Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-1125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
Damrongsak Wirasaet
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
Keith J. Roberts
School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY, USA
Joannes J. Westerink
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
Related authors
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47, https://doi.org/10.5194/wes-2025-47, 2025
Preprint under review for WES
Short summary
Short summary
This study introduces a system that combines weather, ocean, and wave models to better understand their interactions during tropical storms and their impact on offshore structures like wind turbines. Tested using Hurricane Henri (2021), the system improves storm predictions by including how waves and ocean cooling affect storm strength and wind patterns. The results show this approach helps assess risks to offshore infrastructure during severe weather, making it more accurate and reliable.
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023, https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Short summary
Simulating global ocean from deep basins to coastal areas is a daunting task but is important for disaster mitigation efforts. We present a new 3D global ocean model on flexible mesh to study both tidal and nontidal processes and total water prediction. We demonstrate the potential for
seamlesssimulation, on a single mesh, from the global ocean to a few estuaries along the US West Coast. The model can serve as the backbone of a global tide surge and compound flooding forecasting framework.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47, https://doi.org/10.5194/wes-2025-47, 2025
Preprint under review for WES
Short summary
Short summary
This study introduces a system that combines weather, ocean, and wave models to better understand their interactions during tropical storms and their impact on offshore structures like wind turbines. Tested using Hurricane Henri (2021), the system improves storm predictions by including how waves and ocean cooling affect storm strength and wind patterns. The results show this approach helps assess risks to offshore infrastructure during severe weather, making it more accurate and reliable.
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023, https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Short summary
Simulating global ocean from deep basins to coastal areas is a daunting task but is important for disaster mitigation efforts. We present a new 3D global ocean model on flexible mesh to study both tidal and nontidal processes and total water prediction. We demonstrate the potential for
seamlesssimulation, on a single mesh, from the global ocean to a few estuaries along the US West Coast. The model can serve as the backbone of a global tide surge and compound flooding forecasting framework.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Cited articles
Arbic, B. K., Garner, S. T., Hallberg, R. W., and Simmons, H. L.: The accuracy
of surface elevations in forward global barotropic and baroclinic tide
models, Deep-Sea Res. Pt. II, 51,
3069–3101, https://doi.org/10.1016/j.dsr2.2004.09.014, 2004. a
Bouwer, L. M.: Next-generation coastal risk models, Nat. Clim. Change, 8,
7–8, https://doi.org/10.1038/s41558-018-0262-2, 2018. a
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M.,
Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C.,
Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts,
H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and
Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model
Development and Validation, Mon. Weather Rev., 138, 345–377,
https://doi.org/10.1175/2009MWR2906.1, 2010. a, b, c, d, e, f, g, h
Castro, M. J., Ortega, S., and Parés, C.: Reprint of: Well-balanced
methods for the shallow water equations in spherical coordinates, Comput. Fluids, 169, 129–140, https://doi.org/10.1016/j.compfluid.2018.03.052, 2018. a
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume,
three-dimensional, primitive equations ocean model: Application to coastal
ocean and estuaries, J. Atmos. Ocean. Tech., 20,
159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. a
Danilov, S.: Ocean modeling on unstructured meshes, Ocean Model., 69,
195–210, https://doi.org/10.1016/j.ocemod.2013.05.005, 2013. a, b
Dietrich, J., Zijlema, M., Westerink, J., Holthuijsen, L., Dawson, C.,
Luettich, R., Jensen, R., Smith, J., Stelling, G., and Stone, G.: Modeling
hurricane waves and storm surge using integrally-coupled, scalable
computations, Coast. Eng., 58, 45–65,
https://doi.org/10.1016/j.coastaleng.2010.08.001, 2011. a, b, c
Dietrich, J. C., Bunya, S., Westerink, J. J., Ebersole, B. A., Smith, J. M.,
Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C.,
Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts,
H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and
Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic
Description and Analysis of Hurricanes Katrina and Rita, Mon. Weather Rev., 138, 378–404, https://doi.org/10.1175/2009mwr2907.1, 2009. a
Dresback, K. M., Kolar, R. L., and Luettich, R. A.: On the Form of the
Momentum Equation and Lateral Stress Closure Law in Shallow Water Modeling,
in: Estuarine and Coastal Modeling, American Society of Civil
Engineers, Reston, VA, 399–418, https://doi.org/10.1061/40876(209)23, 2005. a
Dullaart, J. C., Muis, S., Bloemendaal, N., and Aerts, J. C.: Advancing global
storm surge modelling using the new ERA5 climate reanalysis, Clim.
