Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5311-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5311-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Christopher P. O. Reyer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Martin Gutsch
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Chris Kollas
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
DB Services GmbH, Elisabeth-Schwarzhaupt-Platz 1, 10115 Berlin, Germany
Franz-Werner Badeck
Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics, via S. Protaso, 302, 29017 Fiorenzuola d'Arda PC, Italy
Harald K. M. Bugmann
Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
Rüdiger Grote
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Cornelia Fürstenau
Friedrich-Schiller-Universität Jena, Institut für Informatik, Heinz Nixdorf Chair for Distributed Information Systems, Ernst-Abbe-Platz 1–4, 07743 Jena, Germany
Marcus Lindner
European Forest Institute, Resilience Programme, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
Jörg Schaber
EXCO GmbH, Adam-Opel-Str. 9–11, 67227 Frankenthal, Germany
Related authors
No articles found.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Gina Marano, Ulrike Hiltner, Nikolai Knapp, and Harald Bugmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-1534, https://doi.org/10.5194/egusphere-2025-1534, 2025
Short summary
Short summary
Drought is reshaping Europe’s forests. Using an uncalibrated process-based model across hundreds of German sites, we identified key drivers of tree mortality in European beech and Norway spruce forests. Our model captured both the timing and extent of mortality. A new bark beetle module improved predictions for spruce. High soil water capacity and heterogeneous soils reduced drought impacts. These findings offer new insights to anticipate forest responses in a warming, drying climate.
Chun Chung Yeung, Harald Bugmann, Frank Hagedorn, Margaux Moreno Duborgel, and Olalla Díaz-Yáñez
EGUsphere, https://doi.org/10.5194/egusphere-2025-1022, https://doi.org/10.5194/egusphere-2025-1022, 2025
Short summary
Short summary
To address the uncertain interactions between soil nitrogen (N) and carbon (C), we set up a model “experiment” in silico to test several hypothesized responses of decomposers to N. We found that decomposers were stimulated by N when decomposing high C:N detritus, but inhibited when decomposing low C:N, processed organic C. The consequence is that under exogenous N addition (e.g., contemporary N deposition), forests may accumulate light fraction C predominantly, at the expense of coarse detritus.
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024, https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
Short summary
A hydraulic model approach is presented that can be added to any physiologically based ecosystem model. Simulated plant water potential triggers stomatal closure, photosynthesis decline, root–soil resistance increases, and sapwood and foliage senescence. The model has been evaluated at an extremely dry site stocked with Aleppo pine and was able to represent gas exchange, soil water content, and plant water potential. The model also responded realistically regarding leaf senescence.
Yannek Käber, Florian Hartig, and Harald Bugmann
Geosci. Model Dev., 17, 2727–2753, https://doi.org/10.5194/gmd-17-2727-2024, https://doi.org/10.5194/gmd-17-2727-2024, 2024
Short summary
Short summary
Many forest models include detailed mechanisms of forest growth and mortality, but regeneration is often simplified. Testing and improving forest regeneration models is challenging. We address this issue by exploring how forest inventories from unmanaged European forests can be used to improve such models. We find that competition for light among trees is captured by the model, unknown model components can be informed by forest inventory data, and climatic effects are challenging to capture.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Cited articles
Anderegg, W. R. L., Martinez-Vilalta, J., Cailleret, M., Camarero, J. J., Ewers, B. E., Galbraith, D., Gessler, A., Grote, R., Huang, C.-y., Levick, S. R., Powell, T. L., Rowland, L., Sánchez-Salguero, R., and Trotsiuk, V.:
When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes,
Ecosystems,
19, 1133–1147, https://doi.org/10.1007/s10021-016-9982-1, 2016.
Badeck, F. W., Beese, F., Berthold, D., Einert, P., Jochheim, H., Kallweit, R., Konopatzky, A., Lasch, P., Meesenburg, H., Meiwes, K.-J., Puhlmann, M., Raspe, S., Schulte-Bisping, H., Schulz, C., and Suckow, F.:
Parametrisierung, Kalibrierung und Validierung von Modellen des Kohlenstoffumsatzes in Waldökosystemen und deren Böden,
Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF), Institut für Bodenkunde und Waldernährung der Universität Göttingen (IBW), Landesforstanstalt Eberswalde (LFE), Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF), Nordwestdeutsche Forstliche Versuchsanstalt (NW-FVA), Potsdam-Institut für Klimafolgenforschung (PIK), 110, 2007.
