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Abstract. A stochastic deep convection parameterization is
implemented into the US Department of Energy (DOE) En-
ergy Exascale Earth System Model (E3SM) Atmosphere
Model version 1.0 (EAMv1). This study evaluates its perfor-
mance in simulating precipitation. Compared to the default
model, the probability distribution function (PDF) of rainfall
intensity in the new simulation is greatly improved. The well-
known problem of “too much light rain and too little heavy
rain” is alleviated, especially over the tropics. As a result, the
contribution from different rain rates to the total precipitation
amount is shifted toward heavier rain. The less frequent oc-
currence of convection contributes to suppressed light rain,
while more intense large-scale and convective precipitation
contributes to enhanced heavy total rain. The synoptic and in-
traseasonal variabilities of precipitation are enhanced as well
to be closer to observations. The sensitivity of the rainfall
intensity PDF to the model vertical resolution is examined.
The relationship between precipitation and dilute convective
available potential energy in the stochastic simulation agrees
better with that in the Atmospheric Radiation Measurement
(ARM) observations compared with the standard model sim-
ulation. The annual mean precipitation is largely unchanged
with the use of the stochastic scheme except over the tropical
western Pacific, where a moderate increase in precipitation
represents a slight improvement. The responses of precipita-

tion and its extremes to climate warming are similar with or
without the stochastic deep convection scheme.

1 Introduction

Precipitation plays a vital role in the Earth’s climate: the la-
tent heat released during precipitation formation is a major
energy source that drives the atmospheric circulation, and
precipitation is an important part of the Earth’s hydrologi-
cal cycle. The accurate simulation of precipitation in global
climate models (GCMs) is of great scientific and societal
interest. However, GCMs used for current climate simula-
tion and future projections suffer from many biases in the
global distribution, frequency and intensity of simulated pre-
cipitation (Dai, 2006), which have negatively impacted the
model’s fidelity. Rainfall in nature is tightly associated with
many complex dynamic and physical processes in the atmo-
sphere, including large-scale circulation, convection, cloud
microphysics and planetary boundary layer (PBL) processes.
The deficiencies in representing these processes in GCMs are
prime culprits for errors in simulated rainfall (Watson et al.,
2017).

Among the physical processes in GCMs, the parameteri-
zation of convection is responsible for some well-known bi-
ases: the double Intertropical Convergence Zone (Zhang and
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Wang, 2006; Zhang et al., 2019), synoptic and intraseasonal
variabilities in the tropics that are too weak (Zhang and Mu,
2005a; Watson et al., 2017), the wrong diurnal cycle of rain-
fall (Xie et al., 2019), and “too much light rain and too little
heavy rain” (Dai, 2006; Zhang and Mu, 2005b; O’Gorman
and Schneider, 2009) to name a few. The conventional de-
terministic convective parameterization in GCMs represents
the ensemble effects of subgrid-scale convective clouds in a
model grid box on resolved scale variables. However, in real-
ity, a given grid-scale state may lead to different realizations
of subgrid-scale convection (Davies et al., 2013; Peters et al.,
2013) rather than to a single “ensemble mean” response. For
instance, two model grid boxes, both in a similar convective
equilibrium state, can have different numbers and/or sizes
of convective clouds due to stochasticity (Cohen and Craig,
2006). This stochasticity will appear more frequently as the
model grid box size becomes smaller (Jones and Randall,
2011). Not including stochasticity in convective schemes has
been suggested to be at least partly responsible for the weak
intraseasonal variability and “too much light rain and too lit-
tle heavy rain” in GCMs (Lin and Neelin, 2000; Wang et al.,
2016; Watson et al., 2017; Peters et al., 2017).

As suggested in Palmer (2001, 2012), more realistic statis-
tics of the impacts of subgrid convective clouds should be de-
rived by simulating them as random samples from probabil-
ity distributions conditioned on the grid-scale state so that the
influences of different individual realizations are introduced
in the convection parameterization. In this regard, much ef-
fort in the past 2 decades has been made to develop stochastic
convection schemes (e.g., Lin and Neelin, 2000, 2002; Plant
and Craig, 2008; Khouider et al., 2010; Sakradzija et al.,
2015). Among these schemes, Plant and Craig (2008) (PC08
hereafter) developed a stochastic deep convection parame-
terization under a framework based on statistical mechanics
(Cohen and Craig, 2006; Craig and Cohen, 2006) for non-
interacting convective clouds in statistical equilibrium using
cloud-resolving model (CRM) simulations. This scheme was
applied to numerical weather prediction (NWP) models and
to a GCM in an aquaplanet setting, resulting in some substan-
tial improvements in precipitation simulation (Groenemeijer
and Craig, 2012; Keane et al., 2014, 2016).

Wang et al. (2016) incorporated the PC08 stochastic deep
convection scheme into the Zhang–McFarlane (ZM) deter-
ministic deep convection scheme (Zhang and McFarlane,
1995) in the National Center for Atmospheric Research
(NCAR) Community Atmosphere Model version 5 (CAM5).
They found that the introduction of the stochastic scheme im-
proved the simulation of precipitation intensity and intrasea-
sonal variability over the tropics in CAM5 (Wang and Zhang,
2016; Wang et al., 2017).

In this study, we implement the PC08 stochastic deep con-
vection parameterization scheme into the DOE Energy Exas-
cale Earth System Model (E3SM) (Golaz et al., 2019) Atmo-
sphere Model version 1.0 (EAMv1) (Rasch et al., 2019; Xie
et al., 2018) and examine its effect on precipitation simula-

tion. The EAMv1 is branched out from CAM5, and it thus
inherits many model deficiencies from CAM5 as well. Many
modifications in physics parameterizations have been made
compared to CAM5 (Rasch et al., 2019; Xie et al., 2018).
However, some model biases, such as weak precipitation in-
tensity, persist (Xie et al., 2019). Thus, besides the precipi-
tation metrics explored in our previous studies (Wang et al.,
2016, 2017; Wang and Zhang, 2016), this study will evalu-
ate precipitation simulation with more systematical metrics.
In addition, the responses of precipitation and its extremes to
climate warming with the stochastic deep convection scheme
will be investigated.

