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Abstract. The Canadian Earth System Model version 5
(CanESM5) developed at Environment and Climate Change
Canada’s Canadian Centre for Climate Modelling and Analy-
sis (CCCma) is participating in phase 6 of the Coupled Model
Intercomparison Project (CMIP6). A 40-member ensemble
of CanESM5 retrospective decadal forecasts (or hindcasts)
is integrated for 10 years from realistic initial states once
a year during 1961 to the present using prescribed exter-
nal forcing. The results are part of CCCma’s contribution
to the Decadal Climate Prediction Project (DCPP) compo-
nent of CMIP6. This paper evaluates CanESM5 large ensem-
ble decadal hindcasts against observational benchmarks and
against historical climate simulations initialized from pre-
industrial control run states. The focus is on the evaluation
of the potential predictability and actual skill of annual and
multi-year averages of key oceanic and atmospheric fields
at regional and global scales. The impact of initialization
on prediction skill is quantified from the hindcasts decom-
position into uninitialized and initialized components. The
dependence of potential and actual skill on ensemble size
is examined. CanESM5 decadal hindcasts skillfully predict
upper-ocean states and surface climate with a significant im-
pact from initialization that depend on climate variable, fore-
cast range, and geographic location. Deficiencies in the skill
of North Atlantic surface climate are identified and poten-
tial causes discussed. The inclusion of biogeochemical mod-
ules in CanESM5 enables the prediction of carbon cycle vari-
ables which are shown to be potentially skillful on decadal
timescales, with a strong long-lasting impact from initializa-
tion on skill in the ocean and a moderate short-lived impact
on land.

1 Introduction

The Canadian Earth System Model version 5 (CanESM5) is
the latest Canadian Centre for Climate Modelling and Anal-
ysis (CCCma) global climate model. CanESM5 has the ca-
pability to incorporate an interactive carbon cycle and was
developed to simulate historical climate change and variabil-
ity, to make centennial-scale projections of future climate,
and to produce initialized climate predictions on seasonal to
decadal timescales (Swart et al., 2019b, this issue, hereafter
S19). S19 summarizes CanESM5 components and their cou-
pling, together with the model’s ability to reproduce large-
scale features of the historical climate and its response to
external forcing. This paper examines the predictive ability
of CanESM5 on decadal timescales. CanESM5 decadal cli-
mate predictions are CCCma contribution to Component A
of the Decadal Climate Prediction Project (DCPP; Boer et al.,
2016) endorsed by phase 6 of the Coupled Model Intercom-
parison Project (CMIP6).

The aim of decadal climate predictions is to provide end
users with useful climate information, on timescales ranging
from 1 year to a decade, that improves upon the informa-
tion obtained from climate simulations that are not initial-
ized from observation-based states (Merryfield et al., 2020).
On decadal timescales, the evolution of the climate depends
on the interplay between an externally forced component
(e.g., resulting from the changes in greenhouse gas emis-
sions, aerosols, land use, solar forcing) and internally gen-
erated natural variability. The climate response to the exter-
nally forced component may be estimated from climate sim-
ulations that are not initialized from observation-based states
(henceforth referred to as “uninitialized simulations”), but
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the internally generated component of these simulations is
not expected to match observations. For decadal predictions,
climate models are initialized from observation-based states
and integrated forward for several years with prescribed ex-
ternal forcing. The expectation is that by taking advantage of
predictable slowly varying internally generated fluctuations
of the climate system, including those originating from the
ocean, climate phenomena such as multi-year atmospheric
circulation changes (Smith et al., 2010; Sutton and Dong,
2012; Monerie et al., 2018), their impact on near-surface
temperature and rainfall (Zhang and Delworth, 2006; Boer
et al., 2013; McKinnon et al., 2016; Sheen et al., 2017), and
the frequency of extreme weather events (Eade et al., 2012;
Ruprich-Robert et al., 2018) can be predicted a year or more
in advance. Furthermore, initialization affects the model re-
sponse to external forcing and can potentially correct unreal-
istic simulated trends (Sospedra-Alfonso and Boer, 2020).

For decadal predictions to be credible, they must be ac-
companied by measures of historical skill and an understand-
ing of the various processes that contribute to skill on decadal
timescales (Meehl et al., 2009). CMIP5 (Taylor et al., 2012)
provides a framework for quantifying the “added value” of
initialized climate predictions over simulations (Meehl et al.,
2009; Goddard et al., 2013) and, building upon this expe-
rience, the DCPP panel coordinated a comprehensive set of
decadal prediction experiments endorsed by CMIP6. These
include ensembles of historical initialized predictions (hind-
casts) and historical simulations as well as basic guidelines
for post-processing model output (Boer et al., 2016). Assess-
ing the added value of decadal climate predictions over cli-
mate simulations can, however, be difficult. In the presence
of a strong long-term climate response to external forcing, as
is the case for near-surface air temperature for instance, the
externally forced component carries most of the predictable
variance and can mask the contribution of relatively weaker
internal variations to the skill (Smith et al., 2019; Sospedra-
Alfonso and Boer, 2020). Underestimation of the predictable
signal can also degrade decadal forecast skill (Sienz et al.,
2016), motivating the use of large ensembles to better extract
the predictable component of the forecast (Scaife and Smith,
2018; Yeager et al., 2018; Smith et al., 2019, 2020; Deser
et al., 2020).

In this work, we assess the potential predictability and ac-
tual skill of 40-member ensemble hindcasts produced using
CanESM5. The hindcasts are initialized on 31 December of
every year during 1960 to 2019 and run for 10 years. The
potential predictability framework enables the detection of
the climate model “signal” that is common to the ensemble
of model predictions, whereas actual skill refers to the fore-
cast ability to reproduce the predictable signal of the climate
system. The initial ensemble spread is intended to represent
observational uncertainties (Merryfield et al., 2013) and to be
small compared with the amplitude of the climate signal to
be predicted. Forecast skill is compared here against clima-
tology, persistence, and uninitialized simulations. The con-

tributions to skill of initialized and uninitialized components
of the forecasts are inferred with reference to a 40-member
ensemble of uninitialized simulations spanning 1850–2014.
Both hindcasts and uninitialized simulations use the same
external forcing parameters during their overlapping period.
The dependence of potential and actual skill on ensemble
size at regional and global scales is also examined.

This paper serves to document the CanESM5 decadal
hindcasts that are the CCCma contribution to Component
A of the DCPP (Boer et al., 2016). It highlights CCCma’s
newly developed capabilities including prediction of bio-
geochemical and carbon cycle variables, as well as the use
of large ensembles to better extract the predictable com-
ponent of the forecasts. These are steps towards a more
comprehensive decadal climate prediction system at CC-
Cma, although not without new challenges and deficiencies,
some of which are examined here. The remainder of the pa-
per provides an overview of CanESM5 model components
(Sect. 2), a description of the initialization process and en-
semble generation (Sect. 3), the methodology for hindcast
evaluations (Sect. 4) together with supporting information
(Appendices A and B), and assessments of potential pre-
dictability and actual skill in the upper ocean (Sect. 5) and
the surface climate on land (Sect. 7). Section 6 addresses is-
sues of the sea surface temperature hindcasts in the subpolar
North Atlantic and Labrador Sea. The impact of ensemble
size on potential predictability and actual skill is discussed
in Sect. 8, whereas the potential for skillful predictions of
carbon cycle variables is examined in Sect. 9. Section 10 pro-
vides a summary and the conclusions. CanESM5 output data
used here, including hindcasts, assimilation runs to initial-
ize hindcasts, volcanic experiments, and historical uninitial-
ized simulations, are freely available from the Earth System
Grid Federation at https://esgf-node.llnl.gov/search/cmip6/
(last access: 13 October 2021).

2 The CanESM5 Earth system model

A detailed description of CanESM5 and its components
is given in S19 and the references therein; thus, we pro-
vide only a brief summary here. CanESM5 couples ver-
sion 5 of the Canadian Atmosphere Model (CanAM5) with
the CanNEMO ocean component adapted from the Nu-
cleus for European Modelling of the Ocean version 3.4.1
(NEMO3.4.1; Madec and the NEMO team, 2012). CanAM5
incorporates the Canadian Land Surface Scheme version
3.6.2 (CLASS3.6.2; Verseghy, 2000) and the Canadian Ter-
restrial Ecosystem Model (CTEM; Arora and Boer, 2005),
whereas CanNEMO represents ocean biogeochemistry with
the Canadian Model of Ocean Carbon (CMOC; Zahariev
et al., 2008; Christian et al., 2010). Sea ice is simulated
within the NEMO framework using version 2 of the Louvain-
la-Neuve Sea Ice Model (LIM2; Fichefet and Maqueda,
1997; Bouillon et al., 2009). CanAM5 and CanNEMO are
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coupled with CanCPL developed at CCCma to facilitate
communication between the two components.

CanAM5 is a spectral model with a T63 triangular trun-
cation and 49 hybrid vertical coordinate levels extending
from the surface to 1 hPa. Physical quantities are computed
on the linear transform grid leading to a horizontal resolu-
tion of approximately 2.8◦. Improvements of CanAM5 upon
its predecessor CanAM4 (von Salzen et al., 2013) include
the addition of 14 vertical levels in the upper troposphere
and stratosphere, upgraded treatment of radiative processes,
particularly in the parameterization of albedo for bare soil,
snow and ocean white caps, improved aerosol optical prop-
erties, better optical properties for ice clouds and polluted
liquid clouds, and a more comprehensive representation of
land surface and lake processes. CanNEMO is configured on
the ORCA1 C grid with 45 vertical levels with vertical spac-
ing ranging from about 6 m near the surface to about 250 m
in the abyssal ocean. The horizontal resolution is based on a
1◦ isotropic Mercator grid which is refined meridionally to
one-third of a degree near the Equator and includes a tripo-
lar configuration to avoid the coordinate singularity in the
Northern Hemisphere.

