Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-1081-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1081-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a MetUM (v 11.1) and NEMO (v 3.6) coupled operational forecast model for the Maritime Continent – Part 1: Evaluation of ocean forecasts
Tropical Marine Science Institute, National University of Singapore,
Singapore 119222, Singapore
Claudio Sanchez
Met Office, Exeter, EX1 3PB, United Kingdom
Centre for Climate Research Singapore, Meteorological Service
Singapore, Singapore 537054, Singapore
Boon Chong Peter Heng
Centre for Climate Research Singapore, Meteorological Service
Singapore, Singapore 537054, Singapore
Rajesh Kumar
Centre for Climate Research Singapore, Meteorological Service
Singapore, Singapore 537054, Singapore
Jianyu Liu
Centre for Climate Research Singapore, Meteorological Service
Singapore, Singapore 537054, Singapore
Xiang-Yu Huang
Centre for Climate Research Singapore, Meteorological Service
Singapore, Singapore 537054, Singapore
Pavel Tkalich
Tropical Marine Science Institute, National University of Singapore,
Singapore 119222, Singapore
Related authors
No articles found.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Claudio Sánchez, Suzanne Gray, Ambrogio Volonté, Florian Pantillon, Ségolène Berthou, and Silvio Davolio
Weather Clim. Dynam., 5, 1429–1455, https://doi.org/10.5194/wcd-5-1429-2024, https://doi.org/10.5194/wcd-5-1429-2024, 2024
Short summary
Short summary
Medicane Ianos was a very intense cyclone that led to harmful impacts over Greece. We explore what processes are important for the forecasting of Medicane Ianos, with the use of the Met Office weather model. There was a preceding precipitation event before Ianos’s birth, whose energetics generated a bubble in the tropopause. This bubble created the necessary conditions for Ianos to emerge and strengthen, and the processes are enhanced in simulations with a warmer Mediterranean Sea.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024, https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
Short summary
This paper describes a coupled atmosphere–mixed-layer ocean simulation setup that will be used to study weather processes in Southeast Asia. The set-up has been used to compare high-resolution simulations, which are able to partially resolve storms, to coarser simulations, which cannot. We compare the model performance at representing variability of rainfall and sea surface temperatures across length scales between the coarse and fine models.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Cited articles
Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop
size distribution for single-moment microphysics schemes, Q. J. Roy. Meteor.
Soc., 138, 2151–2162, 2012.
Aldrian, E., Sein, D. V., Jacob, D., Gates, L. D., and Podzun, R.: Modeling
Indonesian rainfall with a coupled regional model, Clim. Dynam., 25, 1–17,
2005.
Aranami, K., Davies, T., and Wood, N.: A mass restoration scheme for
limited-area models with semi-Lagrangian advection, Q. J. Roy. Meteor. Soc.,
141, 1795–1803, 2015.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Birch, C. E., Parker, D. J., Marsham, J. H., Copsey, D., and Garcia-Carreras,
L.: A seamless assessment of the role of convection in the water cycle of
the West African Monsoon, J. Geophys. Res.-Atmos., 119, 2890–2912, 2014.
Birch, C. E., Webster, S., Peatman, S. C., Parker, D. J., Matthews, A. J.,
Li, Y., and Hassim, M. E.: Scale interactions between the MJO and the western
Maritime Continent, J. Climate, 29, 2471–2492, 2016.
Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific, Mon.
Weather Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2, 1969.
Boutle, I. A., Eyre., J. E. J., and Lock, A. P.: Seamless stratocumulus
simulation across the turbulent gray zone, Mon. Weather Rev., 142, 1655–1668,
2014.
Bush, M., Allen, T., Bain, C., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., Lean, H., Lock, A., Manners, J., Mittermaier, M., Morcrette, C., North, R., Petch, J., Short, C., Vosper, S., Walters, D., Webster, S., Weeks, M., Wilkinson, J., Wood, N., and Zerroukat, M.: The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1, Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020, 2020.
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured
by tide gauges from global oceans – the Joint Archive for Sea Level
holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for
Environmental Information, Dataset, https://doi.org/10.7289/V5V40S7W, 2015.
Canuto, V., Howard, A., Cheng, Y., and Dubovikov, M.: Ocean turbulence, Part
I: One-point closure model-momentum and heat vertical diffusivities, J.