The organization of the paper is as follows. Section 2
presents the parameterization, model, experimental design
and evaluation data. Section 3 describes results, includ-
ing variability, frequency, intensity, amounts, duration, mean
state, and the responses of precipitation and its extremes to
climate warming. The sensitivity of the rainfall intensity PDF
to vertical resolution and underlying mechanisms are also
presented in this section. A summary is given in Sect. 4.

2 Parameterization, model, experimental design and
evaluation data

2.1 Stochastic deep convection parameterization

The stochastic convective parameterization scheme of PC08
is modified for climate models when incorporating it into the
ZM deterministic deep convection scheme. The most essen-
tial part of the PC08 scheme involves two probability distri-
butions. One is the probability distribution of mass flux of a
cloud; it follows the exponential distribution

p(m)dm=
1
〈m〉

e−m/〈m〉dm, (1)

where 〈m〉 is the mean mass flux of a cloud and is a preset
tuning parameter. The integral of the probability density over
all values of mass flux is 1, i.e., the probability of 1 that every
cloud has a mass flux between zero and infinity. The other is
the probability of triggering n clouds for a given cloud mass
flux in the range between m and m+dm at a given GCM grid
box and time step; it is drawn from a Poisson distribution:

P〈N〉 (n)=
〈N〉ne−〈N〉

n!
for n= 0,1,2,3. . ., (2)

where 〈N〉 is the ensemble mean number of convective
clouds in the grid box. Here the sum of the probabilities over
all n must equal 1, i.e., the probability of 1 that some num-
ber between zero and an infinite number of clouds will be
triggered with mass flux in this interval. Thus, the average
number of clouds with mass flux between m and m+ dm,
dn̄(m), is

dn̄ (m)= 〈N〉p(m)dm=
〈N〉

〈m〉
e−m/〈m〉dm. (3)
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From Eqs. (2) and (3), it follows then that for small dn̄(m)

the probability of launching one convective cloud with mass
flux between m and m+ dm is given by

pdn̄(m) (n= 1)=
〈N〉

〈m〉
e−m/〈m〉dm. (4)

Note that Eq. (4) is not a probability density function, but
rather the probability of triggering one cloud for a given
cloud mass flux interval (m, m+ dm), knowing that the av-
erage number of clouds within this mass flux interval is
dn̄(m). 〈N〉 = 〈M〉/〈m〉, where 〈M〉 is the ensemble mean
total cloud mass flux given by the closure based on the con-
vective quasi-equilibrium assumption in the ZM determin-
istic parameterization. For each mass flux bin, whether to
launch a cloud is determined by comparing the probability

1
〈m〉

e
−

m
〈m〉 dm with a random number uniformly generated be-

tween zero and 1. Then, the sum of mass fluxes generated
this way is multiplied by the factor 〈N〉 to rescale it to the
mass flux of all clouds. The product of the total mass flux
and the temperature and moisture tendencies from the bulk
plume model gives the final temperature and moisture ten-
dencies by the subgrid convective clouds.

There are two modifications to the original implementa-
tion in the NCAR CAM5. One is the update frequency of
random numbers, which, unlike the update frequency of once
a day in Wang et al. (2016), is updated every 3 d in considera-
tion of computational resources due to finer vertical and hori-
zontal resolutions in the EAMv1 (see Sect. 2.2). For the same
reason, the spatial averaging of input quantities (i.e., verti-
cal profiles of temperature and moisture) to the closure over
neighboring grid points used in the original design of PC08 is
not performed because it leads to an excessive communica-
tion load. One can argue that at a horizontal model resolution
of about 110 km in EAMv1, convective quasi-equilibrium
approximately holds over some timescale, although at indi-
vidual model time steps it does not. Thus, although spatial
averaging is not applied, the temporal trailing averaging over
3 h at each time step is retained in the scheme. Other modi-
fications to the PC08 scheme for incorporation into the ZM
scheme in climate models (Wang et al., 2016) are retained.
These include the following.

1. The temporally averaged quantities are used to calcu-
late the ensemble mean cloud mass flux (〈M〉), which
is determined by the ZM scheme. The unsmoothed grid
point quantities are still used in the trigger function and
the cloud model.

2. The root mean squared cloud radius information origi-
nally used in PC08 is not needed in our implementation
because the ZM scheme does not use cloud radius.

3. The ensemble mean mass flux of a cloud 〈m〉 is set
to 1× 107 kg s−1 following Groenemeijer and Craig
(2012).

4. The cloud life cycle effect with a factor dt/T (dt is the
model time step and T is the constant lifetime parame-
ter) in PC08 is not taken into account because the ZM
deterministic parameterization does not consider the life
cycle of convection.

2.2 EAMv1 model

The standard configuration of the DOE EAMv1 uses a spec-
tral element dynamical core at a 110 km horizontal resolu-
tion on a cubed sphere geometry and a vertical resolution
of 72 layers from the surface to 60 km (10 Pa) (Rasch et al.,
2019; Xie et al., 2018). The treatments of PBL turbulence,
shallow convection and cloud macrophysics are unified with
a simplified third-order turbulence closure parameterization,
CLUBB (Cloud Layers Unified by Binormals; Golaz et al.,
2002; Larson and Golaz, 2005). The deep convection is rep-
resented by the ZM scheme. The Morrison and Gettelman
(2008) (MG) microphysics scheme is updated to MG2 (Get-
telman et al., 2015) with the prediction of rain and changes
to ice nucleation and ice microphysics (Wang et al., 2014).
A four-mode version of the modal aerosol module (MAM4)
(Liu et al., 2016) is used with improvements to aerosol re-
suspension, aerosol nucleation, scavenging, convective trans-
port and sea spray emissions for including the contribution of
marine ecosystems to organic matter (Rasch et al., 2019). A
linearized ozone chemistry module (Hsu and Prather, 2009;
McLinden et al., 2000) is used to represent stratospheric
ozone and its radiative impacts in the stratosphere. Other
modifications for model tuning are provided in detail in Xie
et al. (2018).

