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S1 ADCIRC v55 Formulation and Solution Scheme

S1.1 Reformulation of Governing Equations

To facilitate a Continuous Galerkin Finite Element Method (CG-FEM) solution to the governing equations in spherical coordi-
nates (Eqs. (1)-(3) from the main manuscript) with minimal modification to FEM methods that exist for Cartesian coordinates
we use a rectilinear mapping projection. Previously in ADCIRC, the Carte Parallelogrammatique projection (CPP) has been5
used (Kolar et al., 1994a), which is an equidistant cylindrical projection that is neither area preserving (equal-area) nor angle
preserving (conformal). In the TELEMAC model a conformal cylindrical Mercator projection is used (Hervouet, 2007). Here,
we introduce a generalized cylindrical mapping system in which equal-area, equidistant, or conformal options can be arbitrarily
selected through the integer, p. The resulting transformation equations to map (λ, φ) into (x, y) are,

x=R(λ−λ0)cosφ0 (S1)10

y =


R sinφsecφ0 if p = 0 : Equal-area
Rφ if p = 1 : Equidistant (CPP)
R ln(tanφ+ secφ)cosφ0 if p = 2 : Conformal (Mercator)

(S2)

where (λ0, φ0) is the arbitrary projection origin. Applying this transformation to the governing equations (Eqs. (1)-(3) from
the main manuscript) results in the following form,

∂(ζ cospφ)

∂t
=−Lx

∂(UH)

∂x
−Ly

∂(V H cosφ)

∂y
(S3)
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where,

Lx = cosφ0(cosφ)p−1, Ly = (cosφ0)p−1, K = cosφ0 secφ20
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(
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)
≈
(
Cλλ Cλφ
Cφλ Cφφ

)
Finally, in order to avoid the node-to-node oscillations that arise from solving the primitive continuity equation in the CG-

FEM (Gray and Lynch, 1979) we reformulate it into the Generalized Wave Continuity Equation (GWCE) (Kinnmark, 1986;25
Westerink et al., 1992; Le Bars et al., 2010). The GWCE is obtained by differentiating the primitive continuity Eq. (S3) with
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respect to time, and adding on Eq. (S3) multiplied by a constant and positive weight, τ0, leading to,

∂2(ζ cospφ)

∂t2
+ τ0

∂(ζ cospφ)

∂t
=−Lx

∂Jx
∂x
−Ly

∂(Jy cosφ)

∂y
(S6)

Jx =H
∂U

∂t
+U

∂ζ

∂t
+ τ0UH (S7)

Jy =H
∂V

∂t
+V

∂ζ

∂t
+ τ0V H (S8)30

where ∂U
∂t and ∂V

∂t are found by substituting in the momentum Eqs. (S4), (S5). The final set of equations that are actually solved
by ADCIRC are Eqs. (S4), (S5), and (S6).

S1.2 Comparison to Previous Formulation

The form of the primitive continuity equation in Eq. (S3), and hence the GWCE in Eq. (S6), differs from the previously
employed formulation in ADCIRC by multiplying out Eq. (1) from the main manuscript by cospφ. Doing so avoids the35
appearance of the following nonlinear term which Kolar et al. (1994a) expands out,

1

Rcosφ

∂(V H cosφ)

∂φ
=

1

R

∂(V H)

∂φ
− tanφ

R
V H (S9)

Performing the above expansion removes the nonlinearity of the LHS of Eq. (S9) but the appearance of the stiff tanφ
R V H

term on the RHS is problematic since it approaches infinity near the poles, and its solution in the FEM using the GWCE does
not lead to mass conservation. In fact, we tried solving this form of the equations and found it to be inherently unstable for40
simulation. Furthermore, upon inspection of the 1994 ADCIRC code related to Kolar et al. (1994a), as well as present codes,
this term could not be found. Thus, we can only presume that it has always been omitted entirely in the ADCIRC code. With
this omission the equations solved no longer takes into account the Earth’s curvature. This may be acceptable for local or
regional domains (ADCIRC has traditionally been used to simulate the Western North Atlantic regional domain), but certainly
not global domains.45

