Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-1125-2021
https://doi.org/10.5194/gmd-14-1125-2021
Development and technical paper
 | 
25 Feb 2021
Development and technical paper |  | 25 Feb 2021

Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance

William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink

Related authors

Fully Coupled High-Resolution Atmosphere-Ocean-Wave Simulations of Hurricane Henri (2021): Implications for Offshore Load Assessments
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47,https://doi.org/10.5194/wes-2025-47, 2025
Preprint under review for WES
Short summary
Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023,https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022,https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling
Keith J. Roberts, William J. Pringle, and Joannes J. Westerink
Geosci. Model Dev., 12, 1847–1868, https://doi.org/10.5194/gmd-12-1847-2019,https://doi.org/10.5194/gmd-12-1847-2019, 2019
Short summary

Related subject area

Oceanography
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025,https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev., 18, 1561–1573, https://doi.org/10.5194/gmd-18-1561-2025,https://doi.org/10.5194/gmd-18-1561-2025, 2025
Short summary
The Ross Sea and Amundsen Sea Ice–Sea Model (RAISE v1.0): a high-resolution ocean–sea ice–ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev., 18, 1375–1393, https://doi.org/10.5194/gmd-18-1375-2025,https://doi.org/10.5194/gmd-18-1375-2025, 2025
Short summary
Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025,https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary

Cited articles

Arbic, B. K., Garner, S. T., Hallberg, R. W., and Simmons, H. L.: The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep-Sea Res. Pt. II, 51, 3069–3101, https://doi.org/10.1016/j.dsr2.2004.09.014, 2004. a
Bouwer, L. M.: Next-generation coastal risk models, Nat. Clim. Change, 8, 7–8, https://doi.org/10.1038/s41558-018-0262-2, 2018. a
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts, H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation, Mon. Weather Rev., 138, 345–377, https://doi.org/10.1175/2009MWR2906.1, 2010. a, b, c, d, e, f, g, h
Castro, M. J., Ortega, S., and Parés, C.: Reprint of: Well-balanced methods for the shallow water equations in spherical coordinates, Comput. Fluids, 169, 129–140, https://doi.org/10.1016/j.compfluid.2018.03.052, 2018. a
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. a
Download
Short summary
We improve and test a computer model that simulates tides and storm surge over all of Earth's oceans and seas. The model varies mesh resolution (triangular element sizes) freely so that coastal areas, especially storm landfall locations, are well-described. We develop systematic tests of the resolution in order to suggest good mesh design criteria that balance computational efficiency with accuracy for both global astronomical tides and coastal storm tides under extreme weather forcing.
Share