2.3 Experimental design

Six Atmospheric Model Intercomparison Project (AMIP)
types of simulations are conducted. Four 6-year simulations
are forced by prescribed, seasonally varying climatological
present-day sea surface temperatures (SSTs) and sea ice ex-
tent, recycled yearly (Stone et al., 2018): two with the default
deterministic ZM scheme but having 72 and 30 vertical lev-
els (referred to as EAMv1 and EAMv1–30L, respectively)
and the other two with the stochastic deep convection scheme
(referred to as STOCH and STOCH–30L). The simulations
with 30 vertical levels are conducted to facilitate the com-
parison with Wang et al. (2016), in which the vertical reso-
lution of CAM5 is 30 levels (see Sect. 3.3). To explore the
responses of precipitation and its extremes to climate warm-
ing, similar to EAMv1 and STOCH runs, two 3-year simula-
tions in a warmer climate are conducted, in which a compos-
ite SST warming pattern derived from the Coupled Model
Intercomparison Project Phase 3 (CMIP3) coupled models
(referred to as EAMv1–4K and STOCH–4K, respectively) is
imposed for the boundary condition of the atmosphere. Fol-
lowing Webb et al. (2017), it is a normalized multi-model
mean of the sea surface temperature response pattern from 13
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Table 1. List of simulations.

Simulation Years Vertical levels Description

EAMv1 6 72 Standard EAMv1 with the default deterministic ZM deep con-
vection scheme for simulating the current climatea

STOCH 6 72 Same as EAMv1, but coupling the PC stochastic deep convec-
tion scheme with the deterministic ZM deep convection scheme

EAMv1–30L 6 30 Same as EAMv1, but using a vertical resolution configuration
of 30 layers

STOCH–30L 6 30 Same as STOCH, but using a vertical resolution configuration
of 30 layers

EAMv1–4K 3 72 Same as EAMv1, but for simulating a warmer worldb

STOCH–4K 3 72 Same as STOCH, but for simulating a warmer world

a Atmosphere-only simulations using fully prognostic atmosphere and land models with prescribed, seasonally varying climatological
present-day sea surface temperatures (SSTs) and sea ice extent, recycled yearly.
b For simulating a warmer world, the atmosphere-only simulations are subjected to a composite SST warming pattern derived from the
Coupled Model Intercomparison Project Phase 3 (CMIP3) coupled models.

CMIP3 atmosphere–ocean general circulation models, repre-
senting the change in SST between years 0–20 and 140–160,
the time of CO2 quadrupling in the 1 % runs. Before calcu-
lating the multi-model ensemble mean, the SST response of
each model was divided by its global mean and multiplied
by 4 K. This guarantees that the pattern information from all
models is weighted equally and that the global mean SST
forcing is +4 K warming. The first year in all simulations
is discarded as a spin-up. Information for all experiments is
summarized in Table 1.

2.4 Evaluation data

For model evaluation, the following datasets are used: the
Clouds and the Earth’s Radiant Energy System Energy Bal-
anced and Filled (CERES-EBAF) (Loeb et al., 2009) for
evaluation of shortwave and longwave cloud radiative forc-
ing; the European Centre for Medium-Range Weather Fore-
casts Interim Reanalysis (ERAI) (Simmons et al., 2007) for
sea level pressure, zonal wind, relative humidity, specific hu-
midity and temperature; the European Remote Sensing Satel-
lite Scatterometer (ERS) (Bentamy et al., 1999) for surface
wind stress; and the Willmott–Matsuura (Willmott) (Will-
mott and Matsuura, 1995) data for land surface air temper-
ature.

The rainfall mean state is evaluated against the Global
Precipitation Climatology Project (GPCP) monthly product
(version 2.1) at a resolution of 2.5◦ (Adler et al., 2003;
Huffman et al., 2009), while a daily estimate of GPCP ver-
sion 1.2 at 1◦ horizontal resolution (GPCP 1DD) (Huffman
et al., 2001, 2012) is used for the evaluation of precipita-
tion amount distribution. In addition to GPCP, the Xie–Arkin
pentad observations at 2.5◦ resolution (Xie and Arkin, 1996)
and the Tropical Rainfall Measuring Mission 3B42 version 7
(TRMM) daily observations at a resolution of 0.25◦ over

(50◦ S, 50◦ N) (Huffman et al., 2007) are applied to evaluate
the precipitation variance. The TRMM data are also used in
the PDF of rainfall intensity and the rainfall amount distribu-
tion. To estimate the uncertainty in the PDF of precipitation
intensity in observations, additional daily rainfall products
are used. These include TAPEER v1.5, GSMaP-NRT-gauge
v6.0, PERSIANN CDR v1, CMORPH v1.0 CRT from the
Frequent Rainfall Observation on GridS (FROGS) database
(Roca et al., 2019) and Global Precipitation Measurement
(GPM) IMERG v06b (Huffman et al., 2017). For the rain-
fall duration evaluation, the TRMM 3B42 v7 3-hourly data
are used. To make the comparison consistent between obser-
vations and model simulations, the model data with the same
output frequency as that in the corresponding observations
and/or reanalysis data are used, and all observations and/or
reanalysis data are regridded to the same 1◦ lat–long grids as
EAMv1. The US Department of Energy Atmospheric Radi-
ation Measurement (ARM) multiyear observations for daily
precipitation and dilute convective available potential energy
(CAPE) over the Southern Great Plains (SGP) site for the
time period of 2004–2018 (Xie et al., 2004) and the Green
Ocean Amazon (GOAmazon) field campaign (Martin et al.,
2016) site for 2014–2015 (Tang et al., 2016) are used to eval-
uate the simulated CAPE vs. precipitation relationship.