In contrast, the form of Eq. (S3) presented here avoids the need to expand out the LHS of Eq. (S9) because the 1
cosφ multiple

is canceled out. It is clear that this form of the equations has desirable well-balanced properties that lead to mass conservation
and stability (cf. Hervouet, 2007; Castro et al., 2018). The only potential inconvenience arises from the requirement to now
solve for ζ cospφ in Eq. (S3) instead of ζ. However, in practice cospφmay be lumped in with other coefficients on the left-hand
side to recover ζ directly if we set cospφ to be constant across an element. Note also that in the equal-area projection (p= 0)50
the cospφ multiple is simply equal to 1. Moreover, in the case when p = 1, the formulation shown here is equivalent to that
used by Castro et al. (2018), and in the case when p = 2, the formulation is equivalent to that used in TELEMAC (Hervouet,
2007).

S1.3 Coordinate Rotation to Remove Pole Singularity

Even though a mesh can be generated on the sphere to cover the entire Earth, the spherical coordinate system prohibits the55
placement of a vertex on a pole due to the appearance of a singularity, and the cylindrical mapping system adopted by the
numerical model precludes any element from covering over a pole (Fig. S1). To avoid this problem, FVCOM locally switches
to the stereographic projection in the vicinity of the North Pole (Chen et al., 2016). Alternatively, the governing equations can
be formulated in terms of local coordinates avoiding the spherical coordinate form altogether (Comblen et al., 2009). Here, we
take advantage of the current positioning of Earth’s landmasses (antipodes) and rotate the (λ,φ) coordinates before applying60
the cylindrical projection so that the numerical poles are removed from the ocean domain, i.e., the poles are rotated onto land
(Fig. S1). In doing so we also rotate the Coriolis vector, the surface wind vectors and the internal tide wave drag tensor in
Eqs. (S4), (S5).
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Figure S1. Triangulations of the MinEle-C mesh design (refer to the main manuscript for design details). (a) Stereographic projection zoom-
in to the North Pole (red dot) with the element covering the North Pole colored green; (b) Mercator projection showing that the green colored
element from (a) becomes flat on the cylindrical mapping system; (c) Mercator projection of the rotated mesh that places the new North Pole
in the center of Greenland; the red cross indicates the new position of the centroid of the green color element in (a).
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S1.4 Numerical Solution Scheme

Here we present the temporal integration solution scheme of Eqs. (S4)-(S6). Readers are referred to Luettich and Westerink65
(2004) for details on the CG-FEM spatial discretization. For computational efficiency the method allows for the momentum
equations to be decoupled from the GWCE and solved separately in succession. First, the GWCE equations are solved for
ζ∗s+1 ≡ ζs+1− ζs (s indicates the time level) using a three time level approximation of ζ in the gravity wave term (gH ∂ζ

∂x ).
The solution of the GWCE equations are of the form:

ζ∗s+1 cospφ

∆t

[
1

∆t
+
τ0
2

]
+α1GW(ζ∗s+1) =

ζ∗s cospφ
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1
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]
70
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∂x

s

+Ly
∂(J̃y
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∂y
(S10)

GW(z) = Lx
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∂x

(
gHK

∂z

∂x

)
+Ly

∂

∂y

(
gH cosφKp−1 ∂z

∂y

)
(S11)

where ζ∗s ≡ ζs− ζs−1, J̃x = Jx− gH ∂ζ
∂x and J̃y = Jy − gH ∂ζ

∂y , i.e., the gravity wave (GW) term has been subtracted out
from the barotropic pressure gradient (BPG) term (∂Ψ