Baldocchi, D., Chu, H., and Reichstein, M.:
Inter-annual variability of net and gross ecosystem carbon fluxes: A review,
Agr. Forest Meteorol.,
249, 520–533, https://doi.org/10.1016/j.agrformet.2017.05.015, 2018.
Berninger, F., Coll, L., Vanninen, P., Mäkelä, A., Palmroth, S., and Nikinmaa, E.:
Effects of tree size and position on pipe model ratios in Scots pine,
Can. J. Forest Res.,
35, 1294–1304, https://doi.org/10.1139/X05-055, 2005.
Borys, A., Lasch, P., Suckow, F., and Reyer, C.:
Kohlenstoffspeicherung in Buchenbeständen in Abhängigkeit von Waldpflege und Klimawandel,
Allg. Forst Jagdztg.,
184, 26–35, 2013.
Borys, A., Suckow, F., Reyer, C., Gutsch, M., and Lasch-Born, P.:
The impact of climate change under different thinning regimes on carbon sequestration in a German forest district,
Mitig. Adapt. Strat. Gl.,
21, 861–881, https://doi.org/10.1007/s11027-014-9628-6, 2016.
Botkin, D.:
Forest Dynamics: An Ecological Model,
Oxford University Press, Oxford & New York, 309 pp., 1993.
Bugmann, H., Grote, R., Lasch, P., Lindner, M., and Suckow, F.:
A new forest gap model to study the effects of environmental change on forest structure and functioning,
in: Impacts of Global Change of Tree Physiology and Forest Ecosystem,
Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen,
edited by: Mohren, G. M. J., Kramer, K., and Sabate, S.,
Forestry Science, Kluwer Academic Publisher, Dordrecht, 255–261, 1997.
Bugmann, H. K. M.:
A Simplified Forest Model to Study Species Composition Along Climate Gradients,
Ecology,
77, 2055–2074, https://doi.org/10.2307/2265700, 1996.
Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M., François, L., Heinke, J., Henrot, A.-J., Hickler, T., Hülsmann, L., Huth, A., Jacquemin, I., Kollas, C., Lasch-Born, P., Lexer, M. J., Merganič, J., Merganičová, K., Mette, T., Miranda, B. R., Nadal-Sala, D., Rammer, W., Rammig, A., Reineking, B., Roedig, E., Sabaté, S., Steinkamp, J., Suckow, F., Vacchiano, G., Wild, J., Xu, C., and Reyer, C. P. O.: Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale, Ecosphere, 10, e02616, https://doi.org/10.1002/ecs2.2616, 2019.
Cameron, D. R., Van Oijen, M., Werner, C., Butterbach-Bahl, K., Grote, R., Haas, E., Heuvelink, G. B. M., Kiese, R., Kros, J., Kuhnert, M., Leip, A., Reinds, G. J., Reuter, H. I., Schelhaas, M. J., De Vries, W., and Yeluripati, J.: Environmental change impacts on the C- and N-cycle of European forests: a model comparison study, Biogeosciences, 10, 1751–1773, https://doi.org/10.5194/bg-10-1751-2013, 2013.
Cannell, M. G. R. and Smith, R.:
Thermal time, chill days and prediction of budburst in Picea sitchensis,
J. Appl. Ecol.,
20, 951–963, 1983.
Coelho, M. T. P., Diniz, J. A., and Rangel, T. F.:
A parsimonious view of the parsimony principle in ecology and evolution,
Ecography,
42, 968–976, https://doi.org/10.1111/ecog.04228, 2019.
Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., D'Andrea, E., Matteucci, G., Montagnani, L., Gielen, B., Mammarella, I., Grünwald, T., Knohl, A., Berninger, F., Zhao, Y., Valentini, R., and Santini, M.: Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites, Geosci. Model Dev., 9, 479–504, https://doi.org/10.5194/gmd-9-479-2016, 2016.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.:
Physiological and Environmental-Regulation of Stomatal Conductance, Photosynthesis and Transpiration – a Model That Includes a Laminar Boundary-Layer,
Agr. Forest Meteorol.,
54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
Constable, J. V. H. and Friend, A. L.:
Suitability of process-based tree growth models for addressing tree response to climate change,
Environ. Pollut.,
110, 47–59, https://doi.org/10.1016/S0269-7491(99)00289-4, 2000.
Davidson, R. L.:
Effect of root/leaf temperature differentials on root∕shoot ratios in some pasture grasses and clover,
Ann. Bot.,
33, 561–569, https://doi.org/10.1093/oxfordjournals.aob.a084308, 1969.