3 Results

3.1 Intraseasonal and synoptic variability

The simulated variability of precipitation is an important
aspect of model performance. Here we focus on intrasea-
sonal and synoptic-scale variability. The intraseasonal vari-
ability associated with the Madden–Julian oscillation (MJO)
is problematic in many GCMs (Jiang et al., 2015; Zhang and
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Figure 1. Spatial distributions of the 20–80 d variance of rainfall from (a) the Xie–Arkin observations, (b) TRMM, (c) EAMv1 and
(d) STOCH (units: mm2 d−2).

Mu, 2005a). Figure 1 shows the tropical distribution of the
20–80 d intraseasonal variance for the total precipitation in
observations and simulations. The variance is obtained with
a Lanczos band-pass filter at each grid point. Both Xie–
Arkin and TRMM observations show large variance in the
Indian Ocean and western Pacific as well as in the ITCZ
and the South Pacific Convergence Zone (SPCZ). The in-
traseasonal variance in EAMv1 is much weaker, as in many
other GCMs. Similar to the results in Wang et al. (2016),
the STOCH run with the stochastic deep convection scheme
has significantly enhanced intraseasonal variance in these re-
gions, making it much more comparable to observations, al-
though there is excessive precipitation variance over central
Africa, the Himalayas, the Maritime Continent and the re-
gion near the Colombian coast. Compared with the EAMv1
run, the STOCH run has more small-scale noise in the spatial
structure of the precipitation variability.

Besides the intraseasonal variance, the synoptic variance
(2–9 d Lanczos band-pass-filtered rainfall anomalies) is also
investigated (Fig. 2). The synoptic-scale variance corre-
sponds to weather activities. In Fig. 2 only TRMM obser-
vations are shown to evaluate simulations because the Xie–
Arkin observations are pentad data. In TRMM, the geograph-
ical distribution of the synoptic variance is similar to that
of the intraseasonal variance, but with larger amplitudes be-
cause synoptic-scale activities contain much more energy
than intraseasonal disturbances. Similar to the intraseasonal
variance, the synoptic variance in the EAMv1 run is also
much weaker than that in observations. The synoptic-scale
variance in the STOCH run is about twice as strong as
in EAMv1 although it is still underestimated compared to
TRMM observations. Over regions where the overestimated
intraseasonal precipitation variance emerges, the STOCH run
has excessive synoptic precipitation variance as well. This re-

sult is consistent with Goswami et al. (2017), who reported
enhanced intraseasonal and synoptic variability of precipita-
tion in the National Centers for Environmental Predictions
(NCEP) Climate Forecast System version 2 (CFSv2) using a
stochastic multicloud model parameterization.

3.2 Rainfall frequency, intensity, amount and duration

Wang et al. (2016) showed that the most significant improve-
ment with the use of the stochastic deep convection scheme
in CAM5 was in the simulated PDF of rainfall intensity over
the tropics, which became very close to TRMM observa-
tions. Since there are many modifications in model configu-
ration and physics parameterizations from CAM5 to EAMv1
(Rasch et al., 2019), such as a finer vertical resolution, an
updated microphysics parameterization (MG2), and the use
of CLUBB in place of separate shallow convection and plan-
etary boundary layer turbulence parameterizations, it is not
clear whether a similar degree of improvement in precipita-
tion intensity PDF can be achieved with a similar stochastic
convection scheme. Using an equal-interval rainfall intensity
bin of 0.5 mm d−1 from 0 to 200 mm d−1, Fig. 3 shows the
frequencies of the total precipitation intensity over the trop-
ics (20◦ S–20◦ N) from observations, EAMv1 and STOCH.
Also shown are the PDFs of large-scale and convective pre-
cipitation intensity. The observational uncertainty is larger
for intense precipitation than for light precipitation (Fig. 3a),
which is consistent with findings in Roca (2019). The GPCP
precipitation intensity distribution (the gray curve that even
falls below the EAMv1 curve in Fig. 3a) has the lowest fre-
quency for precipitation intensity greater than 30 mm d−1.
The GPCP product is known to have underestimated pre-
cipitation intensities (Kooperman et al., 2016). Despite the
uncertainties in observations, the simulated frequencies in
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Figure 2. Spatial distributions of the synoptic variance of rainfall from (a) TRMM, (b) EAMv1 and (c) STOCH (units: mm2 d−2).

Figure 3. Frequency distributions of (a) total (solid line), (b) con-
vective (solid line) and large-scale (dashed line) precipitation inten-
sity over the tropics (20◦ S, 20◦ N) for EAMv1 (blue) and STOCH
(red), respectively. For total precipitation, the TRMM observations
(black) and the ensemble mean of multiple observations (Obs_ens,
purple), with each observation represented by a gray line, are in-
cluded for evaluation.

STOCH are more consistent with those in the ensemble mean
of all observations than those in the default EAMv1. The
stochastic convection parameterization in the STOCH run
greatly mitigates the bias of “too much light rain and too little
heavy rain”, showing a decrease in the frequency of rainfall
intensity between 1 and 10 mm d−1 and an increase in the fre-
quency of rainfall intensity larger than 20 mm d−1 compared

to the EAMv1 run. Especially for light rain, the frequen-
cies in STOCH fall in the observational range, while those
in EAMv1 do not. A recent study finds that the decreased
frequency of light rain has a profound impact on simulated
aerosol loading in the atmosphere (Wang et al., 2021a). Xie et
al. (2019) indicated that the “too much light rain” in EAMv1
was a result of overly frequent convection. Consistent with
this notion, Fig. 3b shows that the reduction of light rain fre-
quency is entirely from convective precipitation. On the other
hand, the increase in intense precipitation frequency is from
both convective and large-scale precipitation.