Dynam., 54, 1007–1021, https://doi.org/10.1007/s00382-019-05044-0, 2019. a, b
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Egbert, G. D. and Erofeeva, S. Y.: TPXO9-Atlas,
available at: https://www.tpxo.net/global/tpxo9-atlas (last access: 23 February 2021), 2019. a
Fortunato, A. B., Freire, P., Bertin, X., Rodrigues, M., Ferreira, J., and
Liberato, M. L.: A numerical study of the February 15, 1941 storm in the
Tagus estuary, Cont. Shelf Res., 144, 50–64,
https://doi.org/10.1016/j.csr.2017.06.023, 2017. a
Fringer, O. B., Dawson, C. N., He, R., Ralston, D. K., and Zhang, Y. J.: The
future of coastal and estuarine modeling: Findings from a workshop, Ocean Model., 143, 101458, https://doi.org/10.1016/j.ocemod.2019.101458,
2019. a, b
Funakoshi, Y., Feyen, J. C., Aikman, F., Tolman, H. L., van der Westhuysen,
A. J., Chawla, A., Rivin, I., and Taylor, A.: Development of Extratropical
Surge and Tide Operational Forecast System (ESTOFS), in: 12th International
Conference on Estuarine and Coastal Modeling, 201–212, 7–9 November 2011, St. Augustine,
Florida, 2011. a
Garratt, J. R.: Review of drag coefficients over oceans and continents, Mon.
Weather Rev., 105, 915–929, 1977. a
Garrett, C. and Kunze, E.: Internal Tide Generation in the Deep Ocean, Annu.
Rev. Fluid Mech., 39, 57–87,
https://doi.org/10.1146/annurev.fluid.39.050905.110227, 2007. a
GEBCO Compilation Group: GEBCO 2019 Grid, National Oceanography Centre,
https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e, 2019. a
Gorman, G. J., Piggott, M. D., Pain, C. C., de Oliveira, C. R., Umpleby, A. P.,
and Goddard, A. J.: Optimisation based bathymetry approximation through
constrained unstructured mesh adaptivity, Ocean Model., 12, 436–452,
https://doi.org/10.1016/j.ocemod.2005.09.004, 2006. a
Greenberg, D. A., Dupont, F., Lyard, F. H., Lynch, D. R., and Werner, F. E.:
Resolution issues in numerical models of oceanic and coastal circulation,
Cont. Shelf Res., 27, 1317–1343, https://doi.org/10.1016/j.csr.2007.01.023,
2007. a
Hervouet, J.-M.: Equations of free surface hydrodynamics, in: Hydrodynamics
of Free Surface Flows: Modelling with the Finite Element Method, chap. 2, John Wiley & Sons, Ltd, 5 April 2007,
5–75, https://doi.org/10.1002/9780470319628.ch2, 2007. a
Herzfeld, M., Engwirda, D., and Rizwi, F.: A coastal unstructured model using
Voronoi meshes and C-grid staggering, Ocean Model., 148, 101599,
https://doi.org/10.1016/j.ocemod.2020.101599, 2020. a
Hoch, K. E., Petersen, M. R., Brus, S. R., Engwirda, D., Roberts, A. F., Rosa,
K. L., and Wolfram, P. J.: MPAS-Ocean Simulation Quality for
Variable-Resolution North American Coastal Meshes, J. Adv.
