Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5687-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5687-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14
Christopher T. Reinhard
CORRESPONDING AUTHOR
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, GA 30332, USA
NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA
NASA Nexus for Exoplanet System Science (NExSS) Upside-Down Biospheres
Team, Georgia Institute of Technology, Atlanta, GA, USA
Stephanie L. Olson
NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA
Department of Geophysical Sciences, University of Chicago, Chicago, IL
60637, USA
Department of Earth, Atmospheric, and Planetary Science, Purdue
University, West Lafayette, IN 47907, USA
Sandra Kirtland Turner
Department of Earth and Planetary Sciences, University of California,
Riverside, Riverside, CA 92521, USA
Cecily Pälike
MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen,
Germany
Yoshiki Kanzaki
Department of Earth and Planetary Sciences, University of California,
Riverside, Riverside, CA 92521, USA
Andy Ridgwell
Department of Earth and Planetary Sciences, University of California,
Riverside, Riverside, CA 92521, USA
Related authors
Samuel Shou-En Tsao, Tim Jesper Surhoff, Giuseppe Amatulli, Maya Almaraz, Jonathan Gewirtzman, Beck Woollen, Eric W. Slessarev, James E. Saiers, Christopher T. Reinhard, Shuang Zhang, Noah J. Planavsky, and Peter A. Raymond
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-411, https://doi.org/10.5194/essd-2025-411, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first detailed map of how much agricultural lime has been used across the United States from 1930 to 1987. Lime helps improve soil health and crop growth. Our study shows that how and where lime is used depends on climate, soil, and farming practices. By using machine learning, we found patterns that help explain these differences. This work helps us better understand the environmental role of lime and its impact on farming and climate.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Kazumi Ozaki, Devon B. Cole, Christopher T. Reinhard, and Eiichi Tajika
Geosci. Model Dev., 15, 7593–7639, https://doi.org/10.5194/gmd-15-7593-2022, https://doi.org/10.5194/gmd-15-7593-2022, 2022
Short summary
Short summary
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of the ocean–atmosphere system on geologic timescales has been developed. In this paper, we present a full description of the model and its performance. CANOPS-GRB is a useful tool for understanding the factors regulating atmospheric O2 level and has the potential to greatly refine our current understanding of Earth's oxygenation history.
Yoshiki Kanzaki, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 15, 4959–4990, https://doi.org/10.5194/gmd-15-4959-2022, https://doi.org/10.5194/gmd-15-4959-2022, 2022
Short summary
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Samuel Shou-En Tsao, Tim Jesper Surhoff, Giuseppe Amatulli, Maya Almaraz, Jonathan Gewirtzman, Beck Woollen, Eric W. Slessarev, James E. Saiers, Christopher T. Reinhard, Shuang Zhang, Noah J. Planavsky, and Peter A. Raymond
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-411, https://doi.org/10.5194/essd-2025-411, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first detailed map of how much agricultural lime has been used across the United States from 1930 to 1987. Lime helps improve soil health and crop growth. Our study shows that how and where lime is used depends on climate, soil, and farming practices. By using machine learning, we found patterns that help explain these differences. This work helps us better understand the environmental role of lime and its impact on farming and climate.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Keyi Cheng, Andy Ridgwell, and Dalton S. Hardisty
Biogeosciences, 21, 4927–4949, https://doi.org/10.5194/bg-21-4927-2024, https://doi.org/10.5194/bg-21-4927-2024, 2024
Short summary
Short summary
The carbonate paleoredox proxy, I / Ca, has shown its potential to quantify the redox change in the past ocean, which is of broad importance for understanding climate change and evolution. Here, we tuned and optimized the marine iodine cycling embedded in an Earth system model, “cGENIE”, against modern ocean observations and then tested its ability to estimate I / Ca in the Cretaceous ocean. Our study implies cGENIE’s potential to quantify redox change in the past using the I / Ca proxy.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Kazumi Ozaki, Devon B. Cole, Christopher T. Reinhard, and Eiichi Tajika
Geosci. Model Dev., 15, 7593–7639, https://doi.org/10.5194/gmd-15-7593-2022, https://doi.org/10.5194/gmd-15-7593-2022, 2022
Short summary
Short summary
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of the ocean–atmosphere system on geologic timescales has been developed. In this paper, we present a full description of the model and its performance. CANOPS-GRB is a useful tool for understanding the factors regulating atmospheric O2 level and has the potential to greatly refine our current understanding of Earth's oxygenation history.