∂x ). In the previous versions of ADCIRC only the linear component of
the GW term (i.e., gh ∂ζ∂x ) is subtracted out from the BPG in order to keep the LHS matrix invariant to reduce computational75
cost. However, the matrix must be updated when wetting-drying is invoked anyway, and we find that solving the full GW term
(i.e., gH ∂ζ

∂x ) implicitly aids stability allowing for a larger time step to be employed. Equation (S10) is solved using a conjugate
gradient iterative (CGI) solver when α1 > 0 and/or when using consistent mass-matrix exact integration (Tanaka et al., 2011).
Alternatively, lumped mass nodal integration can be used along with setting α1 = 0 to avoid a matrix-inversion solve (Tanaka
et al., 2011).80

Second, the momentum equations are solved for Us+1 and V s+1 using a symmetrical two time level - Crank-Nicholson type
- scheme which has been found to be free from numerical artifacts (Kinnmark, 1986),
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(S12)
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]
(S13)

Equations (S12), (S13) are solved explicitly using a lumped mass matrix (Tanaka et al., 2011). Thus, ADCIRC is able to
significantly reduce the additional computational time usually associated with FEM models because it only requires one block
diagonal matrix-inversion solve in the GWCE when using the semi-implicit scheme/consistent mass-matrix exact integration.
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S1.5 Numerical Stability of the Scheme90

In previous research, stability analysis of the numerical scheme has been conducted primarily on the Wave Continuity Equation
(WCE) (Lynch and Gray, 1979), which is a special case of the GWCE when τ0 = τb. It has been shown that the WCE is third-
order accurate and unconditionally stable with the following choice of weighting factors (Lynch and Gray, 1979; Foreman,
1983),

α1 = α3 = κ≥ 1/4, α2 = 1− 2κ (S14)95

However, the stability of the solution to the GWCE Eq. (S10) depends strongly on the selection of τ0 in addition to the
weighting factors, α1,2,3 (Kinnmark, 1986). In fact, empirical evidence by multiple ADCIRC studies suggests that the choice
of weighting factors in Eq. (S14) does not lead to an unconditionally stable scheme. Instead, the time step is bounded by
the CFL restriction on the gravity wave speed (

√
gH∆t/∆x < Cr, in which a practical upper bound of Cr is 0.5 or smaller

(Dresback and Kolar, 2002)). It has been suggested this restriction on the stability of the GWCE is dominated by the nonlinear100
terms (Dresback and Kolar, 2002). Although it is true that nonlinear terms will prohibit unconditional stability, the implicit
form of the GW term in Eq. (S10) and of the barotropic pressure gradient term (∂Ψ

∂x ) in Eqs.(S12), (S13) should remove the
CFL restriction. To demonstrate this fact we conduct a von Neumann stability analysis on the one-dimensional (1-D) linear
GWCE equations, detailed in Sect. S1.5.1.

Kinnmark (1986) used a von Neumann analysis to show that for the choice of weighting factors in Eq. (S14), the set of105
equations Eqs. (S17), (S18) are only unconditionally stable when τ0 ≤ τb. Keep in mind that this means that τ0 has to be
smaller than the minimum value of τb in the computational domain, which is a very strict requirement on τ0 in deep water
(e.g., τb ≈ 10−6 s−1 if h= 1000 m, Cf = 0.01, U = 0.1 ms−1). Moreover, this requirement is at odds with the suggestion that
τb < τ0 < 10τb for good mass balance and solution properties (Kolar et al., 1994b), where τb here is the maximum value in the
computational domain.110

Further inspection of Kinnmark’s stability equations (Sect. S1.5.1) also reveals that the scheme using the weights in Eq. (S14)
is stable for any τ0 if Cr ≤ 4/3 when using exact integration. Thus, based on empirical evidence we can assume that in practice
models do not satisfy τ0 ≤ τb everywhere, and are thus bounded by the aforementioned CFL constraint (Cr ≤ 4/3 in 1-D,
which is typically reduced by a