Model. Earth Syst., 12, e2019MS001848, https://doi.org/10.1029/2019MS001848, 2020. a
Holland, G. J.: An analytical model of the wind and pressure profiles in
hurricanes, Mon. Weather Rev., 108, 1212–1218, 1980. a
Hope, M. E., Westerink, J. J., Kennedy, A. B., Kerr, P. C., Dietrich, J. C.,
Dawson, C., Bender, C. J., Smith, J. M., Jensen, R. E., Zijlema, M.,
Holthuijsen, L. H., Luettich, R. A., Powell, M. D., Cardone, V. J., Cox,
A. T., Pourtaheri, H., Roberts, H. J., Atkinson, J. H., Tanaka, S.,
Westerink, H. J., and Westerink, L. G.: Hindcast and validation of Hurricane
Ike (2008) waves, forerunner, and storm surge, J. Geophys.
Res.-Oceans, 118, 4424–4460, https://doi.org/10.1002/jgrc.20314, 2013. a
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions
Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and
Contributions to Sea Level Variations at the Coast, Surv. Geophys.,
40, 1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019. a, b
Kennedy, A. B., Gravois, U., Zachry, B. C., Westerink, J. J., Hope, M. E.,
Dietrich, J. C., Powell, M. D., Cox, A. T., Luettich, R. A., and Dean, R. G.:
Origin of the Hurricane Ike forerunner surge, Geophys. Res. Lett.,
38, L08608, https://doi.org/10.1029/2011GL047090, 2011. a
Kolar, R. L., Gray, W. G., Westerink, J. J., and Luettich, R. A.: Shallow
water modeling in spherical coordinates: Equation formulation, numerical
implementation, and application: Modélisation des équations de
saint-venant, en coordonnées sphériques: Formulation, resolution
numérique et application, J. Hydraul. Res., 32, 3–24,
https://doi.org/10.1080/00221689409498786, 1994. a
Lambrechts, J., Comblen, R., Legat, V., Geuzaine, C., and Remacle, J.-F.:
Multiscale mesh generation on the sphere, Ocean Dynam., 58, 461–473,
https://doi.org/10.1007/s10236-008-0148-3, 2008. a, b
Le Bars, Y., Lyard, F., Jeandel, C., and Dardengo, L.: The AMANDES tidal
model for the Amazon estuary and shelf, Ocean Model., 31, 132–149,
https://doi.org/10.1016/j.ocemod.2009.11.001, 2010. a
Le Bars, Y., Vallaeys, V., Deleersnijder, É., Hanert, E., Carrere, L.,
and Channelière, C.: Unstructured-mesh modeling of the Congo
river-to-sea continuum, Ocean Dynam., 66, 589–603,
https://doi.org/10.1007/s10236-016-0939-x, 2016. a
LeBlond, P. H.: Tides and their Interactions with Other Oceanographic
Phenomena in Shallow Water (Review), in: Tidal hydrodynamics, edited by:
Parker, B. B., pp. 357–378, John Wiley & Sons, Ltd., New York, USA, 1991. a
Lefevre, F., Provost, C. L., and Lyard, F. H.: How can we improve a global
ocean tide model at a region scale? A test on the Yellow Sea and the East
China Sea, J. Geophys. Res.-Oceans, 105, 8707–8725,
https://doi.org/10.1029/1999JC900281, 2000. a
Legrand, S., Legat, V., and Deleersnijder, E.: Delaunay mesh generation for an
unstructured-grid ocean general circulation model, Ocean Model., 2,
17–28, https://doi.org/10.1016/s1463-5003(00)00005-6, 2000. a
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M.,
Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and
Smolyar, I. V.: World Ocean Atlas 2018. Volume 1: Temperature, Tech. rep.,
NOAA Atlas NESDIS 81,
available at: http://www.nodc.noaa.gov/OC5/indprod.html (last access: 23 February 2021), 2019. a
Luettich, R. A. and Westerink, J. J.: Formulation and Numerical Implementation
of the 2D/3D ADCIRC Finite Element Model Version 44.XX, Tech. rep.,
University of North Carolina at Chapel Hill & University of Notre Dame,
2004. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006. a
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C., and Ward, P. J.: A
global reanalysis of storm surges and extreme sea levels, Nat.