CanESM5 includes biogeochemistry modules to simulate
land and ocean carbon exchange with the atmosphere. For the
land surface, CLASS simulates energy, water, and momen-
tum fluxes at the land–atmosphere boundary, whereas CTEM
simulates atmosphere–land fluxes of CO2 and related ter-
restrial processes including photosynthesis, autotrophic and
heterotrophic respiration, leaf phenology, carbon allocation,
biomass turnover, and conversion of biomass to structural
attributes (Arora, 2003; Arora and Boer, 2003, 2005). This
enables CTEM to simulate gross and net primary productiv-
ity over land while tracking the carbon flow through three
living vegetation components (leaves, stem, and roots) for
nine plant functional types of prescribed fractional coverage
(Melton and Arora, 2016) and two dead carbon pools (litter
and soil). For the ocean, CMOC simulates carbon chemistry
and abiotic chemical processes (such as solubility of oxygen,
inorganic carbon, nutrients, and other passive tracers having
no feedback on biology and the simulated climate) in accor-
dance with the CMIP6 Ocean Model Intercomparison Project
(OMIP) biogeochemical protocol (OMIP-BGC; Orr et al.,
2017). The biological module of CMOC is a simple nutrient–
phytoplankton–zooplankton–detritus model, with fixed Red-
field stoichiometry, and simple parameterizations of iron lim-
itation, nitrogen fixation, and export flux of calcium carbon-
ate. Both hindcasts and uninitialized simulations examined
here, however, have prescribed atmospheric CO2 concentra-
tions, and thus ocean and land CO2, being purely diagnostic,
do not feed back onto the simulated physical climate.

3 Forcing, initialization, and ensemble generation

External forcing agents including historical anthropogenic
and natural greenhouse gases, volcanic aerosols, solar activ-
ity, and land use change are specified according to the CMIP6
protocol (Eyring et al., 2016). Emissions of sulfur dioxide
(SO2), dimethyl sulfide (DMS), black carbon, and organic
carbon aerosol are specified, whereas mineral dust and sea
salt emissions are simulated depending on local conditions.
Concentrations of oxidants are specified for simulations of
oxidation of sulfur species in clear air and in clouds. Direct
effects of all types of aerosols, and first and second indirect
effects of sulfate, are simulated. Beyond the historical pe-
riod, forcing from the Shared Socioeconomic Pathway (SSP)
2–4.5 scenario is used.

A full-field initialization method is used to provide the
initial conditions of the hindcasts. Each hindcast member
is initialized from a separate assimilation run that ingests
observation-based data from the ocean, atmosphere, and sea
ice in a coupled-model mode as detailed below. Each data-
constrained assimilation run branches off a long spinup run
used to quasi-equilibrate the physical and biogeochemical
model states by assimilating repeating 1958–1967 data. Af-
ter an 80-year spinup, one assimilation run is started ev-
ery year for 40 more spinup years to produce a 40-member
ensemble of assimilation runs that are run from 1958 until
present. The differences in assimilation run initial conditions,
combined with the insertion of only one-fourth of the atmo-
spheric analysis increment as described below, lead to assim-
ilation runs that are not identical despite of assimilating the
same observation-based data. This leads to a spread of initial
states for the hindcasts that represent observational uncer-
tainties.

For the global ocean, 3-D potential temperature and salin-
ity are nudged toward values interpolated from monthly
Ocean Reanalysis System 5 (ORAS5; Zuo et al., 2019) with
a 10 d time constant in the upper 800 m, and 1-year time con-
stant at greater depths. The 1◦ S–1◦ N band is excluded partly
to avoid disturbing strong equatorial currents below the sur-
face (Carrassi et al., 2016). Sea surface temperature is re-
laxed to daily values interpolated from weekly values of the
National Oceanic and Atmospheric Administration (NOAA)
Optimum Interpolation Sea Surface Temperature (OISST;
Banzon et al., 2016) during November 1981 to the present,
or monthly values from the NOAA’s Extended Reconstructed
Sea Surface Temperature (ERSSTv3; Xue et al., 2003; Smith
et al., 2008) during 1958 to October 1981, with a 3 d time
constant.

Sea ice concentration is relaxed to daily values interpo-
lated from monthly values of the Hadley Centre Sea Ice and
Sea Surface Temperature data set (HadISST.2; Titchner and
Rayner, 2014) merged with weekly data from digitized Cana-
dian Ice Service charts from 1958 to 2014 (Tivy et al., 2011),
and to daily values from the Canadian Meteorological Cen-
tre (CMC) analysis from 2015 to the present, with a 3 d time
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constant. Sea ice thickness is relaxed to daily interpolated
monthly values from the SMv3 statistical model of Dirkson
et al. (2017) with a 3 d time constant. Before 1981, a repeat-
ing 1979–1988 monthly climatology is used.

Atmospheric temperature, horizontal wind components,
and specific humidity are nudged toward the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) 6-
hourly ERA-Interim (Dee et al., 2011) reanalysis values dur-
ing 1979–present, or ERA40 (Uppala et al., 2005) anomalies
added to ERA-Interim climatology during 1958–1978. The
relaxation of the atmospheric variables is done with a 24 h
time constant (corresponding to inserting only one-fourth of
the analysis increment) and excludes spatial scales smaller
than about 1000 km. This results in ensemble spread that is
comparable to root mean square differences between differ-
ent atmospheric reanalyses (Merryfield et al., 2013).

The land physical and biogeochemical (BGC) variables in
the assimilation runs, which provide the initial values for the
land variables in the hindcasts, are not directly constrained
to observations but are determined by the CLASS-CTEM re-
sponse to the evolving data-constrained atmosphere of the
coupled model. Land carbon pools are spun up during the 80-
year spinup mentioned above. Similarly, oceanic BGC vari-
ables are initialized through response of CMOC to evolving
data-constrained physical ocean variables and surface atmo-
spheric forcing.

To briefly assess the effect of natural aerosols on precip-
itation, we employ the volcanic experiments prepared for
contribution to Component C3 of the DCPP (Boer et al.,
2016). These are two sets of three separate experiments, with
and without volcanic forcing. The experiments without vol-
canic forcing repeat the 1963, 1982, and 1991 hindcasts, ex-
cept that the stratospheric aerosols are specified as per the
2015 hindcasts. These experiments exclude the effects of vol-
canic aerosols on the simulated climate due to the Agung, El
Chichón, and Pinatubo events of those years, respectively.
The three experiments with volcanic forcing repeat the 2015
hindcasts with stratospheric aerosols from the 10-year period
starting in 1963, 1982, and 1991, respectively, and repre-
sent the impact of these volcanic events on different climate
states.

4 Hindcast evaluation methods

The evaluation approach and notation largely follows Boer
et al. (2013, 2019a, b) and Sospedra-Alfonso and Boer (2020,
hereafter SB20) where observations X, ensemble of hind-
casts Yk , and ensemble of uninitialized simulations Uk are
annual or multi-year mean anomalies that are functions of
time and location. The sub-index k = 1. . .mY or k = 1. . .mU
denotes ensemble member, where mY and mU represent the
ensemble size of hindcasts and uninitialized simulations, re-
spectively. The anomalies are computed relative to climato-
logical averages over a specified time period that is common

to model output and observations. For the hindcast and unini-
tialized simulation ensembles, the anomalies are represented
as

Yk =9 + yk = ψf+ψ + yk

Uk =8+ uk = φf+ uk, (1)

consisting of predictable or “signal” components (9,8)
and unpredictable or “noise” components (yk,uk). The pre-
dictable components are, in turn, comprised of externally
forced (ψf,φf) and internally generated ψ variability. Even
though the hindcasts and uninitialized simulations see the
same external forcing, their forced components are not gen-
erally the same because initialization affects both the forced
response and the internally generated variability. Unlike the
hindcasts, internal variability in the uninitialized simulations
is not constrained by initialization and is not predictable. The
predictable components are common across the ensemble,
while the unpredictable components (yk,uk) differ and av-
erage to zero over a large enough ensemble. The assump-
tion is that all variables average to zero over the time period
considered, forced components are independent of internally
generated components, and all are independent of the noise
components.

Ensemble averaging across hindcasts and uninitialized
simulations in Eq. (1), denoted here by dropping the sub-
index k, leads to the following representation of the ensemble
mean hindcast and ensemble mean simulation:

Y =9 + y = ψf+ψ + y −→ ψf+ψ

U =8+ u= φf+ u−→ φf, (2)

where here and elsewhere the arrows indicate the large en-
semble limit. The total variances σ 2

Ye
and σ 2

Ue
of the ensem-

bles of forecasts and simulations in Eq. (1), denoted with sub-
script e for “ensemble”, and the variances σ 2

Y and σ 2
U of the

ensemble means in Eq. (2), are given explicitly in Eqs. (A1)–
(A10) of Appendix A.

SB20 decompose 9 into mutually independent uninitial-
ized Yu and initialized Yi components, with

Y = Yu+Yi+ y, (3)

where the component Yu = αφf is ascribed to uninitial-
ized external forcing, while the initialized component Yi =

(ψf−αφf)+ψ includes the effect of initialization on both
the forced component and the unforced internally generated
component. Here α is the regression coefficient of ψf and
φf, which is set to zero when the covariance of ψf and φf
is negative (Eq. 18; SB20). The potentially predictable vari-
ance fraction (ppvf, Boer et al., 2013, 2019a, b) of the hind-
cast ensemble and that of the ensemble mean hindcast are,
respectively,
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qe =
σ 2
9

σ 2
Ye

=
σ 2
Yu
+ σ 2

Yi

σ 2
Ye

= qeu + qei (4)

q =
σ 2
9

σ 2
Y

=
σ 2
9

σ 2
9 + σ

2
ye
/mY
=

1
1+ γY /mY

=
σ 2
Yu
+ σ 2

Yi

σ 2
Y

= qu+ qi −→ 1, (5)

where q depends on ensemble size, and both q and qe are
less than 1. Here, γY = σ 2

ye
/σ 2
9 is the noise-to-predictable-

variance ratio of the hindcast ensemble, Eq. (A12). The ppvf
of the simulations is defined in a similar manner. The ppvf
variables qe and q represent, respectively, the fractions of
total and ensemble mean forecast variances that are poten-
tially predictable. “Potential predictability” refers here to
predictability within the “model world”, i.e., to predictabil-
ity of a signal that is expected to represent variations of
the observed climate system but which may be unrealistic
due to model and/or initialization errors. A potentially pre-
dictable signal is necessary but not sufficient for actual skill.
The uninitialized and initialized contributions to q, denoted
qu and qi, respectively, are computed explicitly according to
Eqs. (A14)–(A15) in Appendix A.