√
2/2 multiple in 2-D (Kinnmark and Gray, 1984)) when using the choice of weighting factors

in Eq. (S14).115
To try and circumvent the τ0 ≤ τb stability requirement, we propose an alternative (non-centered) weighting scheme,

α1 = α2 = κ, α3 = 1− 2κ (S15)

The aim of this weighting scheme is to place greater weight on the future and current time levels than the previous time level,
i.e., improve the implicit nature of the scheme compared to Eq. (S14). In turns out that this scheme is unconditionally stable
when using exact integration if:120

1/3≤ κ≤ 1/2, τ0∆t≤ 16

3
(3κ− 1) (S16)

hence the strict requirement on τ0 (≤ τb) for unconditional stability in the centered scheme has been eliminated, with κ= 1/2
providing the most relaxed constraints for τ0∆t.

S1.5.1 Stability Analysis of the 1-D Linearized GWCE

The linearized 1-D form of Eqs. (S10)-(S13), sans atmospheric and astronomical forcing terms (hence the internal wave drag125
tensor is also omitted) is as follows,

ζ∗s+1

∆t

(
1

∆t
+
τ0
2

)
+α1gh

∂2ζ∗s+1

∂x2
=
ζ∗s

∆t

(
1

∆t
− τ0

2

)
− (α1 +α2)gh

∂2ζs

∂x2
−α3gh

∂2ζs−1

∂x2
+ (τ0− τsb )

∂U

∂x

s

(S17)
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Us+1

(
1

∆t
+
τsb
2

)
= Us

(
1

∆t
− τsb

2

)
− g

2

(
∂ζs

∂x
+
∂ζs+1

∂x

)
(S18)

The last term on the right hand side of Eq. (S17) is responsible for the difference between the WCE and GWCE.130
Herein a von Neumann/Fourier stability analysis of the linearized 1-D GWCE Eq. (S17) and non-conservative momentum

Eq. (S18) solved using linear finite-elements in space is conducted following Kinnmark (1986). In this analysis the water depth,
h, is assumed to be constant and mesh vertices are assumed to be equally spaced. Selecting a solution of the form ei(β∆t+σj∆t)

yields the following third-order polynomial equation for the propagation factor λ= eiβ∆t,

a0 + a1λ+ a2λ
2a3λ

3 = 0 (S19)135

a3 = (1 +T0 + 4Fα1)(1 +Tb) (S20)

a2 = (1 +T0 + 4Fα1)(−1 +Tb) + (−2 + 4Fα2)(1 +Tb) + (4E/A2)(T0−Tb) (S21)

a1 = (1−T0 + 4Fα3)(1 +Tb) + (−2 + 4Fα2)(−1 +Tb) + (4E/A2)(T0−Tb) (S22)
a0 = (1−T0 + 4Fα3)(−1 +Tb) (S23)

where,140

T0 = τ0∆t/2

Tb = τb∆t/2

A= 1−msin2 (σ∆x/2)

m=

{
2/3 for consistent mass-matrix exact integration
0 for lumped mass-matrix nodal integration

F =
Cr2

A
sin2 (σ∆x/2)145

E =AF cos2 (σ∆x/2)

and we define the following,

p0 = a3− a2 + a1− a0 (S24)
p1 = 3a3− a2− a1 + 3a0 (S25)
p2 = 3a3 + a2− a1− 3a0 (S26)150

p3 = a3 + a2 + a1 + a0 (S27)
∆2 = p1p2− p0p3 (S28)

A necessary and sufficient condition for stability, arising from Routh-Hurwitz criterion, requires that p0,1,2,3 > 0 and ∆2 > 0
(Kinnmark, 1986).