Yoshiki Kanzaki, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 15, 4959–4990, https://doi.org/10.5194/gmd-15-4959-2022, https://doi.org/10.5194/gmd-15-4959-2022, 2022
Short summary
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Cited articles
Archer, D. and Buffett, B.: Time-dependent response of the global ocean
clathrate reservoir to climatic and anthropogenic forcing, Geochem.
Geophys., Geosys., 6,
GB1008, https://doi.org/10.1029/2004GC000854, 2005.
Archer, D., Buffett, B., and Brovkin, V.: Ocean methane hydrates as a slow tipping point in the global carbon cycle, P. Natl. Acad. Sci. USA, 106, 20596–20601, 2009.
Bartdorff, O., Wallmann, K., Latif, M., and Semenov, V.: Phanerozoic
evolution of atmospheric methane, Global Biogeochem. Cy., 22, GB1008,
https://doi.org/10.1029/2007GB002985, 2008.
Beerling, D., Berner, R. A., Mackenzie, F. T., Harfoot, M. B., and Pyle, J.
A.: Methane and the CH4-related greenhouse effect over the past 400 million
years, Am. J. Sci., 309, 97–113, 2009.
Bender, M. and Conrad, R.: Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios, Fems. Microbiol. Lett., 101, 261–270, 1992.
Bender, M. and Conrad, R.: Kinetics of methane oxidation in oxic soils, Chemosphere, 26, 687–696, 1993.
Berner, R. A.: Activity Coefficients of Bicarbonate Carbonate and Calcium
Ions in Sea Water, Geochim. Cosmochim. Ac., 29, 947–965, 1965.
Bethke, C. M., Ding, D., Jin, Q., and Sanford, R. A.: Origin of
microbiological zoning in groundwater flows, Geology, 36, 739–742, 2008.
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine
anaerobic metabolisms expanded by particle microenvironments, Nat. Geosci.,
11, 263–268, 2018.
Bjerrum, C. J. and Canfield, D. E.: Towards a quantitative understanding of the late Neoproterozoic carbon cycle, P. Natl. Acad. Sci. USA, 108, 5542–5547, 2011.
Bock, M., Schmitt, J., Beck, J., Seth, B., Chappellaz, J., and Fischer, H.:
Glacial/interglacial wetland, biomass burning, and geologic methane
emissions constrained by dual stable isotopic CH4 ice core records,
P. Natl. Acad. Sci. USA, 114, E5778–E5786, 2017.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F.,
Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.:
A marine microbial consortium apparently mediating anaerobic oxidation of
methane, Nature, 407, 623–626, 2000.
Boudreau, B. P.: Diagenetic Models and Their Implementation, Springer-Verlag, Berlin, 1996a.
Boudreau, B. P.: A method-of-lines code for carbon and nutrient diagenesis
in aquatic sediments, Comput. Geosci., 22, 479–496, 1996b.
Cao, L., Eby, M., Ridgwell, A., Caldeira, K., Archer, D., Ishida, A., Joos, F., Matsumoto, K., Mikolajewicz, U., Mouchet, A., Orr, J. C., Plattner, G.-K., Schlitzer, R., Tokos, K., Totterdell, I., Tschumi, T., Yamanaka, Y., and Yool, A.: The role of ocean transport in the uptake of anthropogenic CO2, Biogeosciences, 6, 375–390, https://doi.org/10.5194/bg-6-375-2009, 2009.
Catling, D. C., Claire, M. W., and Zahnle, K. J.: Anaerobic methanotrophy
and the rise of atmospheric oxygen, Philos. T. R. Soc. A, 365, 1867–1888, 2007.
Chapelle, F. H., McMahon, P. B., Dubrovsky, N. M., Fujii, R. F., Oaksford,
E. T., and Vroblesky, D. A.: Deducing the distribution of terminal
electron-accepting processes in hydrologically diverse groundwater systems,
Water Resour. Res., 31, 359–371, 1995.