Phys. Oceanogr., 31, 1413–1426, 2001.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from
continents: Latitudinal and seasonal variations, J. Hydrometeorol., 3,
660–687, 2002.
Davies, H.: A lateral boundary formulation for multi-level prediction
models, Q. J. Roy. Meteor. Soc., 102, 405–418, 1976.
Dipankar, A., Webster, S., Sun, X., Sanchez, C., North, R., Furtado, K.,
Wilkinson, J., Lock, A., Vosper, S., Huang, X.-Y., and Barker, D.: SINGV: a
convective-scale weather forecast model for Singapore, Q. J. Roy. Meteor.
Soc., 146, 4131–4146, https://doi.org/10.1002/qj.3895, 2020.
Donlon, C. J., Martin, M., Stark, J. D., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational sea surface temperature and sea ice analysis
(OSTIA), Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code,
I: Choosing a configuration for a large-scale model, Q. J. Roy. Meteor.
Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107,
1996.
Flather, R. A.: A tidal model of the northwest European continental shelf,
Mem. Soc. R. Sci. Liege, 10, 141–164, 1976.
Giorgi, F. and Gutowski Jr., W. J.: Regional dynamical downscaling and the
CORDEX initiative, Ann. Rev. Env. Res., 40, 467–490, 2015.
Graham, J. A., O'Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., Guihou, K., Brereton, A., Arnold, A., Wakelin, S., Castillo Sanchez, J. M., and Mayorga Adame, C. G.: AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf, Geosci. Model Dev., 11, 681–696, https://doi.org/10.5194/gmd-11-681-2018, 2018.
Gvirtzman, Z. and Stern, R. J.: Bathymetry of Mariana trench-arc system and
formation of the Challenger Deep as a consequence of weak plate coupling,
Tectonics, 23, TC2011, https://doi.org/10.1029/2003TC001581, 2004.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., and Forbes, R: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Huang, X.-Y., Barker, D., Webster, S., Dipankar, A., Lock, A., Mittermaier, M., Sun, X. M., North, R., Darvell, R., Boyd, D., Lo, J., Liu, J. Y., Macpherson, B., Heng, P., Maycock, A., Pitcher, L., Tubbs, R., McMillan, M., Zhang, S. J., Hagelin, S., Porson, A., Song, G. T., Beckett, B., Cheong, W. K., Semple, A., and Gordon, C.: SINGV – the convective-scale numerical weather
prediction system for Singapore, ASEAN J. Sci. Tech. Dev., 36, 81–90,
2019.
King, R. R., While, J., Martin, M. J., Lea, D. J., Lemieux-Dudon, B.,
Waters, J., and O'Dea, E.: Improving the initialisation of the Met Office
operational shelf-seas model, Ocean. Modell., 130, 1–14,
https://doi.org/10.1016/j.ocemod.2018.07.004, 2018.
Kumar, R., Sanchez, C., Heng, B. C. P., Thompson, B., Liu, J., Huang, X.-Y., and Tkalich, P.: Development of a MetUM (v 11.1) and NEMO (v 3.6) coupled operational forecast model for the Maritime Continent – Part 2: Evaluation of Atmospheric Forecasts, in preparation, 2021.
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, NCAR Technical Note, NCAR/TN-460 STR, CGD Division of the National Center for Atmospheric Research, Boulder, USA, 105 pp., 2004.
Lee, T.-C., Knutson, T. R., Nakaegawa, T., Ying, M., and Cha, E. M.: Third
assessment on impacts of climate change on tropical cyclones in the Typhoon
Committee Region – Part I: Observed changes, detection and attribution,
Tropical Cyclone Res. Rev., 9, 1–22, 2020.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., and Madec,
J: Bio-physical feedbacks on the tropical pacific climate in a coupled
general circulation model, Clim. Dynam., 28, 503–516, 2007.
Levier, B., Tréguier, A. M., Madec, G., and Garnier, V.: Free surface and variable volume in the NEMO code, Tech. rep., MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47 pp., 2007.