To understand why the use of a stochastic convection
scheme decreases the frequency of light rain and increases
the frequency of heavy rain, we conducted an additional sim-
ulation. In the simulation, the setup is identical to the STOCH
run except that the ZM scheme is called a second time at
each time step, with input (temperature, moisture, etc.) iden-
tical to that for the stochastic scheme. However, the output
is used for diagnostic purposes only and does not participate
in model integration. It is found that (figure not shown) two
factors contribute to the decreased frequency of light rain and
increased frequency of heavy rain. First, for a given ensem-
ble mean convective mass flux (from the ZM scheme) the
probability for cloud generation following the Poisson dis-
tribution for a realization in the stochastic scheme can pro-
duce more intense precipitation than obtained by the ZM
scheme. Second, the probability distribution results in less
frequent convection in general. This allows the buildup of
atmospheric instability (also see Fig. 9 below in Sect. 3.3),
which also leads to heavier convective rainfall (even with the
ZM scheme alone without considering the stochastic part)
and more large-scale condensation. However, we note that
the increase in the frequency of rainfall intensity ranges from
60 to 140 mm d−1 in the STOCH run, which is not as much as
that in Wang et al. (2016) for CAM5. This will be elucidated
through sensitivity experiments in the next subsection.

The frequencies of total precipitation intensity over se-
lected regions also show a qualitatively similar degree of im-
provement. Figure 4 shows six regions during their convec-
tively active seasons: Amazonia, the tropical western Pacific,
and India for June–September; the Maritime Continent and
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Figure 4. Frequency distributions of total precipitation intensity over the Amazon (20◦ S–5◦ N, 40–80◦W), the tropical western Pacific
(TWP) (0–15◦ N, 130–170◦ E), India (14–26.5◦ N, 74.5–94◦ E; for June–September), the Maritime Continent (MC) (10◦ S–10◦ N, 90–
160◦ E), the Southern Great Plains (SGP) (37–42◦ N, 90–110◦W; for May–August) and eastern China (25–35◦ N, 100–120◦ E; for June–
August) for TRMM (black), EAMv1 (blue) and STOCH (red).

SGP for May–August; and eastern China for June–August in
TRMM, EAMv1 and STOCH, respectively. In all tropical re-
gions, the EAMv1 simulation overestimates the occurrence
frequency for precipitation intensities less than 20 mm d−1

and underestimates it for precipitation intensities greater than
20 mm d−1, similar to the distribution for the entire trop-
ics. In STOCH, the performance in the PDF over Amazo-
nia and the Maritime Continent is better than the PDF over
the entire tropics. Although the biases of “too much light
rain” over India and the tropical western Pacific are allevi-
ated by the stochastic deep convection scheme, the bias of
“too little heavy rain” remains, particularly over India where

large-scale monsoonal dynamics regulate heavy convective
rain (Wang et al., 2018). For the two midlatitude convection
regions (SGP and eastern China), although there is also no-
ticeable improvement across the precipitation intensity spec-
trum, it is less significant compared to other regions, possi-
bly because convection in midlatitude land regions is not as
prevalent as in the tropics.

Figure 5 shows the geographical distributions of precipi-
tation frequency for all precipitation, precipitation intensities
less than 20 mm d−1 and precipitation intensities more than
20 mm d−1 over the tropics in observations and simulations
(days with precipitation intensity less than 1 mm d−1 are con-
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Figure 5. Spatial distributions of the frequencies of total rainfall intensity larger than (a–c) 1 mm d−1, (d–f) between 1 and 20 mm d−1, and
(g–i) larger than 20 mm d−1 for TRMM, EAMv1 and STOCH, respectively.

sidered non-precipitating and thus excluded). In TRMM, the
occurrence frequency of rainy days ranges from 30 % to
70 %, with the most frequent rain along the ITCZ, the SPCZ
and in the Indian Ocean, where the EAMv1 run has a fre-
quency as high as 80 %–90 %, with up to 30 % positive bi-
ases. In contrast, the STOCH run reduces the frequency to
50 %–70 %, although it is still overestimated. When the to-
tal precipitation is broken down into precipitation rates less
than 20 mm d−1 and precipitation rates above 20 mm d−1, in
both observations and simulations the geographical distribu-
tion of the rainy days is dominated by days with precipita-
tion intensity less than 20 mm d−1. In comparison with ob-
servations, again, the STOCH run reduces the positive bias of
the frequency of precipitation intensity less than 20 mm d−1

in the EAMv1 run by up to 20 %. For precipitation intensi-
ties greater than 20 mm d−1, the EAMv1 run underestimates
their frequency compared to the TRMM observations. On the
other hand, the frequency of occurrence in the STOCH run is
comparable to the TRMM observations.

Another metric for the precipitation PDF is the contribu-
tion of precipitation within a given intensity bin to the to-
tal precipitation amount. It combines the information on pre-
cipitation frequency distribution and precipitation intensity.
While drizzle occurs much more frequently than more in-
tense rain events, it may not contribute much to the total
precipitation amount. Following the approach of Kooperman
et al. (2016, 2018), we divide the precipitation rate ranging
from 0.1 to 1000 mm d−1 into equal bin intervals on a log-
arithmic scale, with a bin width of 1 ln(R)=1R/R = 0.1.

If the frequency of rainfall rates falling into the ith bin is de-
noted fi , then fi = ni/Nt, where Nt is the total number of
days, then ni is the number of days with rainfall rates falling
into the ith bin. The mean precipitation rate in the ith bin is
then

Ri =
1
ni

ni∑
j=1

rj , (5)

where rj is an individual precipitation rate within the ith bin.
Thus, the contribution to the total precipitation amount from
the ith bin per unit bin width is given by

Pi =
fiRi

1 ln(R)
=

1
1 ln(R)

1
Nt

∑ni

j=1
rj . (6)

Pi has units of millimeters per day (mm d−1). The total pre-
cipitation amount is then given by

P =
∑

i

Pi1 ln(R)=
∑

i

fiRi . (7)

Accordingly, the amount distributions for total (P T), convec-
tive (P C) and large-scale (P L) rainfall are given by the fol-
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Figure 6. Annual mean rainfall amount distributions of (a) total
precipitation (solid line) over the tropics (20◦ S, 20◦ N) for GPCP
1DD (gray), TRMM (black), EAMv1 (blue) and STOCH (red). In-
dividual distributions of (b) convective (solid line) and large-scale
(dashed line) precipitation in EAMv1 (blue) and STOCH (red) are
also shown. The rainfall intensity on the x axis is on a logarithmic
scale with bin intervals of 1 ln(R)=1R/R = 0.1.

lowing.