Dietze, M. C. and Matthes, J. H.:
A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems,
Ecol. Lett.,
17, 1418–1426, https://doi.org/10.1111/ele.12345, 2014.
DVWK:
Ermittlung der Verdunstung von Land- und Wasserflächen, DVWK-Merkblätter zur Wasserwirtschaft,
edited by: Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.,
Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH Bonn, Bonn, 134 pp., 1996.
Dyck, S. and Peschke, G.:
Grundlagen der Hydrologie, 3 edn.,
Verlag für Bauwesen GmbH, Berlin, 536 pp., 1995.
Eggers, T.:
The impacts of manufacturing and utilization of wood products on the European carbon budget,
European Forest Institute, Joensuu, Internal report 9, 90 pp., 2002.
Ellenberg, M., Mayer, R., and Schauermann, J. (eds.):
Ökosystemforschung, Ergebnisse des Sollingprojekts, 1966–1986,
Ulmer Eugen Verlag, 1991.
Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.:
A Biochemical-Model of Photosynthetic CO2 Assimilation in Leaves of C-3 Species,
Planta,
149, 78–90, https://doi.org/10.1007/BF00386231, 1980.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fontes, L., Bontemps, J.-D., Bugmann, H., van Oijen, M., Gracia, C. A., Kramer, K., Lindner, M., Rötzer, T., and Skovsgaard, J. P.:
Models for supporting forest management in a changing environment,
For. Syst.,
19, 8–9, 2010.
Forrester, D. I.:
A stand-level light interception model for horizontally and vertically heterogeneous canopies,
Ecol. Model.,
276, 14–22, https://doi.org/10.1016/j.ecolmodel.2013.12.021, 2014.
Franko, U.:
C- und N-Dynamik beim Umsatz organischer Substanz im Boden,
Akademie der Landwirtschaftswissenschaften der DDR, Berlin, 1990.
Fürstenau, C., Badeck, F., Lasch, P., Lexer, M., Lindner, M., Mohr, P., and Suckow, F.:
Multiple-use forest management in consideration of climate change and the interests of stakeholder groups,
Eur. J. For. Res.,
126, 225–239, https://doi.org/10.1007/s10342-006-0114-x, 2007.
Gerold, D.:
Modellierung des Wachstums von Waldbeständen auf der Basis der Durchmesserstruktur,
Sektion Forstwirtsch. Tharandt, Technische Universität Dresden, Dresden, 174 pp., 1990.
Glugla, G.:
Berechnungsverfahren zur Ermittlung des aktuellen Wassergehaltes und Gravitationswasserabflusses im Boden,
Albrecht-Thaer-Archiv,
13, 371–376, 1969.
Granier, A., Reichstein, M., Breda, N., Janssens, I. A., Falge, E., Ciais, P., Grunwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Kostner, B., Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D., Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, T., and Wang, Q.:
Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003,
Agr. Forest Meteorol.,
143, 123–145, https://doi.org/10.1016/j.agrformet.2006.12.004, 2007.
Grote, R. and Suckow, F.:
Integrating dynamic morphological properties into forest growth modeling. I. Effects on water balance and gas exchange,
Forest. Ecol. Manag.,
112, 101–119, https://doi.org/10.1016/S0378-1127(98)00329-6, 1998.
Grote, R., Suckow, F., and Bellmann, K.:
Modelling of carbon-, nitrogen-, and water balances in pine stands under changing air pollution and deposition,
in: Changes of Atmospheric Chemistry and Effects on Forest Ecosystems. A Roof Experiment Without Roof,
edited by: Hüttl, R. F. and Bellmann, K.,
Nutrients in Ecosystems, Kluwer, Dordrecht, 251–281, 1998.
Gutsch, M., Lasch-Born, P., Lüttger, A. B., Suckow, F., Murawski, A., and Pilz, T.:
Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change,
Meteorol. Z.,
24, 1–11, https://doi.org/10.1127/metz/2015/0532, 2015a.
Gutsch, M., Lasch-Born, P., Suckow, F., and Reyer, C.:
Modeling of Two Different Water Uptake Approaches for Mono- and Mixed-Species Forest Stands,
Forests,
6, 2125–2147, https://doi.org/10.3390/f6062125, 2015b.
