Articles | Volume 14, issue 3
Development and technical paper
18 Mar 2021
Development and technical paper |  | 18 Mar 2021

Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model

Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma

Related authors

Global Cropland Expansion Enhances Cropping Potential and Reduce its Inequality among Countries
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam. Discuss.,,, 2024
Revised manuscript accepted for ESD
Short summary
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156,,, 2023
Short summary
Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160,,, 2022
Short summary
What rainfall rates are most important to wet removal of different aerosol types?
Yong Wang, Wenwen Xia, and Guang J. Zhang
Atmos. Chem. Phys., 21, 16797–16816,,, 2021
Short summary

Related subject area

Climate and Earth system modeling
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992,,, 2024
Short summary
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918,,, 2024
Short summary
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948,,, 2024
Short summary
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974,,, 2024
Short summary
A radiative–convective model computing precipitation with the maximum entropy production hypothesis
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814,,, 2024
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., and Bolvin, D.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003. 
Bentamy, A., Queffeulou, P., Quilfen, Y., and Katsaros, K.: Ocean surface wind fields estimated from satellite active and passive microwave instruments, IEEE T. Geosci. R., 37, 2469–2486, 1999. 
Cohen, B. G. and Craig, G. C.: Fluctuations in an Equilibrium Convective Ensemble. Part II: Numerical Experiments, J. Atmos. Sci., 63, 2005–2015,, 2006. 
Craig, G. C. and Cohen, B. G.: Fluctuations in an Equilibrium Convective Ensemble. Part I: Theoretical Formulation, J. Atmos. Sci., 63, 1996–2004,, 2006. 
Short summary
A stochastic deep convection parameterization is implemented into the US Department of Energy Energy Exascale Earth System Model Atmosphere Model version 1 (EAMv1). Compared to the default model, the well-known problem of too much light rain and too little heavy rain is largely alleviated over the tropics with the stochastic scheme. Results from this study provide important insights into the model performance of EAMv1 when stochasticity is included in the deep convective parameterization.