Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-1125-2021
https://doi.org/10.5194/gmd-14-1125-2021
Development and technical paper
 | 
25 Feb 2021
Development and technical paper |  | 25 Feb 2021

Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance

William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink

Related authors

Fully Coupled High-Resolution Atmosphere-Ocean-Wave Simulations of Hurricane Henri (2021): Implications for Offshore Load Assessments
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47,https://doi.org/10.5194/wes-2025-47, 2025
Revised manuscript under review for WES
Short summary
Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023,https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022,https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling
Keith J. Roberts, William J. Pringle, and Joannes J. Westerink
Geosci. Model Dev., 12, 1847–1868, https://doi.org/10.5194/gmd-12-1847-2019,https://doi.org/10.5194/gmd-12-1847-2019, 2019
Short summary

Related subject area

Oceanography
Comparing an idealized deterministic–stochastic model (SUP model, version 1) of the tide- and wind-driven sea surface currents in the Gulf of Trieste to high-frequency radar observations
Sofia Flora, Laura Ursella, and Achim Wirth
Geosci. Model Dev., 18, 4685–4712, https://doi.org/10.5194/gmd-18-4685-2025,https://doi.org/10.5194/gmd-18-4685-2025, 2025
Short summary
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary

Cited articles

Arbic, B. K., Garner, S. T., Hallberg, R. W., and Simmons, H. L.: The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep-Sea Res. Pt. II, 51, 3069–3101, https://doi.org/10.1016/j.dsr2.2004.09.014, 2004. a
Bouwer, L. M.: Next-generation coastal risk models, Nat. Clim. Change, 8, 7–8, https://doi.org/10.1038/s41558-018-0262-2, 2018. a
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts, H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation, Mon. Weather Rev., 138, 345–377, https://doi.org/10.1175/2009MWR2906.1, 2010. a, b, c, d, e, f, g, h
Castro, M. J., Ortega, S., and Parés, C.: Reprint of: Well-balanced methods for the shallow water equations in spherical coordinates, Comput. Fluids, 169, 129–140, https://doi.org/10.1016/j.compfluid.2018.03.052, 2018. a
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. a
Download
Short summary
We improve and test a computer model that simulates tides and storm surge over all of Earth's oceans and seas. The model varies mesh resolution (triangular element sizes) freely so that coastal areas, especially storm landfall locations, are well-described. We develop systematic tests of the resolution in order to suggest good mesh design criteria that balance computational efficiency with accuracy for both global astronomical tides and coastal storm tides under extreme weather forcing.
Share