Gutsch, M., Lasch-Born, P., Suckow, F., and Reyer, C. P. O.:
Evaluating the productivity of four main tree species in Germany under climate change with static reduced models,
Ann. For. Sci.,
73, 401–410, https://doi.org/10.1007/s13595-015-0532-3, 2016.
Gutsch, M., Lasch-Born, P., Kollas, C., Suckow, F., and Reyer, C. O. P.:
Balancing trade-offs between ecosystem services in Germany's forests under climate change,
Environ. Res. Lett.,
13, 045012, https://doi.org/10.1088/1748-9326/aab4e5, 2018.
Haataja, J. and Vesala, T. (eds.):
SMEAR II. Station for measuring forest ecosystem–atmosphere relation,
University of Helsinki, Department of Forest Ecology, Helsinki, 1997.
Hauskeller-Bullerjahn, K.:
Wachstum junger Eichen unter Schirm,
Berichte des Forschungszentrums Waldökosysteme, Reihe A Bd. 147,
Forschungszentrum Waldökosysteme der Universität Göttingen, Göttingen, 1997.
Hartig, F., Dyke, J., Hickler, T., Higgins, S. I., O'Hara, R. B., Scheiter, S., and Huth, A.:
Connecting dynamic vegetation models to data – an inverse perspective,
J. Biogeogr.,
39, 2240–2252, https://doi.org/10.1111/j.1365-2699.2012.02745.x, 2012.
Haxeltine, A. and Prentice, I. C.:
BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types,
Global Biogeochem. Cy.,
10, 693–709, https://doi.org/10.1029/96GB02344, 1996a.
Haxeltine, A. and Prentice, I. C.:
A general model for the light-use efficiency of primary production,
Funct. Ecol.,
10, 551–561, https://doi.org/10.2307/2390165, 1996b.
Heide, O. M.:
Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days,
Physiol. Plantarum,
89, 187–191, https://doi.org/10.1111/j.1399-3054.1993.tb01804.x, 1993a.
Heide, O. M.:
Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees,
Physiol. Plantarum,
88, 531–540, https://doi.org/10.1111/j.1399-3054.1993.tb01368.x, 1993b.
Hoch, G., Richter, A., and Körnner, C.:
Non-structural carbon compounds in temperate forest trees,
Plant Cell Environ.,
26, 1067–1081, https://doi.org/10.1046/j.0016-8025.2003.01032.x, 2003.
Horemans, J., A., Henrot, A., Delire, C., Kollas, C., Lasch-Born, P., Reyer, C., Suckow, F., François, L., and Ceulemans, R.:
Combining multiple statistical methods to evaluate the performance of process-based vegetation models across three forest stands,
Central European Forestry Journal,
63, 153–172, https://doi.org/10.1515/forj-2017-0025, 2017.
Ibrom, A.:
Die biophysikalische Steuerung der Kohlenstoffbilanz in einem Fichtenbestand im Solling,
Habilitationsschrift, Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, 236 Seiten, 2001.
Jansson, P.-E.:
Simulation model for soil water and heat conditions. Description of the SOIL model, Report,
Swedish University of Agricultural Sciences, Department of Soil Sciences, Division of Agricultural Hydrotechnics, Uppsala, 1991.
Johnson, I. R. and Thornley, J. H. M.:
Temperature dependance of plant and crop processes,
Ann. Bot.-London,
55, 7–24, 1985.
Karjalainen, T., Kellomäki S., and Pussinen A.:
Role of wood-based products in absorbing atmospheric carbon,
Silva Fenn.,
28, 67–80, 1994.
Kartschall, T., Döring, P., and Suckow, F.:
Simulation of Nitrogen, Water and Temperature Dynamics in Soil,
Syst. Anal. Model. Sim.,
7, 33–40, 1990.
Keane, R. E., Morgan, P., and Running, S. W.:
FIRE-BGC – A mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains,
Research Paper INT-RP-484,
United States Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, 1996.
Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D., Gough, C. M., Grant, R., Hollinger, D., Hufkens, K., Poulter, B., McCaughey, H., Raczka, B., Ryu, Y., Schaefer, K., Tian, H., Verbeeck, H., Zhao, M., and Richardson, A. D.:
Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange,
Glob. Change Biol.,
18, 1971–1987, https://doi.org/10.1111/j.1365-2486.2012.02678.x, 2012.
Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and Arnell, N. W.:
Uncertainty in the estimation of potential evapotranspiration under climate change,
Geophys. Res. Lett.,
36, L20403, https://doi.org/10.1029/2009GL040267, 2009.