Chronopoulou, P.-M., Shelley, F., Pritchard, W. J., Maanoja, S., and Trimmer, M.: Origin and fate of methane in the Eastern Tropical North
Pacific oxygen minimum zone, ISME J., 11, 1386–1399, 2017.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le
Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and
Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
467–544, 2013.
Claire, M. W., Catling, D. C., and Zahnle, K. J.: Biogeochemical modelling of the rise in atmospheric oxygen, Geobiology, 4, 239–269, 2006.
Clegg, S. L. and Brimblecombe, P.: The solubility and activity coefficient
of oxygen in salt solutions and brines, Geochim. Cosmochim. Ac., 54,
3315–3328, 1990.
Cramer, S. D.: Solubility of methane in brines from 0 to
300 ∘C, Ind. Eng. Chem. Proc. Dd., 23, 533–538, 1984.
Crespo-Medina, M., Meile, C. D., Hunter, K. S., Diercks, A.-R., Asper, V.
L., Orphan, V. J., Tavormina, P. L., Nigro, L. M., Battles, J. J., Chanton,
J. P., Shiller, A. M., Joung, D.-J., Amon, R. M. W., Bracco, A., Montoya, J.
P., Villareal, T. A., Wood, A. M., and Joye, S. B.: The rise and fall of
methanotrophy following a deepwater oil-well blowout, Nat. Geosci., 7,
423–427, 2014.
Crowe, S. A., Paris, G., Katsev, S., Jones, C., Kim, S., Zerkle, A. L., Nomosatryo, S., Fowle, D. A., Adkins, J. F., Sessions, A. L., Farquhar, J., and Canfield, D. E.: Sulfate was a trace constituent of Archean seawater, Science, 346, 735–739, 2014.
Curtis, G. P.: Comparison of approaches for simulating reactive solute
transport involving organic degredation reactions by multiple terminal
electron acceptors, Comput. Geosci., 29, 319–329, 2003.
Daines, S. J. and Lenton, T. M.: The effect of widespread early aerobic
marine ecosystems on methane cycling and the Great Oxidation, Earth Planet. Sc. Lett., 434, 42–51, 2016.
Dale, A. W., Regnier, P., and Van Cappellen, P.: Bioenergetic controls on
anaerobic oxidation of methane (AOM) in coastal marine sediments: A
theoretical analysis, Am. J. Sci., 306, 246–294, 2006.
Dale, A. W., Regnier, P., Knab, N. J., Jørgensen, B. B., and Van
Cappellen, P.: Anaerobic oxidation of methane (AOM) in marine sediments from
the Skagerrak (Denmark): II. Reaction-transport modeling, Geochim.
Cosmochim. Ac., 72, 2880–2894, 2008.
Dickens, G. R., Castillo, M. M., and Walker, J. C. G.: A blast of gas in the
latest Paleocene: simulating first-order effects of massive dissociation of
oceanic methane hydrate, Geology, 25, 259–262, 1997.
Dickens, G. R.: Rethinking the global carbon cycle with a large, dynamic and
microbially mediated gas hydrate capacitor, Earth Planet. Sc.
Lett., 213, 169–183, 2003.
Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural variability in a
stable, 1000-yr global coupled climate-carbon cycle simulation, J.
Climate, 19, 3033–3054, 2006.
Duan, Z., Møller, N., Greenberg, J., and Weare, J. H.: The prediction of
methane solubility in natural waters to high ionic strength from 0 to
250∘C and from 0 to 1600 bar, Geochim. Cosmochim.
Ac., 56, 1451–1460, 1992.
Dunfield, P. F. and Conrad, R.: Starvation alters the apparent
half-saturation constant for methane in the Type II methanotroph
Methylocystis strain LR1, Appl. Environ. Microb., 66, 4136–4138, 2000.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter
sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24,
415–433, 2005.