Lewis, H. W., Castillo Sanchez, J. M., Graham, J., Saulter, A., Bornemann, J., Arnold, A., Fallmann, J., Harris, C., Pearson, D., Ramsdale, S., Martínez-de la Torre, A., Bricheno, L., Blyth, E., Bell, V. A., Davies, H., Marthews, T. R., O'Neill, C., Rumbold, H., O'Dea, E., Brereton, A., Guihou, K., Hines, A., Butenschon, M., Dadson, S. J., Palmer, T., Holt, J., Reynard, N., Best, M., Edwards, J., and Siddorn, J.: The UKC2 regional coupled environmental prediction system, Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, 2018.
Lewis, H. W., Castillo Sanchez, J. M., Arnold, A., Fallmann, J., Saulter, A., Graham, J., Bush, M., Siddorn, J., Palmer, T., Lock, A., Edwards, J., Bricheno, L., Martínez-de la Torre, A., and Clark, J.: The UKC3 regional coupled environmental prediction system, Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, 2019a.
Lewis, H. W., Castillo Sanchez, J. M., Siddorn, J., King, R. R., Tonani, M., Saulter, A., Sykes, P., Pequignet, A.-C., Weedon, G. P., Palmer, T., Staneva, J., and Bricheno, L.: Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf?, Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, 2019b.
Li, Y., Jourdain, N. C., Taschetto, A. S., Gupta, A. S., Argüeso, D.,
Masson, S., and Cai, W.: Resolution dependence of the simulated precipitation
and diurnal cycle over the Maritime Continent, Clim. Dynam., 48, 4009–4028, 2017.
Li, Y., Peng, S., Wang, J., and Yan, J.: Impacts of nonbreaking
wave-stirring-induced mixing on the upper ocean thermal structure and
typhoon intensity in the South China Sea, J. Geophys. Res.-Oceans, 119,
5052–5070, https://doi.org/10.1002/2014JC009956, 2014.
Lilly, D. K.: On the numerical simulation of buoyant convection, Tellus A, 14,
148–172, https://doi.org/10.3402/tellusa.v14i2.9537, 1962.
Ling, Z., Wang, G., Wang, C., and Fan, Z.-S.: Different effects of tropical
cyclones generated in the South China Sea and the northwest Pacific on the
summer South China Sea circulation, J. Oceanogr., 67, 347–355,
2011.
Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., and Smith, R. N. B.: A
new boundary layer mixing scheme, Part I: Scheme description and SCM tests,
Mon. Weather Rev., 128, 3187–3199, 2001.
Love, B. S., Matthews, A. J., and Lister, G. M. S.: The diurnal cycle of
precipitation over the Maritime Continent in a high resolution atmospheric
model, Q. J. Roy. Meteor. Soc., 137, 934–947, 2011.
Lyard, F., Lefèvre, F., Letellier, T., and Francis O.: Modelling the global ocean tides: modern insights from
FES2004, Ocean Dynam., 56, 394–415, 2006.
Madden, R. A. and Julian, P. R.: Observations of the 40–50-day tropical
oscillation – a review, Mon. Weather Rev., 122, 814–837, 1994.
Madec, G. and the NEMO team: NEMO reference manual 3_6_STABLE:NEMO ocean engine, Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27, ISSN 1288-1619, 2016.
Manners, J., Vosper, S. B., and Roberts, N.: Radiative transfer over resolved
topographic features for high resolution weather prediction, Q. J. Roy.
Meteor. Soc., 138, 720–733, 2011.
McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S. N.,
Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., and Yu, W.: RAMA: The
Research Moored Array for African-Asian-Australian Monsoon Analysis and
Prediction, B. Am. Meteorol. Soc., 90, 459–480,
https://doi.org/10.1175/2008BAMS2608.1, 2009.
Meehl, G. A.: Development of global coupled ocean-atmosphere general
circulation models, Clim. Dynam., 5, 19–33, 1990.
Met Office: available at: https://code.metoffice.gov.uk/trac/um/wiki, last access: 15 February 2021.
Miller, A. J., Collins, M., Gualdi, S., Jensen, T. G., Misra, V., Pezzi, L.
P., Pierce, D. W., Putrasahan, D., Seo, H., and Tseng, Y. H.: Coupled
ocean-atmosphere modeling and predictions, J. Mar. Res., 75, 361–402,
https://doi.10.1357/002224017821836770, 2017.