Following SB20, the correlation skill (or anomaly correla-
tion coefficient) rXY of the ensemble mean hindcast can be
decomposed as

rXY = rXYu

σYu

σY
+ rXYi

σYi

σY
= ru+ ri, (6)

where rXYu and rXYi are the correlation skills of the uninitial-
ized and initialized components Yu and Yi themselves, while
ru and ri are the contributions to the overall correlation skill
obtained by scaling with the fractions

√
qu and

√
qi repre-

senting the variances involved. This decomposition allows
the assessment of the impact of initialization on correlation
skill and explicitly accounts for the effects of initialization on
the model response to external forcing, through ri, and by ex-
cluding the comparatively strong contribution to variability
by the trends, through rXYi , which can obscure predictable
internal variations. The latter avoids having to linearly de-
trend the data, which is frequently done and can introduce
errors (SB20). The explicit computations of rXYu and rXYi ,
as well as ru and ri, can be found in SB20 and are given in
Eqs. (A16)–(A19) of Appendix A for completeness.

The potential correlation skill of the hindcasts is (Boer
et al., 2013, 2019a, b)

ρ =
σ 2
9

σYeσY
=
√
βq −→

√
qe, (7)

where β = σ 2
Y /σ

2
Ye
< 1. The squared potential skill gives the

fraction of the ensemble total variance that is represented or
“explained” by the ensemble mean hindcast, which in the
large ensemble limit is the ppvf qe. The connection between

the potential and actual correlation skill has been discussed
by Eade et al. (2014), Smith et al. (2019), and Strommen and
Palmer (2019) in terms of a ratio of predictable components:

5r =
rXY
√
β
=
rXY

ρ

ρ
√
β
=
rXY

ρ
q

−→
rXY
√
qe
= rXY

√
1+ γY . (8)

A similar quantity can be defined for the simulations. Assum-
ing rXY > 0, if rXY /

√
β > 1, then rXY > ρ, since q < 1, and

the actual correlation skill exceeds potential skill (Boer et al.,
2019b); i.e., the model is more skillful at predicting the ob-
servations than its own behavior. In the large ensemble limit,
this is possible only if the noise-to-predictable-variance ra-
tio γY is large enough to offset the correlation skill of the
ensemble mean prediction and can occur when the forecast
predictable variance is much smaller than the observed vari-
ance. Such behavior is referred to as signal-to-noise paradox
by Scaife and Smith (2018).

Evaluations of hindcasts actual skill also include compu-
tations of the mean square skill score (MSSS):

MSSS(Y,R,X)= 1−
MSE(Y,X)
MSE(R,X)

, (9)

where MSE(Y,X) and MSE(R,X) are the mean square er-
rors of, respectively, hindcasts and reference predictions rel-
ative to observations (Goddard et al., 2013; Yeager et al.,
2018). The reference predictions used here are the climatol-
ogy of the observed anomalies X = 0, persistence Xp, and
the uninitialized simulations, U . For evaluations of N -year
mean hindcasts, we use observed N -year rolling averages
over the forecast initialization years. Persistence equals the
most recent observed N -year average at the time of fore-
cast initialization, and the uninitialized simulations are the
N -year rolling averages of the ensemble mean historical sim-
ulations. We evaluate N -year averages of annual or sea-
sonal mean anomalies including N = 1 for the second year
of the hindcast (Year 2) and N = 4 for hindcast years 2 to
5 (Year 2–5) and 6–9 (Year 6–9) corresponding to forecast
ranges beyond seasonal lead times. Anomalies are taken rel-
ative to identically sampled climatologies and predictions are
bias corrected (but not trend corrected) following the rec-
ommendations of Boer et al. (2016). Annual averages are
taken from January to December and seasonal averages are
as specified in each case. Because hindcast initialization is
done in late December, winter average (DJF) predictions of,
say, Year 2 correspond to December of Year 1 hindcasts and
January and February of Year 2.

Statistical significance is evaluated using a non-parametric
moving-block bootstrap approach (Goddard et al., 2013;
Wilks, 1997) to generate the skill score’s sampling distri-
bution based on 1000 repetitions. For every grid cell, skill
scores are generated by resampling the data, with replace-
ment, along the time dimension, and along the ensemble
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members’ dimension for hindcasts and simulations. Follow-
ing Goddard et al. (2013), resampling of 5-year blocks is
considered to account for temporal autocorrelation. The 5 %
and 95 % quantile estimates of the bootstrapping distribution
of the skill scores determine the 90 % confidence interval. If
the confidence interval does not include zero, the skill score
is deemed statistically significant with 90 % confidence and
the associated grid cell is cross-hatched in the maps. Fisher’s
Z transformation is applied to correlation skill scores before
computing confidence intervals and its inverse is applied to
the resulting quantiles.

5 Predictability and skill in the upper ocean

The time evolution of the upper-ocean heat content (OHC) is
modulated by a wide range of low-frequency variability rang-
ing from decadal and multidecadal to centennial or longer
timescales (Levitus et al., 2005; Taguchi et al., 2017). The
ocean’s lagged response to atmospheric thermal and dynam-
ical forcing is due to the high specific heat capacity of water,
which makes the upper ocean a major source of surface cli-
mate predictability on seasonal to decadal timescales (e.g.,
Smith et al., 2007; Meehl et al., 2014; Yeager and Robson,
2017). The top panels of Fig. 1 show the ppvf qe, Eq. (4),
of heat content in the upper 300 m of the ocean (OHC300)
for forecast years 2, 2–5 and 6–9. For Year 2, qe > 0.7 in
most of the global ocean, implying that the OHC300 pre-
dictable variance accounts for more than 70 % of the total
variance. This contrasts with sectors of the tropical Pacific,
the Indo-Pacific warm pool, and in some coastal regions,
where it can be lower than 30 % (Fig. 1a). The relatively
lower predictability and small effect of initialization in equa-
torial regions (Fig. 1a, d) may be partly associated with the
3-D ocean initialization procedure that excludes the 1◦ S–
1◦ N band (Sect. 3) and with the fast wave processes at the
Equator. By contrast, initialization has a strong impact on
qe in vast extratropical regions (Fig. 1d). For multi-year av-
erages, regions of lower qe extend to the subtropics and to
higher latitudes in the North Pacific, particularly for larger
lead times (Fig. 1b, c). The impact of forecast initialization
is widespread for Year 2–5 (Fig. 1e) but is much reduced for
Year 6–9 (Fig. 1f) when most potentially predictable variance
(Fig. 1c) is attributed to the simulated external forcing. A few
notable exceptions showing a persistently high initialized po-
tentially predictable variance include the North Atlantic, the
Arctic, and sectors of the Southern Ocean.

Some of the predictable variance contributes to skill, but
some may reflect model biases and/or initialization errors.
The correlation skill rXY of OHC300 hindcasts and the con-
tribution ri from initialization are shown in the upper and
lower panels of Fig. 2, respectively. For Year 2, correlation
skill is significant over large portions of the global ocean
(Fig. 2a) and is reduced in some extratropical regions includ-
ing sectors of the eastern Pacific, the Arctic and Southern

oceans, the Alaskan and western subarctic gyres, and in sec-
tors of the North Atlantic, most notably the western subpolar
region (WSPNA) and the Labrador Sea. The negative skill
in the WSPNA region is attributed to initialization (Fig. 2d)
and is partly a consequence of erroneous trends in ORAS5
reanalysis (Johnson et al., 2019) being imprinted on the hind-
casts. The poor skill in the WSPNA and plausible causes
are discussed further in Sect. 6 below. Positive contributions
from initialization can be seen in large sectors of the Pacific
and Indian ocean basins for Year 2, whereas correlation skill
in the Atlantic results mostly from uninitialized external forc-
ing (Fig. 2a, d). For multi-year averages (Fig. 2b, c), the ge-
ographic extent of positive correlation skill is somewhat re-
duced relative to Year 2, most notably over the equatorial
Pacific and in the Indian basin at longer leads, and tends to
increase in magnitude over regions where skill is attributed
to the simulated external forcing.

Sea surface temperature (SST) hindcasts for Year 2, 2–5,
and 6–9 (Fig. 3a–c) show ppvf qe > 0.4 in most of the global
ocean, with larger values for the multi-year averages. For
Year 2, notable contributions from initialization qei > 0.3 are
seen in the western equatorial Pacific, which are not present
for the multi-year averages. The predictable SST signal is
strongest in the Arctic, in sectors of the Southern Ocean, and
in the WSPNA and Labrador Sea regions, resulting entirely
from initialization (Fig. 3d–f). These locations are character-
ized by unrealistic negative trends in the ORAS5 reanalysis
(Fig. 4b) that are imprinted in the hindcasts (Fig. 4d) and con-
tribute to the predictable variance attributed to initialization
(Fig. 3d–f). On interannual timescales, qe and qei are gen-
erally smaller for SST than OHC300 (Fig. 1a–c), as SST is
more directly affected by atmospheric conditions. On multi-
year timescales and longer lead times, qe can be larger for
SST (Fig. 3c) than OHC300 (Fig. 1c), as the simulated forced
component becomes dominant, which strongly impacts SST
trends (Fig. 4c).

SST hindcasts show a reasonably widespread correlation
skill (Fig. 5a–c). A large fraction of SST correlation skill is
attributable to the uninitialized external forcing, but signifi-
cant contributions ri from initialization are seen in all ocean
basins for Year 2 (Fig. 5d) and in sectors of the Pacific and
Southern Ocean for the multi-year averages (Fig. 5e–f). The
large contribution to skill by the uninitialized component is
derived partly from temperature trends that account for a
larger variance fraction than that of the initialized component
(Fig. 3), which is itself skillful as per rXYi (Fig. 5g–i). This
shows that despite the significant correlation skill rXYi of the
initialized component Yi, the associated small variance frac-
tion qei (Fig. 3) reduces the contribution ri =

√
qirXYi (Eqs. 5

and 6) of the initialized component to correlation skill. The
apparent skill re-emergence of the initialized component in
the eastern Pacific for Year 6–9 is noteworthy (Fig. 5i).

MSSS of SST hindcasts relative to observed climatol-
ogy (Fig. 6a–c) indicates significant skill in large sectors of
the North Atlantic, in the Indian Ocean, and in the west-
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Figure 1. Potential predictability of CanESM5 hindcasts of annual and multi-year mean heat content above 300 m. (a–c) Potentially pre-
dictable variance fraction qe = σ

2
9/σ

2
Ye

, Eq. (4), and (d–f) the portion qei = σ
2
Yi
/σ 2
Ye

attributed to initialization for forecast (a, d) Year 2,
(b, e) Year 2–5, and (c, f) Year 6–9.