To simplify the equations we introduce a weighting scheme that reduces α1,2,3 to a single variable, κ. We investigate a155
centered scheme followed by a non-centered scheme skewed towards the newest time levels.
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S1.5.2 Centered scheme

First, the following centered scheme is chosen: α1 = α3 = κ, and α2 = 1− 2κ. This reduces p0,1,2,3, ∆2 to the following,

p0 = 8[1 +F (4κ− 1)] (S29)

p1 = 8[T0 +Tb +FTb(4κ− 1)− (E/A2)(T0−Tb)] (S30)160

p2 = 8[F +T0Tb] (S31)

p3 = 8[FTb + (E/A2)(T0−Tb)] (S32)

∆2 = 64[FT0 +T0T
2
b +T 2

0 Tb +FT0T
2
b (4κ− 1)− (E/A2)(T0−Tb)(1 + 4Fκ+T0Tb)] (S33)

Which leads to the following conditions for stability,
Equation Cr −→∞ τ0 −→∞

p0 κ≥ 1/4 κ < 1/4 and Cr2 ≤ 1−m
1−4κ

p1 κ≥ 1/4 and τ0 ≤ 4κτb Cr2 ≤ 4(m/2− 1)2

p2 none none
p3 none none
∆2 κ≥ 1/4 and τ0 ≤ τb Cr2 ≤ 4(m/2− 1)2

165

Thus, for any Cr, the centered scheme is stable if κ≥ 1/4 and τ0 ≤ τb. Alternatively, it is stable if κ≥ 1/4 and Cr2 ≤
4(m/2− 1)2, or κ < 1/4 and Cr2 ≤ 1−m

1−4κ . The stability constraints are similar to those for the WCE presented by Lynch and
Gray (1979), sans the requirement on τ0.

S1.5.3 Non-centered scheme

Second, a non-centered scheme skewed towards the s+ 1 and s time levels is chosen: α1 = α2 = κ, and α3 = 1− 2κ. This170
reduces p0,1,2,3, ∆2 to the following,

p0 = 8[1 +F (1− 2κ)] (S34)

p1 = 8
[
T0 +Tb +F (6κ− 2 +Tb(1− 2κ))− (E/A2)(T0−Tb)

]
(S35)

p2 = 8[T0Tb +F (1 + 2Tb(3κ− 1))] (S36)

p3 = 8[FTb + (E/A2)(T0−Tb)] (S37)175

∆2 = 64[2F 2(T 2
b (−6κ2 +κ(5−T0)− 1) + 2Tb(9κ

2− 6κ+ 1) + 3κ)

+F (T0T
2
b + 12T0Tbκ− 4T0Tb +T0 + 6T 2

b κ− 2T 2
b ) +FT0 +T 2

0 Tb +T0T
2
b ] (S38)

Which leads to the following conditions for stability,
Equation Cr −→∞ τ0 −→∞

p0 κ≤ 1/2 κ > 1/2 and Cr2 ≤ 1−m
2κ−1

p1 1/3 ≤ κ≤ 1/2 and τ0∆t≤ 4(2−m)(3κ− 1) Cr2 ≤ 4(m/2− 1)2

p2 κ≥ 1/3 none
p3 none none
∆2 κ≥ 1/3 none

Thus, for any Cr, the non-centered scheme is stable if 1/3≤ κ≤ 1/2 and τ0∆t≤ 4(2−m)(3κ− 1). Alternatively, it is180
stable if 1/3≤ κ≤ 1/2 and Cr2 ≤ 4(m/2− 1)2, or κ > 1/2 and Cr2 ≤ 1−m

2κ−1 .

S2 Model Specifications

In the following sections we detail the pertinent model specifications for the ADCIRC v55 code used in this study. The resulting
model setup containing the mesh and input files has been archived in Pringle (2020).
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S2.1 Control Settings and Numerical Parameters185

1. The momentum equations are used in non-conservative form with the lateral stress tensor in a symmetrical velocity-
based form as written in Eqs. (2), (3) of the main manuscript. The full gravity wave term is solved implicitly in the
GWCE as written in Eqs. (S10), (S11). In ADCIRC, the aforementioned corresponds to setting the ‘fort.15’ control file
parameter, IM, to a value of 513113 (see: https://wiki.adcirc.org/wiki/IM).

