Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-1125-2021
https://doi.org/10.5194/gmd-14-1125-2021
Development and technical paper
 | 
25 Feb 2021
Development and technical paper |  | 25 Feb 2021

Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance

William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink

Related authors

Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023,https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022,https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling
Keith J. Roberts, William J. Pringle, and Joannes J. Westerink
Geosci. Model Dev., 12, 1847–1868, https://doi.org/10.5194/gmd-12-1847-2019,https://doi.org/10.5194/gmd-12-1847-2019, 2019
Short summary

Related subject area

Oceanography
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024,https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024,https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024,https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
An optimal transformation method applied to diagnose the ocean carbon budget
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024,https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024,https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary

Cited articles

Arbic, B. K., Garner, S. T., Hallberg, R. W., and Simmons, H. L.: The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep-Sea Res. Pt. II, 51, 3069–3101, https://doi.org/10.1016/j.dsr2.2004.09.014, 2004. a
Bouwer, L. M.: Next-generation coastal risk models, Nat. Clim. Change, 8, 7–8, https://doi.org/10.1038/s41558-018-0262-2, 2018. a
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts, H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation, Mon. Weather Rev., 138, 345–377, https://doi.org/10.1175/2009MWR2906.1, 2010. a, b, c, d, e, f, g, h
Castro, M. J., Ortega, S., and Parés, C.: Reprint of: Well-balanced methods for the shallow water equations in spherical coordinates, Comput. Fluids, 169, 129–140, https://doi.org/10.1016/j.compfluid.2018.03.052, 2018. a
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. a
Download
Short summary
We improve and test a computer model that simulates tides and storm surge over all of Earth's oceans and seas. The model varies mesh resolution (triangular element sizes) freely so that coastal areas, especially storm landfall locations, are well-described. We develop systematic tests of the resolution in order to suggest good mesh design criteria that balance computational efficiency with accuracy for both global astronomical tides and coastal storm tides under extreme weather forcing.