Egger, M., Rasigraf, O., Sapart, C. J., Jilbert, T., Jetten, M. S. M.,
Röckmann, T., van der Veen, C., Banda, N., Kartal, B., Ettwig, K. F.,
and Slomp, C. P.: Iron-mediated anaerobic oxidation of methane in brackish
coastal sediments, Environ. Sci. Technol., 49, 277–283, 2015.
Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.:
Global diffusive fluxes of methane in marine sediments, Nat. Geosci., 11,
421–425, 2018.
Elliot, S., Maltrud, M., Reagan, M., Moridis, G., and Cameron-Smith, P.:
Marine methane cycle simulations for the period of early global warming,
J. Geophys. Res.-Biogeo., 116, G01010, https://doi.org/10.1029/2010JG001300,
2011.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath,
G. R., Cullen, D., and Duaphin, P.: Early oxidation of organic matter in
pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis,
Geochim. Cosmochim. Ac., 43, 1075–1090, 1979.
Goldblatt, C., Lenton, T. M., and Watson, A. J.: Bistability of atmospheric
oxygen and the Great Oxidation, Nature, 443, 683–686, 2006.
Griffies, S. M.: The Gent-McWilliams skew flux, J. Phys.
Oceanogr., 28, 831–841, 1998.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60, 439–471, 1996.
Haqq-Misra, J., Domagal-Goldman, S. D., Kasting, P. J., and Kasting, J. F.:
A revised, hazy methane greenhouse for the Archean Earth, Astrobiol., 8,
1127–1137, 2008.
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P.,
Yuan, Z., and Tyson, G. W.: Anaerobic oxidation of methane coupled to
nitrate reduction in a novel archaeal lineage, Nature, 500, 567–570, 2013.
Hayes, J. M.: Global methanotrophy at the Archean-Proterozoic transition,
in: Nobel Symp. 84, Early Life on Earth, edited by: Bengston, S.,
Columbia University Press, New York, 220–236, 1994.
Helz, G. R., Bura-Nakíc, E., Mikac, N., and Ciglenecki, I.: New model
for molybdenum behavior in euxinic waters, Chem. Geol., 284, 323–332,
2011.
Hinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and DeLong, E.
F.: Methane-consuming archaebacteria in marine sediments, Nature, 398,
802–805, 1999.
Hinrichs, K.-U.: Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible?, Geochem. Geophy. Geosy., 3, 1–10, 2002.
Hitchcock, D. R. and Lovelock, J. E.: Life detection by atmospheric analysis, Icarus, 7, 149–159, 1967.
Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S.: Field and
laboratory studies of methane oxidation in an anoxic marine sediments:
Evidence for a methanogen-sulfate reducer consortium, Global Biogeochem.
Cy., 8, 451–463, 1994.
Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S.: Apparent
minimum free energy requirements for methanogenic Archaean and
sulfate-reducing bacteria in an anoxic marine sediment, Fems. Microbiol. Ecol.,
38, 33–41, 2001.
Hoehler, T. M.: Biological energy requirements as quantitative boundary
conditions for life in the subsurface, Geobiology, 2, 205–215, 2004.
Hunter, S. J., Goldobin, D. S., Haywood, A. M., Ridgwell, A., and Rees, J.
G.: Sensitivity of the global submarine hydrate inventory to scenarios of
future climate change, Earth Planet. Sc. Lett., 367, 105–115,
2013.
Jakobsen, R. and Postma, D.: Redox zoning, rates of sulfate reduction and
interactions with Fe-reduction and methanogenesis in a shallow sandy
aquifer, Rømø, Denmark, Geochim. Cosmochim. Ac., 63, 137–151,
1999.
Jayakumar, D. A., Naqvi, S. W. A., Narvekar, P. V., and George, M. D.:
Methane in coastal and offshore waters of the Arabian Sea, Mar. Chem.,
74, 1–13, 2001.
Jin, Q. and Bethke, C. M.: Predicting the rate of microbial respiration in
geochemical environments, Geochim. Cosmochim. Ac., 69, 1133–1143,
2005.
Jin, Q. and Bethke, C. M.: The thermodynamics and kinetics of microbial
metabolism, Am. J. Sci., 307, 643–677, 2007.