2. The Mercator projection (p = 2 in Eq. (S2)) is adopted because of its conformal property. To enable this in an ADCIRC190
simulation the ‘fort.15’ control file parameter, ICS, is set to a value of 22 (see: https://wiki.adcirc.org/wiki/ICS).

3. The mesh is rotated internally within ADCIRC to remove the pole singularity (Sect. S1.3). To enable this in an ADCIRC
simulation the ‘fort.15’ control file parameter, ICS, is set to a negative value (i.e, ICS = -22, see: https://wiki.adcirc.org/
wiki/ICS). In addition, a ‘fort.rotm’ input file is provided that indicates the desired rotation (we choose the “Greenland-
Antarctica” option listed at https://wiki.adcirc.org/wiki/Fort.rotm).195

4. κ = 0.5 in Eq. (S15) is adopted because it leads to the least restrictive condition on τ0∆t in Eq. (S16). The corresponding
‘fort.15’ control file weighting factors, A00, B00, C00, are set to 0.5, 0.5, 0 (see: https://wiki.adcirc.org/wiki/A00,_B00,
_C00).

5. ∆t is set to approximately the largest value that enables reliably stable simulations based on experience and trial-and-
error. Although the linear CFL condition is satisfied unconditionally, nonlinear terms introduce instabilities on finer200
meshes in shallow depths, and could be related to the CFL condition based on the fluid velocity (instead of the gravity
wave speed), i.e., Cr = Umax∆t/∆x. ∆t= 120 s was used for all simulations on the global mesh without local re-
finement, while the stable ∆t was generally smaller for the storm tide simulations on the meshes with local refinement.
Hurricane Katrina: ∆t = 120 s on the MinEle = 500-m mesh, and ∆t = 50 s on the MinEle = 150-m mesh. Super Typhoon
Haiyan: ∆t = 80 s on the MinEle = 500-m mesh, and ∆t = 30 s on the MinEle = 150-m mesh. Based on these results and205
rearranging the CFL condition for the maximum fluid velocity, Umax with Cr set to 1 as the stability criteria and using
the actual minimum element edgelengths of the mesh (rather than the nominal minimum resolution, MinEle) we obtain
Umax = 1.1− 2.5 m/s. Therefore, setting Umax to 2.5 m/s in the fluid velocity-based CFL condition could be used as a
guideline for determining a stable ∆t for ADCIRC simulations using the semi-implicit time integration. However, this
is only a guideline and does not guarantee stability. The corresponding ADCIRC ‘fort.15’ control file parameter for ∆t210
is DTDP (https://wiki.adcirc.org/wiki/DTDP).

6. We set τ0 = 8/(5∆t), which is chosen to satisfy the stability criteria for τ0∆t in Eq. (S16), with κ = 0.5 and a safety
factor of 0.6 applied to account for any possible 2-D effects. For instance, if ∆t = 120 s then τ0 = 1/75 s−1. The
corresponding ADCIRC ‘fort.15’ control file parameter for τ0 is TAU0 (https://wiki.adcirc.org/wiki/TAU0).

7. Wetting-drying is enabled but its action is limited to regions with very large tidal ranges or the storm landfall regions215
because the meshes were built without an overland floodplain in this study. To enable wetting-drying in an ADCIRC
simulation, the ‘fort.15’ control file parameter, NOLIFA, is set to 2 (see: https://wiki.adcirc.org/wiki/NOLIFA).

S2.2 Bathymetric Interpolation

To interpolate the bathymetry from the Digital-Elevation-Model (DEM) structured grid to the unstructured mesh vertices we
use a cell-averaging technique native to the OceanMesh2D software, called through the “interp” function wrapper (cf. Roberts220
et al., 2019). Given the resolution of the meshes and accuracy of the DEM data used in this study, a 5 m floor on the ocean
depth was applied.