Figure 2. Skill of CanESM5 hindcasts of annual and multi-year mean heat content above 300 m. (a–c) Correlation skill rXY , Eq. (6), and
(d–f) contribution from initialization ri to correlation skill, Eq. (A17), for forecast (a, d) Year 2, (b, e) Year 2–5, and (c, f) Year 6–9. The
verifying observations are derived from the EN4.2.1 data set (Appendix B). Cross-hatched regions indicate values significantly different from
zero at the 90 % confidence level.

ern Pacific extending into the southeast extratropics. MSSS
is a more stringent measure than correlation skill, and re-
gions with significant correlation skill but near-zero or neg-
ative MSSS indicate a misrepresentation of the observed
variance for the given linear relationship between predic-
tions and observations (i.e., due to a conditional bias). This
is the case for various extratropical regions and sectors of
the tropical Pacific (compare Figs. 5a–c and 6a–c). Regions
with MSSS� 0 indicate a disproportionally large predicted
variance relative to observations, such as in WSPNA and
Labrador Sea, the Arctic, and the Southern Ocean (Fig. 6a–
c). These regions are characterized by high qe (Fig. 3a–c)
with a strong impact from initialization (Fig. 3d–f) but lack
actual skill (Figs. 5a–c and 6a–c). For Year 2, SST hind-
casts outperform persistence in most of the tropics (Fig. 6d),

except for sectors of the subequatorial and western Pacific,
and the western South Atlantic. For the multi-year averages
(Fig. 6e, f), SST hindcasts beat persistence in large sectors
of the Atlantic and Indian oceans, and in most western and
southern portions of the Pacific within the 40◦ S–40◦ N lat-
itude band. The hindcasts outperform the uninitialized sim-
ulations, particularly for multi-year averages (Fig. 6h, i), in
vast subequatorial regions, in the Indian Ocean, and in north-
ern and subpolar regions, but underperform in sectors of the
Southern Ocean, the eastern and southern Atlantic, and in the
WSPNA and Labrador Sea regions.
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Figure 3. Potential predictability of CanESM5 annual mean sea surface temperature hindcasts. (a–c) Potentially predictable variance frac-
tion qe = σ

2
9/σ

2
Ye

, Eq. (4), and (d–f) the portion qei = σ
2
Yi
/σ 2
Ye

attributed to initialization for forecast (a, d) Year 2, (b, e) Year 2–5, and
(c, f) Year 6–9.

Figure 4. Linear trends of annual mean sea surface temperature
for (a) observations, (b) ORAS5, (c) uninitialized simulations,
and (d) Year 2 hindcasts. The verifying observations are from the
ERSSTv5 data set (Appendix B).

6 Erroneous SST hindcasts in the WSPNA and
Labrador sea regions

The negative correlation skill in the WSPNA and Labrador
Sea for both upper-ocean heat content (Fig. 2) and SST
(Fig. 5) is fully attributed to initialization (i.e., rXY = ri),
indicating a mismatch between the external forced response
in the hindcasts and uninitialized simulations (SB20), which
can be different, as implied by Eq. (1). CanESM5 ocean is
initialized with ORAS5 (Sect. 3), which has unrealistic tem-
perature and salinity trends in the upper subpolar North At-
lantic associated with erroneous water mass and heat trans-
port before the 2000s (Jackson et al., 2019; Tietsche et al.,

2020). The Labrador Sea in ORAS5 presents large changes
in density anomaly, most notably in deep waters (1500–
1900 m), which decrease abruptly from the late 1990s to the
early 2000s, leading also to unobserved trends (Fig. 9 of
Jackson et al., 2019). These variations and unrealistic trends
are imprinted on CanESM5 assimilation runs as they are
nudged toward ORAS5 temperature and salinity fields to ini-
tialize the hindcasts (Sect. 3). The anomalous heat and saline
surface water transport into WSPNA is largely compensated
in ORAS5 by a strong surface cooling provided by relaxation
to observed SST (Tietsche et al., 2020), but such a cooling is
not present in the forecasts, which leads to imbalances. This,
combined with the model inherent biases in the region (S19)
and resulting forecast drift, yields unrealistic decadal varia-
tions and long-term trends in the hindcasts themselves, which
affect skill.

Figure 7a shows January–February–March (JFM) time se-
ries and linear trends of SST averages over WSPNA (40–
60◦ N, 50–30◦W) for ERSSTv5 as verifying observations,
ORAS5, and CanESM5 assimilation runs, Year 1 and Year 2
hindcasts, and the uninitialized simulations. Analogous plots
for averages over the Labrador Sea (55–65◦ N, 60–45◦W)
are shown in Fig. 8. In WSPNA, ORAS5 is warmer than ob-
servations during the mid-1970s to about the 2000s, as is the
case for the assimilation runs. Year 1 hindcasts remain close
to initial SST for most years, although they are somewhat
colder during the late 1990s and onward. Year 2 SST hind-
casts, on the other hand, have a strong warming in the early
1970s and remain 2–3 ◦C warmer than observations until the
late 1990s, when a steep cooling occurs to below observed
values until the early 2000s. These changes yield a nega-
tive trend for Year 2 hindcasts (−0.02 ◦C per decade) that
does not match the slight warming trend from observations
(0.01 ◦C per decade). By comparison, ORAS5 and the as-
similation runs have virtually no trend, with values of 0.002
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Figure 5. Skill of CanESM5 annual and multi-year mean sea surface temperature forecasts. (a–c) Correlation skill rXY , Eq. (6), (d–f) con-
tribution from initialization ri to correlation skill, Eq. (A17), and (g–i) correlation skill of the initialized component of the forecast rXYi ,
Eq. (A19), for forecast (a, d, g) Year 2, (b, e, h) Year 2–5, and (c, f, i) Year 6–9. The verifying observations are from the ERSSTv5 data set
(Appendix B). Cross-hatched regions indicate values significantly different from zero at the 90 % confidence level.

Figure 6. Skill of CanESM5 annual and multi-year mean sea surface temperature hindcasts. MSSS of (a, d, g) Year 2, (b, e, h) Year 2–5, and
(c, f, i) Year 6–9 hindcasts, Y , relative to (a–c) observed climatology, X, (d–f) persistence forecast, Xp, and (g–i) uninitialized simulations,
U . The verifying observations are from the ERSSTv5 data set (Appendix B). Cross-hatched regions indicate values significantly different
from zero at the 90 % confidence level.
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Figure 7. JFM time series of (a) SST and (b–f) SST anomalies corresponding to (black) ERSSTv5, (cyan) ORAS5, and CanESM5 (green)
assimilation runs, (purple) Year 1 and (blue) Year 2 hindcasts, and (red) uninitialized simulations, averaged over the WSPNA region (40–
60◦ N, 50–30◦W). Boxes and whiskers indicate the minimum, maximum, 25th and 75th percentiles of the 40-member CanESM5 ensemble
of forecasts and simulations, and the first 10-member ensemble for the assimilation runs. Model values in (a) correspond to ensemble means
and dashed lines represent linear trends. Trends are not removed from the anomalies in (b)–(f).

and 0.004 ◦C per decade, respectively. For longer lead times,
the hindcasts drift toward simulations (not shown), which are
characterized by a strong cold bias (−3.65 ◦C) and a warm-
ing trend (0.03 ◦C per decade) described in some detail in
S19 (see Figs. 15a, b and 26 of S19).

JFM time series of SST anomalies averaged over WSPNA
are shown in Fig. 7b–f. The observed anomalies present dis-
tinctive decadal variations, with warm phases before 1970
and from the late 1990s until about 2010, and a cold phase
between 1970 and the early 1990s. These decadal varia-
tions are modestly represented by ORAS5 (r = 0.77 and
RMSE= 0.28 ◦C, Fig. 7b), which has weaker and out-of-
phase anomalies, and are better represented by the assimi-
lation runs (r = 0.94 and RMSE= 0.16 ◦C for the ensem-
ble mean, Fig. 7c). Year 1 hindcasts perform modestly (r =
0.43 and RMSE= 0.42 ◦C, Fig. 7d), and Year 2 hindcasts
poorly, showing strong decadal variations that are mostly out
of phase with observations (r =−0.6 and RMSE= 1.04 ◦C,
Fig. 7e). The anomalies of the simulations, which are char-
acterized by a warming trend, are not expected to match the
internally generated variability of the observed anomalies
(r = 0.42 and RMSE= 0.46 ◦C, Fig. 7f), although the latter
are mostly contained within the ensemble spread. Analogous

plots for the Labrador Sea (Fig. 8b–f) show disagreement
also between ORAS5 and observed JFM SST anomalies, as
well as for the assimilation runs, which are imprinted in the
forecasts leading to unrealistic strong and out-of-phase varia-
tions for Year 2. The simulation ensemble presents anomalies
above −0.2 ◦C during the whole time period which are vir-
tually unchanged in the mean at subzero temperatures prior
to the year 2000 as a result of excessive sea ice (S19). The
poor skill in WSPNA and the Labrador Sea are likely to im-
pact predictions of surface climate over North America and
Europe (Eade et al., 2012; Ruprich-Robert et al., 2017a), and
west Africa and the Sahel (Martin and Thorncroft, 2014b;
García-Serrano et al., 2015). Predictability of the tropical
Atlantic (Dunstone et al., 2011), ocean heat content in the
Nordic Seas, and decadal Arctic winter sea ice trends (Yea-
ger and Robson, 2017) could also be affected.

7 Predictability and skill of surface climate on land

One of the main motivations for decadal climate prediction is
the understanding that low-frequency variations in the upper-
ocean heat content can influence surface climate by inducing
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Figure 8. As in Fig. 7 for the Labrador Sea (55–65◦ N, 60–45◦W).

atmospheric circulation changes both locally and remotely
(Zhang and Delworth, 2006; Ruprich-Robert et al., 2017b).
The expectation is that ocean model initialization will al-
low skillful surface climate prediction from seasons to years
(Smith et al., 2007; Doblas-Reyes et al., 2011). Assessing
the influence of model initialization on forecast skill can be
challenging however (Smith et al., 2019), particularly in the
presence of strong secular trends that can hinder the detection
of internally generated predictable variations. Meehl et al.
(2020) report that CanESM5 has equilibrium climate sensi-
tivity (ECS) and transient climate response (TCR) at or near
the top of the range among the Earth system models partici-
pating in CMIP6, with ECS= 5.6 K in the 1.8 to 5.6 K range,
and TCR= 2.7 K in the 1.3 to 3.0 K range. CanESM5 also
exhibits a strong historical warming trend (Figs. 25a and 26,
S19), which leads to global temperatures changes exceed-
ing those observed toward the end of the historical period,
especially over the Arctic and on land regions. Therefore,
improvement of forecast skill in CanESM5 SAT predictions
over land can be expected due to the impact of initialization
not only on internally generated variability but also on cor-
rections to this excessive warming trend.