Johnson, K. S.: Carbon dioxide hydration and dehydration kinetics in
seawater, Limnol. Oceanogr., 27, 849–855, 1982.
Kasting, J. F., Zahnle, K. J., and Walker, J. C. G.: Photochemistry of
methane in the Earth's early atmosphere, Precambrian Res., 20, 121–148,
1983.
Kasting, J. F., Pavlov, A. A., and Siefert, J. L.: A coupled
ecosystem-climate model for predicting the methane concentration in the
Archean atmosphere, Origin of life and evolution of the Biosphere, 31,
271–285, 2001.
Kessler, J. D., Valentine, D. L., Redmond, M. C., Du, M., Chan, E. W.,
Mendes, S. D., Quiroz, E. W., Villanueva, C. J., Shusta, S. S., Werra, L.
M., Yvon-Lewis, S. A., and Weber, T. C.: A persistent oxygen anomaly reveals
the fate of spilled methane in the deep Gulf of Mexico, Science, 331,
312–315, 2011.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quére, C., Naik,
V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources
and sinks, Nat. Geosci., 6, 813–823, 2013.
Kirtland Turner, S. and Ridgwell, A.: Development of a novel empirical
framework for interpreting geological carbon isotope excursions, with
implications for the rate of carbon injection across the PETM, Earth
Planet. Sc. Lett., 435, 1–13, 2016.
Kirtland Turner, S.: Constraints on the onset duration of the
Paleocene-Eocene Thermal Maximum, Philos. T. Roy.
Soc. A, 376, 20170082, https://doi.org/10.1098/rsta.2017.0082, 2018.
Konijnendijk, T. Y. M., Weber, S. L., Tuenter, E., and van Weele, M.: Methane variations on orbital timescales: a transient modeling experiment, Clim. Past, 7, 635–648, https://doi.org/10.5194/cp-7-635-2011, 2011.
Krissansen-Totton, J., Garland, R., Irwin, P., and Catling, D. C.:
Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: A
TRAPPIST-1e cast study, Astro. J., 156, 114, https://doi.org/10.3847/1538-3881/aad564, 2018.
Kuivila, K. M., Murray, J. W., and Devol, A. H.: Methane production, sulfate
reduction and competition for substrates in the sediments of Lake
Washington, Geochim. Cosmochim. Ac., 53, 409–416, 1989.
Lamarque, J.-F., Kiehl, J. T., Shields, C. A., Boville, B. A., and Kinnison,
D. E.: Modeling the response to changes in tropospheric methane
concentration: Application to the Permian-Triassic boundary,
Paleoceanography, 21, PA3006, https://doi.org/10.1029/2006PA001276, 2006.
Lovley, D. R., Dwyer, D. F., and Klug, M. J.: Kinetic analysis of
competition between sulfate reducers and methanogens for hydrogen in
sediments, Appl. Environ. Microb., 43, 1373–1379, 1982.
Lunt, D. J., Ridgwell, A., Sluijs, A., Zachos, J. C., Hunter, S. J., and
Haywood, A.: A model for orbital pacing of methane hydrate destabilization
during the Palaeogene, Nat. Geosci., 4, 775–778, 2011.
Marsh, R., Müller, S. A., Yool, A., and Edwards, N. R.: Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: “eb_go_gs” configurations of GENIE, Geosci. Model Dev., 4, 957–992, https://doi.org/10.5194/gmd-4-957-2011, 2011.
Martens, C. S. and Berner, R. A.: Interstitial water chemistry of anoxic
Long Island Sound sediments. 1. Dissolved gases, Limnol. Oceanogr.,
22, 10–25, 1977.
McGlynn, S. E., Chadwick, G. L., Kempes, C. P., and Orphan, V. J.: Single
cell activity reveals direct electron transfer in methanotrophic consortia,
Nature, 526, 531–535, 2015.
Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, 2013.
Meyer, K. M., Ridgwell, A., and Payne, J. L.: The influence of the
biological pump on ocean chemistry: implications for long-term trends in
marine redox chemistry, the global carbon cycle, and marine animal
ecosystems, Geobiology, 14, 207–219, 2016.