Neale, R. and Slingo, J.: The Maritime Continent and its role in the global
climate: a GCM study, J. Climate, 16, 834–848, 2003.
Qu, T., Du, Y., Strachan, J., Meyers, G., and Slingo, J.: Sea surface
temperature and its variability in the Indonesian region, Oceanography,
18, 50–61, 2005.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole mode in the tropical Indian Ocean, Nature, 401, 360–363, 1999.
Siddorn, J. R. and Furner, R.: An analytical stretching function that
combines the best attributes of geopotential and terrain-following vertical
coordinates, Ocean. Model., 66, 1–3, 2013.
Smith, R. N. B.: A scheme for predicting layer cloud and their water content
in a general circulation model, Q. J. Roy. Meteor. Soc., 116, 435–460,
https://doi.org/10.1002/qj.49711649210, 1990.
St. Laurent, L., Simmons, H., and Jayne, S.: Estimating tidally driven mixing
in the deep ocean, Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002G L015633, 2002.
Thompson, B., Sanchez, C., Sun, X., Song, G., Liu, J., Huang, X.-Y., and
Tkalich, P.: A high-resolution atmosphere–ocean coupled model for the
western Maritime Continent: development and preliminary assessment, Clim.
Dynam., 52, 3951–3981,
https://doi.org/10.1007/s00382-018-4367-0, 2018.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265, 2013.
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013.
Vincent, C. L. and Lane, T. P.: A 10-year austral summer climatology of
observed and modeled intraseasonal, mesoscale, and diurnal variations over
the Maritime Continent, J. Climate, 30, 3807–3828,
https://doi.org/10.1175/JCLI-D-16-0688.1, 2017.
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
ocean-atmosphere dynamics in the Indian Ocean during 1997–98, Nature,
401, 356–360, 1999.
Wei, J., Malanotte-Rizzoli, P., Eltahir, E., Xue, P., Zhang, D., and Xu, D.:
Coupling of a regional atmospheric model (RegCM3) and a regional oceanic
model (FVCOM) over the Maritime Continent, Clim. Dynam., 43, 1575–1594,
2014.
Wilson, D. R. and Ballard, S. P.: A microphysically based precipitation
scheme for the UK meteorological office unified model, Q. J. Roy. Meteor.
Soc., 125, 1607–1636, 1999.
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and
Morcrette, C. J.: PC2: A prognostic cloud fraction and condensation scheme,
I: Scheme description, Q. J. Roy. Meteor. Soc., 134, 2093–2107,
https://doi.org/10.1002/qj.333, 2008.
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J. Roy. Meteor.
Soc., 140, 1505–1520, 2014.
Xue, P., Eltahir, E. A. B., Malanotte-Rizzoli, P., and Wei, J.: Local
feedback mechanisms of the shallow water region around the Maritime
Continent, J. Geophys. Res.-Oceans, 119, 6933–6951, 2014.
Xue, P., Malanotte-Rizzoli, P., Wei, J., and Eltahir, E. A. B.: Coupled
ocean-atmosphere modeling over the Maritime Continent: A review, J. Geophys.
Res.-Oceans, 125, 2019JC014978,
https://doi.org/10.1029/2019JC014978, 2020.
Yang, Z., Richardson, P., Chen, Y., Kelley, J. G. W., Myers, E., Aikman, F.
I., Peng, M., and Zhang, A.: Model Development and Hindcast Simulations of
NOAA's Gulf of Maine Operational Forecast System, J. Mar. Sci. Eng., 4, 77, https://doi.org/10.3390/jmse4040077,
2016.
Zhang, A., Hess, K. W., and Aikman, F. I.: User-based skill assessment
techniques for operational hydrodynamic forecast systems, J. Oper. Oce., 3,
11–24, 2010.
Short summary
This article describes the development and ocean forecast evaluation of an atmosphere–ocean coupled prediction system for the Maritime Continent domain, which includes the eastern Indian and western Pacific oceans. The coupled system comprises regional configurations of the atmospheric model MetUM and ocean model NEMO, coupled using the OASIS3-MCT libraries. The model forecast deviation of selected fields relative to observations is within acceptable error limits of operational forecast models.
This article describes the development and ocean forecast evaluation of an atmosphere–ocean...