Figure 9a–c show qe of annual mean near-surface air tem-
perature (SAT) on land for Year 2, Year 2–5, and Year 6–
9 hindcasts. For Year 2, the ppvf is generally largest in the
tropics (qe > 0.4), where atmospheric circulation is most

strongly influenced by SST (Lindzen and Nigam, 1987;
Smith et al., 2012). Tropical regions are impacted by ini-
tialization (qei > 0.1), most notably in the Amazon, where
qei ≈ 0.2 to 0.4 (Fig. 9d). Extratropical regions are character-
ized by a relatively higher atmospheric noise, thus displaying
reduced ppvf (qe < 0.4) and little contribution from initial-
ization. For multi-year averages, the noise component is re-
duced considerably, leading to a relatively high ppvf (Fig. 9b,
c), particularly in regions were the warming trend is domi-
nant (Fig. 10). The impact of initialization is also reduced,
with typically qei < 0.1 (Fig. 9e, f).

SB20 show that annual and multi-year averages of
CanESM5 SAT hindcasts have significant correlation skill
over most land regions due to the strong temperature re-
sponse to external forcing, with a modest contribution from
initialization. In terms of MSSS, SAT hindcasts on land are
more skillful than observed climatology (MSSS> 0) in the
tropics and in regions near large water masses (Fig. 11a–c),
mirroring the behavior of qe in Fig. 9a–c. Skill is highest for
multi-year averages, where significant MSSS values are also
seen inland (Fig. 11b, c). Notably, MSSS< 0 in the Amazon
in spite of positive correlation skill (Fig. 3 of SB20), indi-
cating an excessive variance in the hindcasts possibly due to
unrealistic trends (Fig. 10). The hindcasts outperform per-
sistence in the extratropics but underperform in the tropics
most notably in Year 2 (Fig. 11d), primarily over regions of
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Figure 9. Potential predictability of CanESM5 annual and multi-year mean near-surface air temperature hindcasts. (a–c) Potentially pre-
dictable variance fraction qe = σ

2
9/σ

2
Ye

, Eq. (4), and (d–f) the portion qei = σ
2
Yi
/σ 2
Ye

attributed to initialization for forecast (a, d) Year 2,
(b, e) Year 2–5, and (c, f) Year 6–9.

Figure 10. Decadal trends of annual mean near-surface air tempera-
ture for (a) observations, (b) Year 2 and (d) Year 2–5 hindcasts, and
(c) uninitialized simulations. The verifying observations are from
the ERA-40 and ERA-Interim data sets (Appendix B).

unrealistic trends (Fig. 10). By contrast, the hindcasts outper-
form simulations in the tropics (Fig. 11g) where initialization
contributes to ppvf (Fig. 9d) and correlation skill (Fig. 3e of
SB20), except for central Africa and the Sahel. For multi-
year averages, the hindcasts outperform simulations in most
regions (Fig. 11h, i), despite little impact from initialization
to correlation skill (Fig. 3f of SB20), suggesting that the
improvements are likely due to reductions of the simulated
trends (Fig. 10).

The upper panels of Fig. 12 show qe of annual mean
precipitation hindcasts for Year 2, Year 2–5, and Year 6–
9. For Year 2, qe > 0.1 is confined to tropical and subtrop-
ical regions, with slightly higher values in the Amazon basin

(0.2< qe < 0.3). The precipitation signal extends to higher
latitudes and is relatively stronger for multi-year averages.
The largest ppvf values are seen in the Sahel for longer lead
times (qe > 0.5 for Year 6–9 in some locations) as the exter-
nally forced component becomes dominant. Generally, most
of the hindcast precipitation signal with qe > 0.1 is externally
forced. The largest contributions of initialization to ppvf are
seen in northeastern Brazil, central southwestern Asia, and
southern Australia for Year 2 hindcasts (0.1< qe < 0.2), and
qei < 0.1 elsewhere (Fig. 12d–f). The negative values of qei

seen in the plots are the result of a negligible impact from
initialization and sampling errors. Sources of the predictable
signal and prediction skill in northeastern Brazil, central
southwestern Asia, and the Sahel are discussed in Sect. 8.

The correlation skill of the annual mean precipitation hind-
casts (Fig. 13a–c) partly mirrors the patterns of Fig. 12a–c
but can be significant also in regions of low ppvf. Correla-
tion skill tends to increase both in magnitude and geographic
extent for multi-year averages (Fig. 13b, c). A large com-
ponent of skill is attributed to the uninitialized forced com-
ponent, as can be inferred from Fig. 13d–f. Known sources
of externally forced decadal precipitation variability include
drivers of climate change such as CO2 and anthropogenic
SO2, which can alter the energy budget due to changes in the
atmospheric composition, leading to climate feedback pro-
cesses that affect precipitation (Myhre et al., 2017). Another
major source is volcanic aerosols, which are injected into
the stratosphere during a volcanic eruption and can reduce
global mean temperature leading to a drier atmosphere and
reduced precipitation 2 to 3 years after an event (Smith et al.,
2012). This is shown in Fig. 14 by the difference of mean
precipitation from hindcasts with and without volcanic forc-
ing following three major volcanic events (Agung, 1963; El
Chichón, 1982; and Pinatubo, 1991). The setup of these vol-
canic experiments is briefly described in Sect. 3 and follows
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Figure 11. Skill of CanESM5 annual and multi-year mean near-surface air temperature hindcasts. MSSS of (a, d, g) Year 2, (b, e, h) Year 2–
5, and (c, f, i) Year 6–9 hindcasts, Y , relative to (a–c) observed climatology, X, (d–f) persistence forecast, Xp, and (g–i) uninitialized
simulations, U . The verifying observations are from the ERA-40 and ERA-Interim data sets (Appendix B). Cross-hatched regions indicate
values significantly different from zero at the 90 % confidence level.

Figure 12. Potential predictability of CanESM5 annual and multi-year precipitation hindcasts. (a–c) Potentially predictable variance frac-
tion qe = σ

2
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, Eq. (4), and (d–f) the portion qei = σ
2
Yi
/σ 2
Ye

attributed to initialization for forecast (a, d) Year 2, (b, e) Year 2–5, and
(c, f) Year 6–9.

the recommendations of Boer et al. (2016) as part of Compo-
nent C of the DCPP. The difference in mean precipitation is
significant over various land regions and most notably in the
Maritime Continent. Precipitation hindcasts over this region
have significant correlation skill (Fig. 13a–c) not fully asso-
ciated with initialization (Fig. 13d–f); thus, volcanic forcing
could be a contributing factor. Contributions from initializa-
tion to correlation skill are significant in a few regions includ-

ing northeastern Brazil, western North America, and central
southwestern Asia for Year 2 and Year 2–5 (Fig. 13d, e), and
are much reduced for Year 6–9 (Fig. 13f).

8 Skill dependence on ensemble size

Large single- and multi-model ensembles of initialized and
uninitialized predictions have become essential tools in the
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Figure 13. Skill of CanESM5 annual and multi-year mean precipitation hindcasts. (a–c) Correlation skill rXY , Eq. (6), and (d–f) contribution
from initialization ri to correlation skill, Eq. (A17), for forecast (a, d) Year 2, (b, e) Year 2–5, and (c, f) Year 6–9. The verifying observations
are from the GPCP2.3 data set (Appendix B). Cross-hatched regions indicate values significantly different from zero at the 90 % confidence
level.

Figure 14. The impact of volcanic aerosols on mean precipitation forecasts. Difference of (a) summer (July–August–September), (b) winter
(December–January–February), and (c) annual mean Year 2–4 precipitation forecasts with and without volcanic eruptions. Computations
include 10-member ensembles of forecasts with and without eruptions of Mount Agung, El Chichón, and Mount Pinatubo as per the DCPP
Component C volcanic experiment setup (Boer et al., 2016). Cross-hatched regions indicate values significantly different from zero at the
90 % confidence level.

study of decadal climate predictions due in part to the con-
siderable noise reduction that can be achieved by ensem-
ble averaging (Yeager et al., 2018; Deser et al., 2020; Smith
et al., 2020). Generally, the ensemble size required to extract
predictable signals varies among climatic variables and may
depend on forecast range, in the case of initialized predic-
tions, and on geographic location. The tendency for models
to underestimate predictable signals (Scaife and Smith, 2018;
Smith et al., 2020) reinforces the need for large ensembles.

Figure 15 shows the noise-to-predictable-variance ratio
γY , Eq. (A12), and γU , Eq. (A13), of annual and multi-year
mean terrestrial precipitation for the 40-member ensembles
of hindcasts and uninitialized simulations. The global land
averages of γY and γU as a function of ensemble size sta-
bilize for &10 members (not shown), suggesting that the
patterns of Fig. 15 are largely robust under changes in en-
semble samples and sizes. In terms of q = σ 2

9/σ
2
Y , the en-

semble size required for q > q0 is, according to Eq. (5),
mY > γY q0(1− q0)

−1, so q > q0 = 0.9 requires mY > 9γY .

Therefore, all regions in Fig. 15a, b with, say, γY > 5 require
mY > 45 members to satisfy q > 0.9, i.e., over 45 members
are needed for the variance of the ensemble mean hindcast to
be at least 90 % predictable. Most regions in Fig. 15a, b have
γY > 5, suggesting a benefit of large ensembles. A few ex-
ceptions include the Amazon basin for interannual variations
(Fig. 15a) and the Sahel for multi-year variations (Fig. 15b),
which are both characterized by relatively strong precipita-
tion signals. A similar analysis can be made for the uninitial-
ized simulations.