S2.3 Tidal Potential

The equilibrium tidal potential is prescribed internally in ADCIRC using the analytical formulation presented in Luettich and
Westerink (1992, Eq. (27), p. 17). The time-dependent nodal factors and equilibrium arguments for each tidal constituent are225
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computed when constructing the ADCIRC ‘fort.15’ control file with the “Make_f15” OceanMesh2D function wrapper based
on the start and end datetimes of the simulation. Specifically, the nodal factor is set to a constant for each simulation based
on the mean datetime, and the equilibrium argument is based on the start datetime. The OceanMesh2D function to compute
the nodal factors and equilibrium arguments is adopted from the UTide MATLAB toolbox (Codiga, 2011). In addition, the
ADCIRC ‘fort.15’ control file parameter, NTIP, is set to 1 or 2 (see: https://wiki.adcirc.org/wiki/NTIP), and NTIF is set to230
the number of tidal constituents used (https://wiki.adcirc.org/wiki/NTIF) – this is automatically handled by the “Make_f15”
function.

S2.4 Self-attraction and Loading Tide

We prescribe the self-attraction and loading (SAL) tide by reconstructing the elevation signal from harmonic constituents
provided by the FES2014 (Lyard et al., 2006) data assimilated tidal solutions (ftp://ftp.legos.obs-mip.fr/pub/FES2012-project/235
data/LSA/FES2014/). These are linearly interpolated from the FES2014 structured grid onto our unstructured mesh vertices.
The “Make_f24” OceanMesh2D function is used to perform this process and write out the data into a ‘fort.24’ ADCIRC
input file (see: https://wiki.adcirc.org/wiki/Fort.24_file). To use the SAL information in an ADCIRC simulation, the ‘fort.15’
control file parameter, NTIP, is set to a value of 2 (see: https://wiki.adcirc.org/wiki/NTIP) – this is automatically handled by
the “Make_f24” function.240

S2.5 Atmospheric Forcing

In this study atmospheric forcing is either, interpolated from gridded meteorological fields, or reconstructed from the symmetric
Holland parametric vortex model internally in ADCIRC during the simulation. The choice of atmospheric forcing type is
dictated by the ADCIRC ‘fort.15’ control file parameter, NWS (see: https://wiki.adcirc.org/wiki/NWS).

To use a single dataset of gridded meteorological fields in GRIB2 file format (e.g., CFSR and CFSv2 as used in this study),245
NWS is set to 14. To insert a local inset of gridded OceanWeather Inc. (OWI) ASCII file format meteorological fields into the
GRIB2 file meteorology, NWS is set to -14. Simultaneously, the WTIMINC ‘fort.15’ control file parameter is set to the time
interval of the meteorological data in seconds (if NWS = -14, first value is for the GRIB2 meteorology, second value is for the
OWI meteorology, see: https://wiki.adcirc.org/wiki/WTIMINC).

To use the symmetric Holland parametric vortex model, NWS is set to 8, a ‘fort.22’ meteorology control file is supplied (see:250
https://wiki.adcirc.org/wiki/Fort.22_file_format#NWS_.3D_8), and we choose the ‘fort.15’ control file parameter, BLAdj, to
be 0.78 (see: https://wiki.adcirc.org/wiki/YYYY_MM_DD_HH24_StormNumber_BLAdj).

S2.6 Internal Tide Wave Drag

The “Calc_IT_Fric” OceanMesh2D function is used to compute the internal tide wave drag tensor, C offline using the local-
generation formulation, incorporating saturation at supercritical topography, and a cutoff depth of 250 m below which C is set255
to zero (cf. Pringle et al., 2018b). Critical to this computation is the determination of the topographic gradients. To perform this
calculation the OceanMesh2D “interp” function wrapper is used prior to the “Calc_IT_Fric” function call. “interp” employs
a cell-averaging type technique where the magnitude of the topographic gradients at the mesh vertices are computed as the
root-mean-square of the topographic gradients directly computed on the DEM points located within a region determined by
a measure of the local mesh size. The sign of the topographic gradient is then determined by the sign of the gradient of the260
interpolated bathymetry on the mesh vertices. The aim of this interpolation strategy is to ensure that sub-grid information of
the topographic gradient on the original DEM is preserved. In this way the form of the internal tide wave drag tensor used here
can be thought of as a hybrid of the Jayne and St. Laurent (2001) sub-grid roughness method and Lyard et al. (2006); Zaron
and Egbert (2006) gradient-based methods.