P T
i =

1
1 ln(R)

1
Nt

∑ni

j=1
rT
j (8)

P C
i =

1
1 ln(R)

1
Nt

∑ni

j=1
rC
j (9)

P L
i =

1
1 ln(R)

1
Nt

∑ni

j=1
rL
j (10)

Here, rT, rC and rL are the total, convective and large-scale
rain rates.

Figure 6a shows the contribution to the total rainfall
amount from each rainfall rate on a logarithmic scale for
GPCP 1DD, TRMM and the two simulations over the trop-
ics. The TRMM observations have larger contributions from
intense rainfall rates than GPCP 1DD, with a peak contribu-
tion rainfall rate of 28 mm d−1, which is higher than the value
of 22 mm d−1 in GPCP 1DD. The EAMv1 run produces
a much smaller peak contribution rainfall rate (15 mm d−1)
than the two observations, while the STOCH run simulates
it realistically (23 mm d−1) as falling between the two ob-

Figure 7. Histogram of the percentage frequency of total rainy
events as a function of their duration using 3-hourly data (con-
ditional probability of rainfall given rainfall from previous times)
from TRMM (black), EAMv1 (blue) and STOCH (red) for the
threshold rainfall rate of 1 mm d−1 over the tropics.

servations. Note that precipitation from intensities less than
1 mm d−1 contributes about 0.05 mm d−1 or less to the trop-
ical mean total precipitation, thus justifying treating it as
non-precipitating in Fig. 5. Figure 6b shows the convective
and large-scale contributions to the simulated total precipita-
tion from EAMv1 and STOCH, respectively. The large-scale
precipitation shows very similar contribution distributions in
the two simulations except for the largest rain rates, which
make only a small contribution to the total. For the most
part, large-scale precipitation is not affected by how convec-
tion is treated in the model, with both simulations having a
maximum contribution near 22 mm d−1. On the other hand,
the convective contribution is very different between the two
simulations. Similar to the total precipitation, the peak con-
tribution to convective precipitation is at a much smaller rain-
fall rate in EAMv1 than in STOCH.

Besides precipitation frequency and intensity, another im-
portant higher-order statistic of precipitation is the dura-
tion of precipitation events; it measures the intermittency of
precipitation (Trenberth et al., 2017). Using 3-hourly data,
we calculate the duration of rainfall events as a continu-
ous number of hours of precipitation exceeding a threshold
value of 1 mm d−1. Figure 7 shows the frequency of precip-
itation events for different durations over the tropics; 80 %
of TRMM-observed precipitation events last for 3 h or less,
18 % last for 6 h and 2 % last for 9 h. In contrast, both EAMv1
and STOCH produce very small proportions (∼ 15 %) of pre-
cipitation events that last for 3 h or less. The frequency of
precipitation events lasting 9 h or longer is extremely over-
estimated in the model simulations, with some lasting for
as long as 21 h. This suggests that convection in the model
lacks the observed intermittency (Trenberth et al., 2017), and

https://doi.org/10.5194/gmd-14-1575-2021 Geosci. Model Dev., 14, 1575–1593, 2021



1584 Y. Wang et al.: Coupling a stochastic convective parameterization with the Zhang–McFarlane scheme

Figure 8. Same as Fig. 3, but including PDFs for EAMv1–30L and
STOCH–30L (both dashed lines).

the use of the stochastic convection scheme does not improve
this aspect of the simulated convection.

3.3 Sensitivity of rainfall intensity PDF to vertical
resolution

A significant modification among several changes in EAMv1
from CAM5 is a much finer vertical resolution, increasing
from 30 levels in CAM5 to 72 levels in EAMv1. Within
the PBL alone EAMv1 has 17 layers compared to 5 layers
in CAM5, and the thickness of approximately 20 m for the
lowest model layer in EAMv1 is much thinner than that in
CAM5, which is 100 m (Xie et al., 2018). The increased res-
olution in the PBL in EAMv1 will likely affect the convec-

tion behavior through PBL–convection interactions. In Fig. 3
we show that the precipitation intensity PDF is significantly
improved with the introduction of the stochastic convection
scheme. However, the improvement was not as striking as
that shown in Wang et al. (2016) for CAM5. We suspect that
this is primarily due to the enhanced vertical resolution in
EAMv1 rather than other changes in model physics param-
eterizations, tunings or the model dynamic core. To confirm
this, EAMv1–30L and STOCH–30L runs with a vertical res-
olution of 30 layers are conducted and compared with the
EAMv1 and STOCH runs with the default 72 vertical lay-
ers. As seen in Fig. 8, when switching to a configuration
of 30 vertical layers, the performance of the STOCH–30L
run is very similar to that in CAM5 (Wang et al., 2016).
The frequency distribution of rainfall intensity between 60
and 140 mm d−1 almost falls on top of that in TRMM. The
PDF of rain intensity in the EAMv1–30L run is also closer to
TRMM observations compared to the EAMv1 run (Fig. 8a).
For EAMv1, convective and large-scale precipitation be-
comes more intense in the 30-level configuration. The res-
olution dependence of large-scale precipitation is consistent
with the scale analysis in Rauscher et al. (2016). In their
Eq. (2), if the terms are rearranged to solve for vertical veloc-
ity (ω), it gives ω ∝1p, the vertical grid spacing in pressure
coordinates. Stronger vertical velocity would lead to more
intense precipitation. In STOCH–30L, while the frequency
of more intense convective precipitation is increased, the fre-
quency of more intense large-scale precipitation is decreased,
probably affected by the moisture depletion from strong con-
vective precipitation (Fig. 8b, c).