To illustrate forecast skill dependence on ensemble size,
precipitation predictions over northeastern Brazil (NEB;
10◦ S–5◦ N, 50–35◦W) and central southwestern (CSW)
Asia (25–55◦ N, 40–75◦ E) are considered. These two re-
gions stand out for the potentially predictable precipitation
signal (Fig. 15a, b) and associated correlation skill due to
initialization (Fig. 13a, d). Precipitation variability over NEB
has been linked to variations of the intertropical convergence
zone modulated by Atlantic SST gradients and tropical Pa-
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Figure 15. Maps of noise-to-predictable-variance ratio (a, b) γY ,
Eq. (A12), for (a) Year 2 and (b) Year 2–5 hindcasts and (c, d) γU ,
Eq. (A13), for (c) 1-year and (d) 4-year averaged uninitialized sim-
ulations of annual mean precipitation. The γY ratio determines the
ensemble size required to average out the noise component from the
ensemble mean forecast, Eq. (5), and similarly γU for simulations.
Negative values (white on land) result from sample errors, indicat-
ing small ensemble mean variance, and therefore a small predictable
signal, relative to the noise variance. The maps are produced with
the full 40-member ensembles of hindcasts and uninitialized simu-
lations. Rectangular boxes indicate the regions studied in Figs. 16–
18 below.

cific SST anomalies, the latter mainly driven by El Niño–
Southern Oscillation on interannual timescales, which are in
turn modulated by the Atlantic Multidecadal Variability and
the Interdecadal Pacific Oscillation on decadal timescales
(Nobre et al., 2005; Villamayor et al., 2018). Over CSW
Asia, wintertime precipitation anomalies have been linked
to variations of the East Asian jet stream driven partly by
western Pacific convection and SST anomalies, and Maritime
Continent convection (Barlow et al., 2002; Tippett et al.,
2003).

Figure 16a, b show the dependence on ensemble size of
the variance contributions qu = σ

2
Yu
/σ 2
Y and qi = σ

2
Yi
/σ 2
Y to

correlation skill rXY from the uninitialized Yu and initialized
Yi components of Year 2 annual mean precipitation hind-
casts averaged over NEB and CSW Asia. For both regions,
qu.0.2 for all ensemble sizes, indicating small variance con-
tribution to skill from the simulated response to external forc-
ing. By contrast, qi increases from about 0.40 for ensemble
size mY =10 to about 0.65 for mY = 40 over NEB, and from
about 0.50 formY =10 to about 0.80 formY = 40 over CSW
Asia, showing that initialization impacts the ppvf q = qi+qu
in Eq. (5), and that large ensembles are required to extract
the initialized predictable variance from the ensemble mean
hindcast. The variance contribution to correlation skill will
increase further, albeit minimally and slowly, for ensemble
sizes larger than 40, so there is a limit to the cost-effective
increase of ensemble size to improve skill. For Year 2–5, the

behavior is somewhat similar (Fig. 17a, b), although the vari-
ance contribution of the initialized (uninitialized) component
tends to be lower (higher).

Besides their variance contribution to skill, Yu and/or Yi
must have realistic variations in phase for a skillful ensemble
mean prediction Y . The correlation skill rXY for the Year 2
annual mean precipitation hindcast averaged over NEB and
CSW Asia is shown in Fig. 16c, d as a function of ensem-
ble size. Also shown are the correlation skills rXU of the
uninitialized simulations and rXXp of the persistence fore-
cast. For both regions, the hindcast correlation skill is pos-
itive at the 90 % confidence level. Hindcast skill increases
with ensemble size and surpasses that of uninitialized sim-
ulations for mY&15, indicating an added value from initial-
ization that would have been underestimated formY < 15 by
this metric. Unlike uninitialized simulations, the hindcasts
over NEB are more skillful than persistence for all ensem-
ble sizes (Fig. 16c). By contrast, the median correlation skill
over CSW Asia surpasses persistence formY&20 but may re-
quire more than 40 members to do so confidently (Fig. 16d).
It should be noted, however, that forecast correlation skill is
higher when averaged over winter and spring (DJFMAM),
and surpasses that of persistence and of the simulations for
mY > 10 (not shown). This is consistent with the seasonal
cycle of mean precipitation over CSW Asia (Tippett et al.,
2003; Schiemann et al., 2008), as the precipitation signal is
stronger during DJFMAM. For Year 2–5 (Fig. 17c, d), the
hindcasts over NEB are more skillful than uninitialized sim-
ulations formY&20 but requiremY&35 to marginally outper-
form simulations over CSW Asia, indicating an advantage of
large ensembles.

The results over the Sahel are somewhat different. The Sa-
hel is an important benchmark for the assessment of decadal
predictions due to its strong summer rainy season, the varia-
tion of which is considered one of the largest signals of global
climatic variability on annual to multi-year timescales (Mar-
tin and Thorncroft, 2014a; Sheen et al., 2017). Previous stud-
ies indicate that initialization enhances the skill of Sahelian
rainfall predictions compared to simulations, although results
vary among models (Garcia-Serrano et al., 2013; Gaetani and
Mohino, 2013; Martin and Thorncroft, 2014a; Sheen et al.,
2017; Yeager et al., 2018). Figure 18a, b show the depen-
dence on ensemble size of Year 2 and Year 2–5 forecast cor-
relation skill rXY for July–August–September (JAS) mean
precipitation averaged over the Sahelian sector (10–20◦ N,
20◦W–10◦ E), as well as rXU and rXXp for the uninitialized
simulations and persistence, respectively. Generally, hind-
casts and uninitialized simulations outperform persistence
by a large margin, but both exhibit about the same level of
skill, suggesting virtually no impact from initialization. The
increase in skill is accompanied by a reduction in skill uncer-
tainty, illustrating a benefit of large ensembles. The correla-
tion skill decomposition indicates that the externally forced
component is the main contributor to forecast skill with a
negligible impact from initialization (Fig. 18c, d).
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Figure 16. Dependence on ensemble size of (a, b) variance contributions qu = σ
2
Yu
/σ 2
Y

, Eq. (A14), in blue, and qi = σ
2
Yi
/σ 2
Y

, Eq. (A15), in
green, to (c, d) correlation skill rXY , Eq. (6), in red, of Year 2 ensemble mean precipitation hindcasts, averaged over (a, c) northeastern Brazil
(−10–5◦ N, 50–35◦W) and (b, d) central southwestern Asia (25–55◦ N, 40–75◦ E). These regions are highlighted in Fig. 15 above. Thick
black curves indicate correlation skill rXU of ensemble mean uninitialized simulations. Thick dashed lines indicate correlation skill rXXp
of the persistence forecast. Thin curves are confidence intervals derived from the 5th and 95th percentiles of bootstrapping distributions
generated from 10 000 samples by random selection, with replacement, of ensemble members for each indicated ensemble size. Filled
dots correspond to the actual 40-member ensemble predictions. Computations of qu, Eq. (A14), and qi, Eq. (A15), are done with mY =
2. . .40 members from the hindcast ensemble and, for each mY , the 40 members from the uninitialized simulations ensemble. The verifying
observations used to compute correlation skill are from the GPCP2.3 data set (Appendix B).

Figure 17. As in Fig. 16 for forecast Year 2–5.

The small impact of initialization on Sahelian rainfall
hindcasts is at odds with previous findings (Gaetani and
Mohino, 2013; Yeager et al., 2018). Interannual and mul-
tidecadal variability of Sahelian rainfall has been linked to
SST variability in the global ocean (Rowell et al., 1995),

the Atlantic (Ward, 1998; Knight et al., 2006; Zhang and
Delworth, 2006; Ting et al., 2009; Martin and Thorncroft,
2014a, b; Yeager et al., 2018), the Pacific and Indian oceans
(Mohino et al., 2011b; Sheen et al., 2017), and the Mediter-
ranean Sea (Rowell, 2003; Mohino et al., 2011a; Sheen et al.,
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Figure 18. Dependence on ensemble size of (a, b) correlation skill of ensemble mean forecasts rXY (red) and ensemble mean simulations
rXU (black); (c, d) contributions ru, Eq. (A16), in royal blue, and ri, Eq. (A17), in olive, to rXY ; and (e, f) ratio 5r , Eq. (8), of hindcasts
(salmon) and uninitialized simulations (gray), for (a, c, e) Year 2 and (b, d, f) Year 2–5 precipitation hindcasts, averaged over the Sahel
(10–20◦ N, 20◦W–10◦ E). This region is highlighted in Fig. 15 above. Thick dashed lines indicate correlation skill rXXp of the persistence
forecast. Thin curves are confidence intervals derived from the 5th and 95th percentiles of bootstrapping distributions generated from 10 000
samples by random selection, with replacement, of ensemble members for each indicated ensemble size. Filled dots correspond to the actual
40-member ensemble predictions. Computations of ru, Eq. (A16), and ri, Eq. (A17), are done with mY = 2. . .40 members from the hindcast
ensemble and, for each mY , the 40 members from the uninitialized simulations ensemble. The verifying observations used to compute
correlation skill are from the GPCP2.3 data set (Appendix B).

2017). Greenhouse gases and aerosols have also been linked
to decadal variability and trends of Sahelian rainfall by their
impact on Atlantic interhemispheric SST gradients and re-
sulting effect on the intertropical convergence zone (Biasutti
and Giannini, 2006; Haywood et al., 2013; Hua et al., 2019;
Bonfils et al., 2020) and by a direct effect of changes in ra-
diative forcing (Haarsma et al., 2005; Biasutti, 2013; Dong
and Sutton, 2015). Despite the negligible impact from initial-
ization, CanESM5 precipitation skill over the Sahel is rela-
tively high, particularly for Year 2–5 (rXY ≈ 0.7, Fig. 18b)
and other multi-year averages (not shown), and comparable
to the skill of CMIP5/6 decadal predictions from other mod-
els (Gaetani and Mohino, 2013; Yeager et al., 2018). This
may be an indication that at least part of the enhanced fore-
cast prediction skill of Sahelian rainfall in some CMIP5/6
models relative to that of uninitialized simulations might be

a consequence of the impact of initialization on the forced
component rather than a skillful prediction of the internally
generated variability itself (i.e., due to the term in parenthesis
in the definition of Yi in Eq. 3).

The ratio 5r , Eq. (8), for the Sahelian JAS mean pre-
cipitation hindcasts increases with ensemble size and con-
fidently surpasses 1 with 40 members for Year 2 (Fig. 18e)
and approximately 15 members for Year 2–5 (Fig. 18f), indi-
cating that for larger ensembles rXY > ρ; i.e., the ensemble
mean hindcast is more skillful at predicting the observed cli-
mate system than the hindcasts themselves. This is a conse-
quence of the noise-to-predictable-variance fraction γY be-
ing too high, suggesting that the hindcasts are either too
noisy or their predictable components are too weak relative
to the observed precipitation signal. Because the hindcasts
and observed total JAS precipitation variances are about the
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same (not shown), we conclude that the ensemble mean hind-
cast underestimates the amplitude of the predictable precip-
itation signal in the Sahel. A similar behavior is seen for
the uninitialized simulations with a somewhat reduced pre-
dictable variance fraction for large ensembles, particularly
for Year 2–5 (Fig. 18f), which is primarily a consequence of
the stronger potentially predictable variance of the simula-
tions (not shown). Such behavior is not specific to CanESM5
nor to the region, climate variable, and timescales involved. It
is a feature across model simulations of various climate phe-
nomena (Scaife and Smith, 2018; Yeager et al., 2018; Smith
et al., 2020), pointing to model deficiencies at representing
the strength of predictable signals of the climate system.

