–800, https://doi.org/10.1038/s41586-020-2525-0, 2020. a, b, c, d
Smith, T. M., Reynolds, R., Peterson, T., and Lawrimore, J.: Improvements
NOAAs Historical Merged Land-Ocean Temp Analysis, J. Climate, 21,
2283–2296, 2008. a
Sospedra-Alfonso, R. and Boer, G. J.: Assessing the impact of initialization
on decadal prediction skill, Geophys. Res. Lett., 47, e2019GL086361, https://doi.org/10.1029/2019GL086361, 2020. a, b, c
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppA-assim, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.3556, 2019a. a
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppA-hindcast, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.3557, 2019b. a
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppC-forecast-addAgung, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3570, 2019c. a
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppC-forecast-addElChichon, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3571, 2019d. a
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppC-forecast-addPinatubo, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3572, 2019e. a
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppC-forecast-noAgung, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3573, 2019f. a
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppC-forecast-noElChichon, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3574, 2019g. a
Sospedra-Alfonso, R., Lee, W., Merryfield, W. J., Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko,
O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang,
D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for
CMIP6 DCPP dcppC-forecast-noPinatubo, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3575, 2019h. a
Strommen, K. and Palmer, T. N.: Signal and noise in regime systems: A
hypothesis on the predictaility of the North Atlantic Oscillation, Q.
J. Roy. Meteor. Soc., 145, 147–163, 2019. a
Sutton, R. T. and Dong, B.: Atlantic Ocean influence on a shift in European
climate in the 1990s, Nat. Geosci., 5, 788–792, 2012. a
Swart, N. C., Cole, J., Kharin, S., Lazare, M. S. J., Gillett, N., Anstey,
J., Arora, V., Christian, J., Hanna, S., Jiao, Y., Lee, W., Majaess, F.,
Saenko, O., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K.,
Yang, D., and Winter, B.: The Canadian Earth System Model (CanESM),
v5.0.3., Zenodo [code], https://doi.org/10.5281/zenodo.3251114, 2019a. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019b. a, b
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 CMIP historical, Earth System Grid
Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3610, 2019c. a
Taguchi, B., Schneider, N., Nonaka, M., and Sasaki, H.: Decadal Variability of Upper-Ocean Heat Content Associated with Meridional Shifts of Western
Boundary Current Extensions in the North Pacific, J. Climate, 30,
6247–6264, 2017. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 92,
485–498, 2012. a
Tietsche, S., Balmaseda, M., Zuo, H., Roberts, C., Mayer, M., and Ferranti, L.: The importance of North Atlantic Ocean transports for seasonal forecasts, Clim. Dynam., 55, 1995–2011, https://doi.org/10.1007/s00382-020-05364-6,
2020. a, b
Ting, M., Kushnir, Y., Seager, R., and Li, C.: Forced and Internal
Twentieth-Century SST Trends in the North Atlantic, J. Climate, 22,
1469–1481, 2009. a
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and
sea surface temperature data set, version 2: 1. Sea ice concentrations,
J. Geophys. Res.-Atmos., 119, 2864–2889, 2014. a
Tivy, A., Howell, S. E. L., Alt, B., McCourt, S., Chagnon, R., Crocker, G.,
Carrieres, T., and Yackel, J. J.: Trends and variability in summer sea ice
cover in the Canadian Arctic based on the Canadian Ice Service Digital
Archive, 1960–2008 and 1968–2008, J. Geophys. Res., 116, C03007, https://doi.org/10.1029/2009JC005855, 2011. a
Uppala, S. M., KAllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A. E. M., Jenne, R., amd J.‐F. Mahfouf, A. P. M., Morcrette,
J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E.,
Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, 2005. a, b
Verseghy, D. L.: The Canadian Land Surface Scheme (CLASS): Its history and
future, Atmos.-Ocean, 38, 1–13, 2000. a
Villamayor, J., Ambrizzi, T., and Mohino, E.: Influence of decadal sea surface variability on northern Brazil rainfall in CMIP5 simulations, Clim. Dynam., 51, 563–579, 2018. a
von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S.,
Plummer, D., Verseghy, D., Reader, M. C., Ma, X., Lazare, M., and Solheim,
L.: The Canadian Fourth Generation Atmospheric Global Climate Model
(CanAM4). Part I: Representation of Physical Processes, Atmos.-Ocean,
51, 4–125, 2013. a
Ward, M. N.: Diagnosis and short-lead time prediction of summer rainfall in
tropical North Africa at interannual and multidecadal timescales, J.
Climate, 11, 3167–3191, 1998. a
Wilks, D. S.: Resampling hypothesis tests for autocorrelated fields, J. Climate, 10, 65–82, 1997. a
Xue, Y., Smith, T., and Reynolds, R.: Interdecadal Changes of 30-Yr SST
Normals during 1871–2000, J. Climate, 16, 1601–1612, 2003. a
Yeager, S. G., Danabasoglu, G., Rosenbloom, N. A., Strand, W., Bates, S. C.,
Meehl, G. A., Karspeck, A. R., Lindsay, K., Long, M. C., Teng, H., and
Lovenduski, N. S.: Predicting near-term changes in the Earth system: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model, B. Am. Metheorol. Soc., 99, 1867–1886, 2018. a, b, c, d, e, f, g, h
Zahariev, K., Christian, J. R., and Denman, K. L.: Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation, Prog. Oceanogr., 77, 56–82, 2008. a
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A
global moderate resolution dataset of gross primary production of vegetation
for 2000–2016, Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165, 2017. a, b
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019. a
Short summary
CanESM5 decadal predictions that started from observed climate states represent the observed evolution of upper-ocean temperatures, surface climate, and the carbon cycle better than ones not started from observed climate states for several years into the forecast. This is due both to better representations of climate internal variability and to corrections of the model response to external forcing including changes in GHG emissions and aerosols.
CanESM5 decadal predictions that started from observed climate states represent the observed...
Special issue