Milucka, J., Ferdelman, T. G., Polerecky, L., Franzke, D., Wegener, G.,
Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F., and Kuypers, M. M. M.:
Zero-valent sulphur is a key intermediate in marine methane oxidation,
Nature, 491, 541–546, 2012.
Myhre, G., Shindell, D., Breon, F.-M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and natural
radiative forcing, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
659–740, 2013.
Olson, S. L., Kump, L. R., and Kasting, J. F.: Quantifying the areal extent
and dissolved oxygen concentrations of Archean oxygen oases, Chem.
Geol., 362, 35–43, 2013.
Olson, S. L., Reinhard, C. T., and Lyons, T. W.: Limited role for methane in
the mid-Proterozoic greenhouse, P. Natl. Acad. Sci. USA, 113, 11447–11452, 2016.
Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., and DeLong,
E. F.: Methane-consuming Archaea revealed by directly coupled isotopic and
phylogenetic analysis, Science, 293, 484–487, 2001.
Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y., and Reinhard, C. T.:
Effects of primitive photosynthesis on Earth's early climate system, Nat.
Geosci., 11, 55–59, 2018.
Paudel, R., Mahowald, N. M., Hess, P. G. M., Meng, L., and Riley, W. J.:
Attribution of changes in global wetland methane emissions from
pre-industrial to present using CLM4.5-BGC, Environ. Res. Lett.,
11, 034020, https://doi.org/10.1088/1748-9326/11/3/034020, 2016.
Pavlov, A. A. and Kasting, J. F.: Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere, Astrobiology, 2, 27–41, 2002.
Pavlov, A. A., Kasting, J. F., and Brown, L. L.: Greenhouse warming by
CH4 in the atmosphere of early Earth, J. Geophys. Res.,
105, 11981–11990, 2000.
Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., and Arthur, M. A.:
Methane-rich Proterozoic atmosphere?, Geology, 31, 87–90, 2003.
Prather, M. J.: Time scales in atmospheric chemistry: Theory, GWPs for CH4
and CO, and runaway growth, Geophys. Res. Lett., 23, 2597–2600,
1996.
Rabouille, C. and Gaillard, J. F.: A coupled model representing the
deep-sea organic carbon mineralization and oxygen consumption in surficial
sediments, J. Geophys. Res.-Oceans., 96, 2761–2776, https://doi.org/10.1029/90jc02332, 1991.
Reeburgh, W. S.: Methane consumption in Cariaco Trench waters and sediments,
Earth Planet. Sc. Lett., 28, 337–344, 1976.
Reeburgh, W. S.: Oceanic methane biogeochemistry, Chem. Rev., 107,
486–513, 2007.
Regnier, P., Dale, A. W., Arndt, S., LaRowe, D. E., Mogollón, J., and
Van Cappellen, P.: Quantitative analysis of anaerobic oxidation of methane
(AOM) in marine sediments: A modeling perspective, Earth-Sci. Rev.,
106, 105–130, 2011.
Reinhard, C. T.: Reinhard.GMD.2020.RateData [Data set], Zenodo, https://doi.org/10.5281/zenodo.4081700, 2020.
Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W., and Erwin, D.
H.: Earth's oxygen cycle and the evolution of animal life, P. Natl. Acad. Sci. USA, 113, 8933–8938, 2016.
Reinhard, C. T., Olson, S. L., Schwieterman, E. W., and Lyons, T. W.: False
negatives for remote life detection on ocean-bearing planets: Lessons from
the early Earth, Astrobiology, 17, 287–297, https://doi.org/10.1089/ast.2016.1598, 2017.
Ridgwell, A.: Glacial-interglacial perturbations in the global carbon cycle, PhD thesis, University of East Anglia, Norwich, UK, 2001.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Ridgwell, A. J., Marshall, S. J., and Gregson, K.: Consumption of
atmospheric methane by soils: A process-based model, Global Biogeochem.
Cy., 13, 59–70, 1999.
Sagan, C. and Mullen, G.: Earth and Mars: Evolution of atmospheres and
surface temperatures, Science, 177, 52–56, 1972.
Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D., and Hord, C.: A search
for life on Earth from the Galileo spacecraft, Nature, 365, 715–721, 1993.