The internal tide wave drag tensor contains a free parameter Cit (see the main manuscript). In this study we consider Cit to265
be a globally constant calibration coefficient that should be tuned so that the model simulation has the correct total barotropic
tidal energy in the deep ocean (h > 1 km). For this purpose we use the total available tidal potential energy of the 5-constituent
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Table 1. Calibrated Cit values used for each mesh design (refer to Table 2 from the main manuscript for design details).

Design Code
Variable Mesh Size Parameter Ref A B C
MinEle 2.13 2.10 2.02 1.87
TLS 2.13 2.01 1.94 1.65
FL 2.13 2.04 1.95 1.90

Figure S2. Map of the infinity-norm of the internal tide wave drag tensor, C on the reference mesh.

tidal signal,

APEt|tot =
ρg

4

∫∫ 5∑
k=1

A2
k dA (S39)

where A is the tidal amplitude, and k indicates the arbitrary constituent number (amongst the five leading constituents, M2, S2,270
N2, K1, O1). Cit is varied (to a precision of ±0.01) until the simulated APEt|tot in the deep ocean matches that of the TPXO9-
Atlas (= 153 PJ). The resulting Cit values for the various mesh designs are shown in Table 1. A map of the infinity-norm of the
C tensor on the reference mesh is shown in Fig. S2.

To use the internal tide wave drag tensor in an ADCIRC simulation, the data is written out as an “internal_tide_friction”
‘fort.13’ input file attribute (see: https://wiki.adcirc.org/wiki/Fort.13_file#Internal_Tide_Energy_Conversion).275
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Figure S3. Map of spatially varying bottom friction coefficients, Cf on the reference mesh.

S2.7 Quadratic Bottom Friction

For all mesh designs, Cf in τb (refer to main manuscript) is set to 0.0025 everywhere except under the Antarctic and Greenland
ice shelves where Cf is doubled (c.f. Zaron, 2019), and in the Indian and Western Pacific Oceans where values from Pringle
et al. (2018a) are used (Fig. S3). In particular, small values of Cf (ranging between 0.00075 and 0.002) in the Yellow Sea
are important to reduce the tidal error here (Lefevre et al., 2000; Pringle et al., 2018a). Other variations of Cf outside of280
these regions would likely also further reduce the tidal error but the determination of a suitable unified framework to calibrate
spatially varying Cf globally is left for future work.

To use quadratic bottom friction in an ADCIRC simulation, the NOLIBF ‘fort.15’ control file attribute is set to 1 (see: https:
//wiki.adcirc.org/wiki/NOLIBF), and the “quadratic_friction_coefficient_at_sea_floor” ‘fort.13’ input file attribute is used to
specify spatially varying Cf (see: https://wiki.adcirc.org/wiki/Fort.13_file#Quadratic_Friction_coefficient).285

S2.8 Lateral Mixing

The lateral mixing coefficient, νt is calculated through the Smagorinsky turbulence closure model with a coefficient of 0.2
(Dresback et al., 2005). Model results were insensitive to this coefficient for the values we tested (0.05, 0.10, 0.20) but it can
help for model stability to use a larger value.

To use the Smagorinksy model in an ADCIRC simulation, the ESLM ‘fort.15’ control file attribute is set equal to the negative290
value of the Smagorinksy coefficient (i.e., ESLM = -0.2) (see: https://wiki.adcirc.org/wiki/ESLM).
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