9 Aspects of the skill of land and ocean
biogeochemistry

CanESM5 models the effects of the physical climate on the
biosphere and the chemical constituents of the atmosphere
and ocean. This enables the assessment of some aspects of
the predictability of ocean and land biogeochemistry, and the
carbon cycle. Gross primary productivity (GPP) is the rate of
photosynthetic carbon fixation by primary producers, such as
phytoplankton in the ocean and plants on land. GPP of ter-
restrial vegetation is a key variable of the global carbon cy-
cle and is an important component of climate change (Zhang
et al., 2017). Net primary productivity (NPP) is the differ-
ence between GPP and the fraction of fixed carbon that pri-
mary producers use for respiration (Gough, 2011; Sigman
and Hain, 2012) and is thus a major determinant of carbon
sinks and a key regulator of ecological processes (Field et al.,
1998). The potential for predictive skill of NPP hindcasts in
the ocean and GPP hindcasts on land is assessed here by cor-
relation with the assimilation runs used for initialization. We
also show preliminary comparisons with observation-based
estimates but do not provide a full assessment of actual skill
due to the relatively short time span of the observations. As in
previous sections, uninitialized simulations are used here as a
reference to quantify the impact of initialization on hindcast
correlation skill. We emphasize that there is no assimilation
of observed carbon cycle variables to initialize the hindcasts
(Sect. 3); therefore, initial variations of GPP and NPP are the
result of ensemble spread of oceanic and atmospheric states
in the assimilation runs.

Figure 19 shows the correlation skill rXY and the contribu-
tion from initialization ri of ocean NPP for Year 2, Year 2–
5, and Year 6–9 hindcasts relative to the assimilation runs.
For Year 2, there is significant correlation skill in most of
the global ocean north of the Antarctic Circumpolar Current,
except for scattered regions including WSPNA, the western
North Pacific, and, to some degree, in the eastern equato-
rial regions of the Pacific and Atlantic oceans. These re-
gions are characterized by relatively low prediction skill of
upper-ocean heat content (Fig. 2a). High NPP correlation

skill is found in most eastern ocean boundaries and coastal
upwelling regions, and in broader sectors associated with
boundary currents including the North Pacific and California
currents, the Gulf Stream, North Atlantic and Canary cur-
rents, the Brazil and Benguela currents, the Agulhas Current,
the East Australian Current, and in areas of the Arabian Sea
and Bay of Bengal north of the Indian Monsoon Current. Part
of this skill is attributed to initialization (Fig. 19d) with lit-
tle or no impact from the simulated external forcing. Pre-
dictive skill tends to be larger in both magnitude and extent
for Year 2–5 (Fig. 19b, e) and is much reduced for Year 6–
9 (Fig. 19c, f), except for a few regions of relatively high
skill including major eastern boundary upwelling systems
(EBUSs; Chan, 2019). EBUSs comprise some of the ocean’s
most productive regions, supporting approximately one-fifth
of the world’s ocean wild fish harvests (Pauly and Chris-
tensen, 1995) and the habitats for multiple species of pelagic
fish, migratory seabirds, and marine mammals (Block et al.,
2011); thus, the potential for NPP skillful forecasts in these
regions at relatively long lead times may have useful impli-
cations for fisheries and environmental managers. Prelimi-
nary comparisons against observation-based estimates over
the Canary Current region (Fig. 21a), which, along with the
California, Humboldt, and Benguela current systems, is one
of the four major EBUSs (Gómez-Letona et al., 2017), show
realistic interannual variations in the assimilation runs and
Year 1 hindcasts. Ilyina et al. (2020) point out difficulties
however in CanESM5 predictions of ocean CO2 uptake in an
intercomparison of Earth system model results.

On land, significant GPP correlation skill of annual and
multi-year hindcasts relative to the assimilation runs is found
on all continents (Fig. 20a–c), although negative skill can
be seen mainly in grassland and savanna regions of South
America, Africa, and east Asia. Correlation skill is highest
in the temperate zone of eastern North America, in south-
east Asia and the Maritime Continent, in sectors of tropi-
cal South America and Africa, in southern Australia, and in
north Africa, the Nile basin, and Arabian Peninsula. Except
for the latter, these regions are characterized by moderate to
high annual mean primary productivity (Fig. 1 of Field et al.,
1998). Unlike ocean NPP, a large portion of GPP skill on
land is derived from the simulated externally forced compo-
nent, particularly from CO2 fertilization, with a moderate but
significant contribution from initialization (Fig. 20d, e). The
effects of initialization become negligible for longer fore-
cast ranges, except for a small sector of the Amazon rainfor-
est (Fig. 20f). Preliminary comparisons against observation-
based products show realistic global mean GPP anomaly
trends (not shown) and interannual variations for the assimi-
lation runs and Year 1 hindcasts (Fig. 21b). This is consistent
with multi-model comparisons (Ilyina et al., 2020) showing
significant actual correlation skill of CO2 land uptake in lin-
early detrended CanESM5 assimilation runs and hindcasts
for up to 2 years. Comparisons against observation-based

Geosci. Model Dev., 14, 6863–6891, 2021 https://doi.org/10.5194/gmd-14-6863-2021



R. Sospedra-Alfonso et al.: Decadal climate predictions with CanESM5 6881

Figure 19. Potential for skill of CanESM5 annual and multi-year mean of ocean NPP hindcasts. (a–c) Correlation skill rXY , Eq. (6), with
the assimilation runs as verifying observations, and (d–f) contribution from initialization ri to correlation skill, Eq. (A17), for (a, d) Year 2,
(b, e) Year 2–5, and (c, f) Year 6–9 hindcasts. The CanESM5 assimilation runs used as verifying observations provide the initial conditions
of the hindcasts. Cross-hatched regions indicate values significantly different from zero at the 90 % confidence level.

Figure 20. As in Fig. 19 for GPP on land.

data, however, are limited by the relatively short time span
and uncertainty of the observations.

10 Summary and conclusions

CanESM5 decadal hindcasts, which are CCCma’s contribu-
tion to Component A of the DCPP component of CMIP6,
have the ability to represent realistic interannual and multi-
year variations of key physical climate fields and carbon cy-
cle variables on decadal timescales. The hindcasts are 40-
ensemble-member retrospective forecasts that are full-field
initialized from realistic climate states at the end of every
year during 1960 to the present and run for 10 years. Natu-
ral and anthropogenic external forcing associated with green-
house gases and aerosols is specified, and a 40-member en-
semble of historical uninitialized climate simulations with

the same external forcing is also produced. The predictable
component of the simulations is determined by the model’s
response to external forcing, whereas the forecasts have pre-
dictable components due to both the initialization of internal
climate states and to the model’s response to external forc-
ing, which is generally different from that of simulations.
The decomposition of the predictable component of the fore-
casts into initialized and uninitialized constituents, the latter
derived from the projection of the forecasts responses to ex-
ternal forcing onto that of simulations, allowed the quantifi-
cation of the impact of initialization on skill, and sheds new
light on the value added by a forecasting system over that of
climate simulations.

The upper-ocean heat content of CanESM5 is shown to
be potentially predictable during the 10-year forecast range
most notably in the extratropics, with potentially predictable
variance in the eastern ocean boundaries for up to the 2- to

https://doi.org/10.5194/gmd-14-6863-2021 Geosci. Model Dev., 14, 6863–6891, 2021



6882 R. Sospedra-Alfonso et al.: Decadal climate predictions with CanESM5

Figure 21. (a) Ocean-integrated net primary productivity in the Ca-
nary Current region (25–34◦ N, 10–18◦W), and (b) gross primary
productivity on the global land, for the assimilation runs (blue) and
Year 1 hindcasts (red). Observation-based estimates for (a) ocean,
the Vertically Generalized Production Model (VGPM) (green), and
(b) land, MODIS (yellow), and Orbiting Carbon Observatory-2
(OCO-2)-based solar-induced chlorophyll fluorescence (SIF) prod-
uct (GOSIF) (green) are described in Appendix B. Anomalies rel-
ative to the base period (2000–2016) have been linearly detrended
and standardized.

4-year range as a result of initialization. The hindcasts re-
alize some of this potential predictability and have actual
skill largely driven by external forcing, with significant con-
tributions from initialization in the Pacific and Indian ocean
basins. Sea surface temperature (SST) hindcasts are skillful
for most of the global ocean mainly due to the strong warm-
ing response in the model, with a moderate impact from ini-
tialization to correlation skill beyond the first year of the
hindcasts. Compared to heat content, SST is more directly
affected by atmospheric conditions reducing the contribution
of initialization to skill. Initialization also decreases MSE
significantly relative to that of simulations in the northern
subtropics and in the Indian Ocean due to a reduction of the
simulated warming trend, which highlights the impact of ini-
tialization not only on the predictability of internal climate
variations, but also on corrections of the simulated response
to external forcing.

The western subpolar North Atlantic (WSPNA) and the
Labrador Sea regions stand out for the negative skill of the
upper-ocean heat content and the surface temperature, result-
ing in part from erroneous temperature and salinity trends
in the reanalysis data used to initialize the forecasts. Winter
SST variations of CanESM5 hindcasts in these regions have
strong decadal variations that are out of phase with observa-

tions beyond the 1-year range. Also, strong cold biases and
warming trends in the simulations contribute to the poor per-
formance in these regions. The lack of skill in the WSPNA
and the Labrador Sea merits further analysis as it may impact
climate predictability elsewhere.

The strong warming response of CanESM5 drives the
potential predictability of near-surface air temperature over
land and is largely responsible for the hindcast correlation
skill as examined in SB20. Initialization, however, reduces
the strength of the model response to external forcing, lead-
ing to a lower hindcast MSE than that of the simulations and
persistence at all forecast ranges considered, except for some
tropical regions. The correlation skill of annual and multi-
year mean precipitation is, perhaps surprisingly, very high
in vast continental regions including Siberia, central south-
western Asia, northeastern Europe, the Americas, and the
Sahel. The precipitation skill is mainly driven by external
forcing, with a non-negligible impact from volcanic aerosols,
although long-lived effects from initialization can be seen in
regions such as northeastern Brazil and central southwest-
ern Asia, which can be influenced by remote SST anomalies.
Skill tends to be highest for multi-year averages, as poten-
tially erroneous interannual variability is averaged out and
the forced component becomes dominant.