Sansone, F. J., Popp, B. N., Gasc, A., Graham, A. W., and Rust, T. M.:
Highly elevated methane in the eastern tropical North Pacific and associated
isotopically enriched fluxes to the atmosphere, Geophys. Res.
Lett., 28, 4567–4570, 2001.
Schink, B.: Energetics of syntrophic cooperation in methanogenic
degradation, Microbiol. Mol. Biol. R., 61, 262–280, 1997.
Schmidt, G. A. and Shindell, D. T.: Atmospheric composition, radiative
forcing, and climate change as a consequence of a massive methane release
from gas hydrates, Paleoceanography, 18, 1004, https://doi.org/10.1029/2002PA000757, 2003.
Schrag, D. P., Berner, R. A., Hoffman, P. F., and Halverson, G. P.: On the
initiation of a snowball Earth, Geochem. Geophys. Geosyst., 3,
https://doi.org/10.1029/2001GC000219, 2002.
Scranton, M. I. and Brewer, P. G.: Consumption of dissolved methane in the
deep ocean, Limnol. Oceanogr., 23, 1207–1213, 1978.
Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G. A.: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653–2689, https://doi.org/10.5194/acp-13-2653-2013, 2013.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., and
Eckert, W.: Geochemical evidence for iron-mediated anaerobic oxidation of
methane, Limnol. Oceanogr., 56, 1536–1544, 2011.
Stoessell, R. K. and Byrne, P. A.: Salting-out of methane in single-salt
solutions at 25∘C and below 800 psia, Geochim.
Cosmochim. Ac., 46, 1327–1332, 1982.
Thamdrup, B., Steinsdóttir, H. G. R., Bertagnolli, A. D., Padilla, C.
C., Patin, N. V., Garcia-Robledo, E., Bristow, L. A., and Stewart, F. J.:
Anaerobic methane oxidation is an important sink for methane in the ocean's
largest oxygen minimum zone, Limnol. Oceanogr., 64, 2569–2585, https://doi.org/10.1002/lno.11235, 2019.
Thompson, A. M. and Cicerone, R. J.: Possible perturbations to atmospheric
CO, CH4, and OH, J. Geophys. Res., 91, 10853–10864, 1986.
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., and Isozaki, Y.: Evidence
from fluid inclusions for microbial methanogenesis in the early Archaean
era, Nature, 440, 516–519, 2006.
Ulfsbo, A., Abbas, Z., and Turner, D. R.: Activity coefficients of a
simplified seawater electrolyte at varying salinity (5–40) and temperature
(0 and 25∘C) using Monte Carlo simulations, Mar.
Chem., 171, 78–86, 2015.
Valentine, D. L.: Emerging topics in marine methane biogeochemistry, Annu.
Rev. Mar. Sci., 3, 147–171, 2011.
van Bodegom, P., Stams, F., Liesbeth, M., Boeke, S., and Leffelaar, P.:
Methane oxidation and the competition for oxygen in the rice rhizosphere,
Appl. Environ. Microb., 67, 3586–3597, 2001.
Van Cappellen, P., Gaillard, J.-F., and Rabouille, C.: Biogeochemical
transformations in sediments: Kinetic models of early diagenesis, in:
Interactions of C, N, P and S Biogeochemical Cycles and Global Change,
Springer-Verlag, Berlin, 401–445, 1993.
Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to
derive methane emissions from natural wetlands: Application to five wetland
sites, sensitivity to model parameters, and climate, Global Biogeochem.
Cy., 14, 745–765, 2000.
Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions
dominated by shallow coastal waters, Nat. Commun., 10, 4584,
https://doi.org/10.1038/s41467-019-12541-7, 2019.
Zeebe, R. E., Zachos, J. C., and Dickens, G. R.: Carbon dioxide forcing
alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming, Nat.
Geosci., 2, 576–580, 2009.
Zeebe, R. E.: What caused the long duration of the Paleocene-Eocene Thermal
Maximum?, Paleoceanography, 28, 1–13, https://doi.org/10.1002/palo.20039, 2013.
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
We provide documentation and testing of new developments for the oceanic and atmospheric methane...