The causes of the sensitivity of convective precipitation
to vertical resolution are further examined below. In the ZM
convection scheme, the amount of convection is linked to di-
lute CAPE (for convenience we will simply call it CAPE be-
low with the understanding that it refers to dilute CAPE).
Thus, in Fig. 9 we present the joint PDF of convective
precipitation and CAPE over the tropics in the four sim-
ulations. Note that all parameter settings are identical be-
tween EAMv1 and EAMv1–30L except the vertical resolu-
tion. Both EAMv1 and EAMv1–30L show an approximately
linear relationship between CAPE and convective precipita-
tion. The CAPE values are generally smaller in EAMv1–30L
than in EAMv1, as can be seen from the frequency of occur-
rence of both large and medium CAPE values. However, the
slope of the maximum occurrence frequency is almost twice
as large in EAMv1–30L as in EAMv1 (Fig. 9a, b), giving the
higher frequency of larger convective precipitation as seen
in Fig. 8. This is because a coarser vertical resolution means
stronger vertical mixing, which results in higher precipitation
for given CAPE values. For a given precipitation rate that the
model produces, there is in general a large range of CAPE
values, and the CAPE values in EAMv1 are predominantly
larger than in EAMv1–30L as can be seen from the PDF dis-
tribution in Fig. 9a and b. Compared to EAMv1, the smaller
CAPE values in EAMv1–30L are caused by higher parcel
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Figure 9. Joint PDFs of CAPE versus convective precipitation over the tropics (20◦ S, 20◦ N) from (a) EAMv1, (b) EAMv1–30L, (c) STOCH
and (d) STOCH–30L.

launching levels due to thicker model layers near the surface,
where the most unstable air is often found (figure not shown).
There is also a bifurcation for medium to large CAPE values.
This is likely related to atmospheric moisture conditions in
the atmosphere: for the same CAPE values there is less pre-
cipitation when the atmosphere is dry and vice versa. With
the introduction of the stochastic deep convection scheme,
there are no longer approximately linear relations between
CAPE and convective precipitation (Fig. 9c, d) in spite of
the fact that the CAPE-based closure is still used to deter-
mine the cloud-base mass flux (the ensemble mean). This
is surprising; it implies that for a given convectively unsta-
ble atmospheric thermodynamic condition, the use of the
stochastic scheme often inhibits the triggering of convection,
thereby allowing for the buildup of CAPE for (the less fre-
quently occurring) stronger convection. Similar to EAMv1,
smaller (larger) CAPE values occur more (less) frequently in
STOCH–30L due to higher parcel launching levels. Also, the

small and moderate values of CAPE have larger probabilities
to precipitate more in STOCH–30L compared to STOCH.

Over the ARM SGP and GOAmazon sites, no linear re-
lationship is seen between the total precipitation and CAPE
in observations (Fig. 10). At the SGP site, high CAPE values
generally correspond to low precipitation. At the GOAmazon
site, high precipitation values correspond to medium values
of CAPE, somewhat resembling the STOCH simulation, al-
though the observed CAPE values at the GOAmazon site are
much smaller than those in the simulations.

3.4 Mean state

So far, we have shown that the introduction of a stochastic
convection scheme into the E3SM atmospheric model can
significantly improve the simulation of the short-term vari-
ability and intensity PDF of precipitation. In climate model
development efforts, it is important that an improvement
in some aspects of the model does not lead to degradation
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Figure 10. Scatterplots of total precipitation versus CAPE at the ARM (a–c) SGP and (d–f) Amazon sites for (a, d) observations calculated
from multiyear sounding data (2014–2015 for the Amazon and 2004–2018 for SGP), (b, e) EAMv1 and (c, f) STOCH.

of other aspects, at least not to outweigh the improvement.
Thus, it is imperative that we examine the climate mean fields
as well. Figure 11 shows the global distribution of annual
mean precipitation in GPCP observations and simulations,
as well as the differences in total, convective and large-scale
precipitation between the STOCH and EAMv1 runs. Overall,
the geographical distributions of precipitation in the two sim-
ulations are similar to those in observations, but both overes-
timate the tropical precipitation (Fig. 11a–c). There is a slight
increase in rainfall over the tropical western Pacific, equato-
rial Indian Ocean and Africa as well as a slight decrease over
India and Amazonia in the STOCH simulation (Fig. 11d).
Most of these changes are from convective precipitation ex-
cept over equatorial Africa where the changes are from large-
scale precipitation (Fig. 11e, f).

The zonal mean of temperature and specific humidity from
ERAI and the model biases are shown in Fig. 12. For tem-
perature, EAMv1 produces mostly negative biases in the en-
tire troposphere over the tropics and subtropics and posi-
tive biases in the lower troposphere at high latitudes. With
the stochastic deep convection scheme used, the temperature
changes in STOCH are very minor, increasing slightly from

EAMv1. In the simulation of specific humidity, there are pos-
itive biases in the lower troposphere across all latitudes and
negative biases above 900 hPa over the tropics and subtropics
in EAMv1. In comparison with EAMv1, the negative biases
are alleviated, but the positive biases are increased slightly in
STOCH.

The overall difference in model performance as mea-
sured by the commonly used mean climate metrics between
EAMv1 and STOCH runs is summarized in a Taylor dia-
gram (Fig. 13). Most metrics are comparable between the
two simulations except precipitation, especially over land
where STOCH shows a larger standard deviation than both
GPCP and EAMv1. In short, the mean climate does not
change much after the incorporation of the stochastic con-
vection scheme in EAMv1. This is practically desirable since
one does not need to heavily re-tune the model, a task that is
often time-consuming and more of engineering than scien-
tific interest.
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Figure 11. Global distributions of total precipitation for (a) GPCP, (b) EAMv1 and (c) STOCH, as well as the differences of (d) total,
(e) convective and (f) large-scale precipitation between STOCH and EAMv1. Differences with a confidence level greater than 95 % in
(d–f) are stippled.

Figure 12. Annual and zonal mean cross sections of (a–c) temperature and (d–f) specific humidity for (a, d) ERAI and differences for
(b, e) EAMv1-ERAI and (c, f) STOCH-EAMv1. Differences with a confidence level greater than 95 % between STOCH and EAMv1 are
stippled.