Commun., 7, 1–11, https://doi.org/10.1038/ncomms11969, 2016. a
Muis, S., Lin, N., Verlaan, M., Winsemius, H. C., Ward, P. J., and Aerts,
J. C.: Spatiotemporal patterns of extreme sea levels along the western
North-Atlantic coasts, Sci. Rep.-UK, 9, 3391,
https://doi.org/10.1038/s41598-019-40157-w, 2019. a, b
Ngodock, H. E., Souopgui, I., Wallcraft, A. J., Richman, J. G., Shriver, J. F.,
and Arbic, B. K.: On improving the accuracy of the M2 barotropic tides
embedded in a high-resolution global ocean circulation model, Ocean Model., 97, 16–26, https://doi.org/10.1016/j.ocemod.2015.10.011, 2016. a, b, c, d
Pringle, W. J.: Global Storm Tide Modeling on Unstructured Meshes with ADCIRC
v55 – Simulation Results and Model Setup, Zenodo, https://doi.org/10.5281/zenodo.3911282,
2020. a, b
Pringle, W. J. and Roberts, K. J.: CHLNDDEV/OceanMesh2D: OceanMesh2D V3.0.0, Zenodo,
https://doi.org/10.5281/zenodo.3721137, 2020. a, b
Pringle, W. J., Wirasaet, D., Suhardjo, A., Meixner, J., Westerink, J. J.,
Kennedy, A. B., and Nong, S.: Finite-Element Barotropic Model for the Indian
and Western Pacific Oceans: Tidal Model-Data Comparisons and Sensitivities,
Ocean Model., 129, 13–38, https://doi.org/10.1016/j.ocemod.2018.07.003,
2018a. a, b, c, d, e, f
Pringle, W. J., Wirasaet, D., and Westerink, J. J.: Modifications to Internal
Tide Conversion Parameterizations and Implementation into Barotropic Ocean
Models, EarthArXiv, p. 9, https://doi.org/10.31223/osf.io/84w53, 2018b. a
Ray, R. D.: Ocean self-attraction and loading in numerical tidal models,
Marine Geodesy, 21, 181–192, https://doi.org/10.1080/01490419809388134, 1998. a
Roberts, H. and Cobell, Z.: 2017 Coastal Master Plan. Attachment C3-25.1:
Storm Surge, Tech. rep., Coastal Protection and Restoration Authority, Baton
Rouge, LA,
available at: http://coastal.la.gov/wp-content/uploads/2017/04/Attachment-C3-25.1_FINAL_04.05.2017.pdf (last access: 23 February 2021),
2017. a
Roeber, V. and Bricker, J. D.: Destructive tsunami-like wave generated by surf
beat over a coral reef during Typhoon Haiyan, Nat. Commun., 6,
https://doi.org/10.1038/ncomms8854, 2015. a
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-y., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber,
J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar,
A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z.,
Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and
Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B.