Two additions to CCCma’s contribution to the decadal pre-
diction component of CMIP6 compared to CMIP5 are the
increased ensemble size to 40 members from 10 members
and the inclusion of carbon cycle variables in these experi-
ments. There is growing evidence that large ensemble sizes
are advantageous for decadal predictions, and this work is
consistent with that view. Skillful CanESM5 precipitation
hindcasts with a significant impact from initialization require
large ensembles to confidently surpass the skill of uninitial-
ized simulations, compared to 10 or fewer members. There
is however a limit to the cost-effective increase of ensem-
ble size needed to improve skill, which is determined by the
ensemble forecast noise-to-predictable-variance ratio. Large
ensembles are also used to show that CanESM5 decadal
hindcasts underestimate the interannual and multi-year Sa-
helian summer rainfall signal, an important benchmark for
the assessment of decadal predictions, as correlation skill is
larger than potential correlation skill for sufficiently large en-
sembles despite the hindcasts having realistic total precipita-
tion variance in this region. CanESM5 decadal hindcasts are
skillful compared to assimilated values for predictions of net
primary productivity in the ocean northward of the Antarc-
tic Circumpolar Current for the 2- to 4-year range, with re-
gions of long-lived skill encompassing the 10-year forecast
range. A significant portion of this skill is attributed to ini-
tialization, particularly in major eastern boundary upwelling
systems, where there is indication of actual skill as well,
and in the Bay of Bengal. On land, gross primary produc-
tivity hindcasts have potential for skill at all ranges exam-
ined, mostly because of the CanESM5 response to the exter-
nally forced CO2 increase, with a moderate but significant
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short-lived impact from initialization. Preliminary compar-
isons of CanESM5 assimilation runs and Year 1 hindcasts
with observation-based products have shown agreement in
the global mean anomaly trend and interannual variations for
the years of available data. A comprehensive assessment of
actual skill remains, however, a challenge due the relatively
short time span and uncertainty of the verifying observations.

Appendix A: Details of hindcast evaluation methods

A1 Associated variances

The variances associated with the ensembles of forecasts and
simulations in Eq. (1), together with those of the ensemble
mean of forecasts and simulations in Eq. (2), are
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whereas the predictable variance is estimated from
Eqs. (A3)–(A6) as
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The predictable and noise variances can be readily computed
from the data by means of the total variance σ 2

Ye
or σ 2

Ue
, and

the variance of the ensemble mean σ 2
Y or σ 2

U . If we write
explicitly the dependence of the anomaly forecast Yjk(τ )
and ensemble mean Yj (τ ) on the forecast range τ , ensem-
ble member k = 1. . .mY , and initial year j = 1. . .n, then
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and similarly for the simulations, where the overline indi-
cates the average over the initial years.

A2 Correlation skill decomposition

Following SB20, the correlation skill of the ensemble mean
forecast can be decomposed as

rXY = rXYu

σYu

σY
+ rXYi

σYi

σY
= ru+ ri, (A11)

where rXYu and rXYi are the correlation skills of the uninitial-
ized and initialized components Yu and Yi themselves, while
ru and ri are the components contribution when scaled by the
fractions of the variances involved. In terms of the noise-to-
predictable-variance ratios of forecasts and simulation,
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and available correlations and variances, these quantities can
be computed explicitly as
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where rYU denotes the correlation between the ensemble
means of forecasts and simulations, and the step function
θ = 0 if rYU < 0, else θ = 1. The ratios γY and γU are es-
timated according to Eqs. (A12) and (A13) with the total
variances σ 2

Ye
and σ 2

Ue
, Eq. (A9), and the ensemble mean vari-

ances σ 2
Y and σ 2

U , Eq. (A10), for simulations and forecasts.
For finite ensembles, σ 2

U and σ 2
Y , and thus γU and γY , can be

negative due to sampling errors. With Eqs. (A12)–(A13), the
quantities in Eqs. (A16)–(A19) are readily computed from
the data.
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Appendix B: Data sources, variables, and derived
quantities

Table B1. List of figures, CMIP6 variables, experiments, and verifying observation-based products employed in this paper. See Table B2 for
the sources of the observation-based products. The entry “n/a” indicates “not applicable”.

Figure CMIP6 variable CMIP6 experiment Observation-based product
and variant label

1 thetao (vertically integrated dcppA-hindcast, r[1-40]i1p2f1 n/a
in the upper 300 m)

2 thetao (vertically integrated dcppA-hindcast, r[1-40]i1p2f1 EN4.2.1
in the upper 300 m)

3 tos dcppA-hindcast, r[1-40]i1p2f1 n/a

4 tos dcppA-hindcast, r[1-40]i1p2f1 ORAS5
historical, r[1-40]i1p2f1

5, 6 tos dcppA-hindcast, r[1-40]i1p2f1 ERSSTv5
historical, r[1-40]i1p2f1

7, 8 tos dcppA-assim, r[1-10]i1p2f1 ERSSTv5, ORAS5
dcppA-hindcast, r[1-40]i1p2f1
historical, r[1-40]i1p2f1

9 tas dcppA-hindcast, r[1-40]i1p2f1 n/a

10, 11 tas dcppA-hindcast, r[1-40]i1p2f1 ERA-40, ERA-Interim
historical, r[1-40]i1p2f1

12 pr dcppA-hindcast, r[1-40]i1p2f1 n/a

13 pr dcppA-hindcast, r[1-40]i1p2f1 GPCP2.3

14 pr dcppC-hindcast-noAgung, r[1-10]i1p2f1 n/a
dcppC-hindcast-noElChichon, r[1-10]i1p2f1
dcppC-hindcast-noPinatubo, r[1-10]i1p2f1
dcppC-forecast-addAgung, r[1-10]i1p2f1
dcppC-forecast-addElChichon,r[1-10]i1p2f1
dcppC-forecast-addPinatubo, r[1-10]i1p2f1

15 pr dcppA-hindcast, r[1-40]i1p2f1 n/a
historical, r[1-40]i1p2f1

16, 17, 18 pr dcppA-hindcast, r[1-40]i1p2f1 GPCP2.3
historical, r[1-40]i1p2f1

19, 20 intpp, gpp dcppA-assim, r[1-10]i1p2f1 n/a
dcppA-hindcast, r[1-40]i1p2f1
historical, r[1-40]i1p2f1

21 intpp, gpp dcppA-assim, r[1-10]i1p2f1 VGPM, MODIS, GOSIF
dcppA-hindcast, r[1-40]i1p2f1
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Table B2. List of observation-based products.

Observation-based product Citation

EN4.2.1 Met Office Hadley Centre (Good et al., 2013)
https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html (last access: 31 October 2019)

ERSSTv5 US National Oceanic and Atmospheric Administration (NOAA)
Extended Reconstructed Sea Surface Temperature (Huang et al., 2017)
https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf (last access: 13 March 2019)

ERA40, ERA-Interim European Centre for Medium-Range Weather Forecasts (ERA40; Uppala et al., 2005)
and ERA-Interim (Dee et al., 2011)
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
(last access: 29 January 2021)

GPCP2.3 Global Precipitation Climatology Project (Adler et al., 2003)
https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html (last access: 20 May 2021)

MODIS NASA’s MODIS-based gross primary productivity product (Zhang et al., 2017)
https://figshare.com/articles/dataset/Monthly_GPP_at_0_5_degree/5048011
(last access: 17 October 2021)

GOSIF Orbiting Carbon Observatory-2 (OCO-2)-based solar-induced chlorophyll
fluorescence (SIF) product (Li and Xiao, 2019)
http://data.globalecology.unh.edu/data/GOSIF-GPP_v2 (last access: 17 October 2021)

ERA5 Hersbach et al. (2020). Copernicus Climate Change Service (C3S)
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 17 October 2021)

SSI Surface solar irradiance (Bishop et al., 1997)

SeaWiFS NASA Goddard Space Flight Center
Sea-viewing Wide Field-of-view Sensor chlorophyll data; reprocessing version 2010.0
https://oceancolor.gsfc.nasa.gov/data/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018/
(last access: 17 October 2021)

MODIS-Terra NASA Goddard Space Flight Center
Moderate-resolution Imaging Spectroradiometer Terra chlorophyll data; reprocessing version 2010.0
https://oceancolor.gsfc.nasa.gov/data/10.5067/TERRA/MODIS/L3M/CHL/2018/
(last access: 17 October 2021)

VGPM Vertically Generalized Production Model (Behrenfeld and Falkowski, 1997)
Uses ocean chlorophyll from SeaWiFS (1998–2004) and
MODIS-Terra (2005–2012), SST from ERA5, and SSI monthly climatology (1983–1991)
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Code and data availability. The CanESM5 source code is
publicly available at https://gitlab.com/cccma/canesm (last
access: 13 October 2021). The version of the code used to
produce all the simulations described in this paper, which
are submitted to CMIP6, is tagged as v5.0.3 with associated
DOI: https://doi.org/10.5281/zenodo.3251114 (Swart et al.,
2019a, b). The CanESM5 data for the decadal experiments
(https://doi.org/10.22033/ESGF/CMIP6.3556, Sospedra-Alfonso
et al., 2019a; https://doi.org/10.22033/ESGF/CMIP6.3557,
Sospedra-Alfonso et al., 2019b; https://doi.org/10.22033/
ESGF/CMIP6.3570, Sospedra-Alfonso et al., 2019c;
https://doi.org/10.22033/ESGF/CMIP6.3571, Sospedra-Alfonso
et al., 2019d; https://doi.org/10.22033/ESGF/CMIP6.3572,
Sospedra-Alfonso et al., 2019e; https://doi.org/10.22033/
ESGF/CMIP6.3573, Sospedra-Alfonso et al., 2019f;
https://doi.org/10.22033/ESGF/CMIP6.3574, Sospedra-Alfonso
et al., 2019g; https://doi.org/10.22033/ESGF/CMIP6.3575,
Sospedra-Alfonso et al., 2019h) and historical simulations
(https://doi.org/10.22033/ESGF/CMIP6.3610, Swart et al., 2019c)
are publicly available from the Earth System Grid Federation
(https://esgf-node.llnl.gov/search/cmip6/, last access: 13 October
2021). The observation-based products used here are freely
available from the locations specified in Table B2 of Appendix B.
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