3.5 Response to climate warming

Another aspect of interest concerns the model’s response
to climate change. It is well-known that the estimated cli-
mate sensitivity for future climate projections is sensitive to

changes in model physics parameterizations (Golaz et al.,
2019). With the stochastic deep convection parameteriza-
tion, it is necessary to check if the response of precipitation
and associated extremes to climate warming differs. As seen
in Fig. 14, relative to the current climate simulations, the
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Figure 13. Taylor diagram with metrics for STOCH compared with
EAMv1.

geographical patterns and magnitudes of annual mean pre-
cipitation changes normalized by the global mean surface
air warming (1Tsa) in the +4 K SST warming simulations
(i.e., (P+4K−P)/P/1Tsa, units: % K−1) with and without
the stochastic deep convection scheme are very similar, with
both showing maximum increases over the ITCZ, the west-
ern Pacific and the Indian Ocean. Pendergrass et al. (2019)
found that the response of extreme precipitation to warming
follows a nonlinear relation:

drx

dTsa
= aTsa (11)

or

rx =
1
2
aT 2

sa+ b, (12)

where rx is a rainfall extreme index (here using R95p, the to-
tal rainfall from the days with daily rainfall intensity exceed-
ing 95th percentile of the daily precipitation distribution),
Tsa is the global mean surface air temperature in a warmer
world, and a is the slope of drx/dTsa versus Tsa measur-
ing the strength of the nonlinear response of extreme rain-
fall to warming. At each grid point, drx ≈1rx is equal to
R95p in a warmer world minus that under the current cli-
mate and normalized by the global mean surface air warming
(dTsa ≈1Tsa). With Tsa in the +4 K SST warming simula-
tions and the calculated drx/dTsa, the global distributions of
the slope, a (units: % K−2), with and without the stochastic
deep convection scheme are displayed in Fig. 14c and d. Al-
though the stochastic deep convection parameterization in-
troduces stochasticity into convection and significantly im-
proves the underestimated frequency of intense precipitation
under the current climate (Wang et al., 2017), it does not lead

to a different nonlinear response of precipitation extremes in
a warmer world. The resemblance of the coefficient a be-
tween the two simulations results from the similar response
of the fractional change in rx to global warming (Fig. 14e, f).
Increasing circulation strength as the climate warms is con-
sidered to be the main driver for the nonlinear relationship
between tropical precipitation extremes and global mean sur-
face air temperature (Pendergrass et al., 2019), and it is possi-
ble that the circulation changes with and without the stochas-
tic deep convection scheme are similar. Relative to their re-
spective current climate states, the responses of the EAMv1–
4K and STOCH–4K runs show similar geographical distribu-
tions with comparable maximum nonlinearity over the trop-
ical Pacific and Atlantic and the Indian Ocean, which bears
some resemblance to that in Pendergrass et al. (2019).

4 Summary

In this study, we implemented the stochastic deep convection
scheme (Plant and Craig, 2008; Wang et al., 2016) into the
DOE EAMv1 and investigated its impact on the simulation
of precipitation. Several improvements are observed with the
use of the stochastic convection scheme: (1) the weak in-
traseasonal and synoptic-scale variabilities in EAMv1 are
enhanced to levels much closer to those in observations;
(2) the “too much light rain and too little heavy rain” bias
over the tropics is significantly alleviated due to less frequent
occurrence of drizzling convection and more frequent oc-
currence of intense large-scale and convective precipitation,
contributing to enhanced heavy rain; and (3) the simulated
peak precipitation rates (the amount mode) in the precipita-
tion amount distribution, which contribute the most to the to-
tal amount of precipitation, are larger and in better agreement
with those in TRMM and GPCP observations.

While the improvement in the simulated PDF of rainfall
intensity is significant, it is less than what we had expected
based on our earlier work with the NCAR CAM5 (Wang
et al., 2016). Since there are many changes from CAM5 to
EAMv1, including vertical resolution, model dynamic core
and physics parameterizations, it is not clear which changes
are related to the difference in the improvement of the sim-
ulated rainfall PDF. Two sensitivity tests were performed to
elucidate this, both with a coarser-vertical-resolution config-
uration of 30 layers (i.e., EAMv1–30L and STOCH–30L) as
in CAM5. The STOCH–30L run successfully reproduces the
frequency distribution of rainfall intensity found by Wang et
al. (2016), with an increased frequency of convective pre-
cipitation intensities between 60 and 140 mm d−1. This in-
crease is explained by the fact that small and moderate val-
ues of CAPE generate more convective precipitation from
the altered relation between them compared to the 72-level
configuration due to fewer model layers in the 30-level res-
olution. Since vertical velocity in general increases with the
vertical grid spacing, the increase in large-scale precipitation
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Figure 14. Geographical distributions of the responses of (a, b) annual mean precipitation, (c, d) the coefficient a and (e, f) the fractional
change in precipitation extremes (R95p) to climate warming from +4 K experiments. Differences with a confidence level greater than 95 %
are stippled.

also contributes to the increased frequency of total precipita-
tion intensities in the 30-level configuration.

For any changes in model physics parameterizations that
improve some aspects of the model performance, it is impor-
tant that other aspects are not degraded. It is known in the cli-
mate modeling community that improved intraseasonal vari-
ability is often accompanied by a degradation of the mean
state (e.g., Kim et al., 2011; Klingaman and Demott, 2020).
We showed that the mean states in tropospheric tempera-
ture, moisture and precipitation are not much different with

or without the use of the stochastic convection scheme, and
neither are the responses of mean precipitation and precipi-
tation extremes to climate warming. This is encouraging and
desirable for model development efforts. However, we note
that for higher horizontal resolutions (Caldwell et al., 2019)
or a regionally refined mesh version of EAMv1 (Tang et al.,
2019), spatial averaging of the input fields of the stochastic
scheme would be needed to make use of convective quasi-
equilibrium over a larger domain. This could be challenging
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for computational efficiency, and it requires further research
in the future.
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