Am. Meteorol. Soc., 91, 1015–1058,
https://doi.org/10.1175/2010BAMS3001.1, 2010. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D.,
Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez,
M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.:
The NCEP climate forecast system version 2, J. Climate, 27,
2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014. a
Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., and Steinhage, D.: A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry, Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, 2016. a
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W.,
Carrère, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D.,
Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A.,
Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J.,
Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K.,
Taguchi, E., and Yi, Y.: Accuracy assessment of global barotropic ocean tide
models, Rev. Geophys., 52, 243–282, https://doi.org/10.1002/2014RG000450,
2014. a, b, c, d, e
URS Group Inc: Final Coastal and Riverine High Water Mark Collection for
Hurricane Katrina in Mississippi. FEMA-1604-DR-MS, Task Orders 413 and 420,
Tech. rep., Federal Emergency Management Agency, Washington D.C.,
available at: https://www.fema.gov/pdf/hazard/flood/recoverydata/katrina/katrina_ms_hwm_public.pdf (last access: 23 February 2021),
2006a. a, b
URS Group Inc: High Water Mark Collection for Hurricane Katrina in
Louisiana. FEMA-1603-DR-LA, Task Orders 412 and 419, Tech. rep., Federal
Emergency Management Agency, Washington D.C.,
available at: https://www.fema.gov/pdf/hazard/flood/recoverydata/katrina/katrina_la_hwm_public.pdf (last access: 23 February 2021),
2006b. a, b
Verlaan, M., De Kleermaeker, S., and Buckman, L.: GLOSSIS: Global storm
surge forecasting and information system, in: Australasian Coasts & Ports
Conference 2015: 22nd Australasian Coastal and Ocean Engineering Conference
and the 15th Australasian Port and Harbour Conference, pp. 229–234,
Auckland, New Zealand, 2015. a
Vinogradov, S. V., Myers, E., Funakoshi, Y., and Kuang, L.: Development and
Validation of Operational Storm Surge Model Guidance, in: 15th Symposium on
the Coastal Environment at the 97th AMS Annual Meeting, Seattle, Washington,
2017. a
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S.,
Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme
sea levels show intensification of coastal flood hazard, Nat.
Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-04692-w, 2018. a, b
Wang, X., Chao, Y., Shum, C. K., Yi, Y., and Fok, H. S.: Comparison of two
methods to assess ocean tide models, J. Atmos. Ocean. Tech., 29, 1159–1167, https://doi.org/10.1175/JTECH-D-11-00166.1, 2012. a, b
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res.-Sol.
Ea., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996. a
Westerink, J. J., Luettich, R. A., and Muccino, J. C.: Modelling tides in the
western North Atlantic using unstructured graded grids, Tellus A, 46,
178–199, https://doi.org/10.1034/j.1600-0870.1994.00007.x, 1994. a
Westerink, J. J., Luettich, R. A., Feyen, J. C., Atkinson, J. H., Dawson, C.,
Roberts, H. J., Powell, M. D., Dunion, J. P., Kubatko, E. J., and Pourtaheri,
H.: A Basin- to Channel-Scale Unstructured Grid Hurricane Storm Surge Model
Applied to Southern Louisiana, Mon. Weather Rev., 136, 833–864,
https://doi.org/10.1175/2007MWR1946.1, 2008.
a, b
Zaron, E. D.: Topographic and frictional controls on tides in the Sea of
Okhotsk, Ocean Model., 117, 1–11, https://doi.org/10.1016/j.ocemod.2017.06.011,
2017. a
Zaron, E. D.: Simultaneous Estimation of Ocean Tides and Underwater Topography
in the Weddell Sea, J. Geophys. Res.-Oceans, 124,
3125–3148, https://doi.org/10.1029/2019JC015037, 2019. a
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale
modeling with SCHISM, Ocean Model., 102, 64–81,
https://doi.org/10.1016/j.ocemod.2016.05.002, 2016. a
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R.,
and Smolyar, I. V.: World Ocean Atlas 2018. Volume 2: Salinity, Tech. rep.,
NOAA Atlas NESDIS 81,
available at: http://www.nodc.noaa.gov/OC5/indprod.html (last access: 23 February 2021), 2019. a
Short summary
We improve and test a computer model that simulates tides and storm surge over all of Earth's oceans and seas. The model varies mesh resolution (triangular element sizes) freely so that coastal areas, especially storm landfall locations, are well-described. We develop systematic tests of the resolution in order to suggest good mesh design criteria that balance computational efficiency with accuracy for both global astronomical tides and coastal storm tides under extreme weather forcing.
We improve and test a computer model that simulates tides and storm surge over all of Earth's...