Kint, V., Lasch, P., Lindner, M., and Muys, B.:
Multipurpose conversion management of Scots pine towards mixed oak-birch stands – A long-term simulation approach,
Forest. Ecol. Manag.,
257, 199–214, https://doi.org/10.1016/j.foreco.2008.08.031, 2009.
Koitzsch, R.:
Schätzung der Bodenfeuchte aus meteorologischen Daten, Boden- und Pflanzenparametern mit einem Mehrschichtmodell,
Z. Meteorol.,
27, 302–306, 1977.
Koitzsch, R. and Günther, R.:
Modell zur ganzjährigen Simulation der Verdunstung und der Bodenfeuchte landwirtschaftlicher Nutzflächen mit und ohne Bewuchs,
Arch. Acker Pfl. Boden.,
34, 803–810, 1990.
Kollas, C., Gutsch, M., Hommel, R., Lasch-Born, P., and Suckow, F.:
Mistletoe-induced growth reductions at the forest stand scale,
Tree Physiol.,
38, 1–10, https://doi.org/10.1093/treephys/tpx150, 2018.
Kramer, K.:
Selecting a model to predict the onset of growth of Fagus sylvatica,
J. Appl. Ecol.,
31, 172–181, 1994.
Kramer, K., Leinonen, I., Bartelink, H. H., Berbigier, P., Borghetti, M., Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, C. A., Granier, A., Grunwald, T., Hari, P., Jans, W., Kellomaki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., Mohren, G. M. J., Moors, E., Nissinen, A., Peltola, H., Sabate, S., Sanchez, A., Sontag, M., Valentini, R., and Vesala, T.:
Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe,
Glob. Change Biol.,
8, 213–230, https://doi.org/10.1046/j.1365-2486.2002.00471.x, 2002.
Lagergren, F., Lindroth, A., Dellwik, E., Ibrom, A., Lankreijer, H., Launiainen, S., MÖLder, M., Kolari, P., Pilegaard, K. I. M., and Vesala, T.:
Biophysical controls on CO2 fluxes of three Northern forests based on long-term eddy covariance data,
Tellus B,
60, 143–152, https://doi.org/10.1111/j.1600-0889.2006.00324.x, 2008.
Landsberg, J.:
Modelling forest ecosystems: state of the art, challenges, and future directions,
Can. J. Forest Res.,
33, 385–397, 2003.
Landsberg, J. J. and Waring, R. H.:
A Generalised Model of Forest Productivity Using Simplified Concepts of Radiation-Use Efficiency, Carbon Balance and Partitioning,
Forest Ecol. Manag.,
95, 209–228, https://doi.org/10.1016/S0378-1127(97)00026-1, 1997.
Lasch, P., Badeck, F.-W., Lindner, M., and Suckow, F.:
Sensitivity of simulated forest growth to changes in climate and atmospheric CO2,
Forstwiss. Centralbl.,
121, Supplement 1, 155–171, 2002.
Lasch, P., Badeck, F. W., Suckow, F., Lindner, M., and Mohr, P.:
Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany),
Forest. Ecol. Manag.,
207, 59–74, https://doi.org/10.1016/j.foreco.2004.10.034, 2005.
Lasch, P., Suckow, F., and Badeck, F.-W.:
Analyses of forest ecosystems' response to climate change at level II monitoring sites,
in: Symposium: Forests in a Changing Environment – Results of 20 years ICP Forests Monitoring Göttingen, 25.-28.10.2006,
edited by: Eichhorn, J.,
Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Nordwestdeutschen Forstlichen Versuchsanstalt,
J.D. Sauerländer's Verlag Frankfurt am Main, Göttingen, 136–141, 2007.
Lasch, P., Kollas, C., Rock, J., and Suckow, F.:
Potentials and impacts of short-rotation coppice plantation with aspen in Eastern Germany under conditions of climate change,
Reg. Environ. Change,
10, 83–94, https://doi.org/10.1007/s10113-009-0095-7, 2010.
Lasch-Born, P., Suckow, F., Gutsch, M., Reyer, C., Hauf, Y., Murawski, A., and Pilz, T.:
Forests under climate change: potential risks and opportunities,
Meteorol. Z.,
24, 157–172, https://doi.org/10.1127/metz/2014/0526, 2015.
Lasch-Born, P., Suckow, F., Badeck, F.-W., Schaber, J., Bugmann, H., Fürstenau, C., Gutsch, M., Kollas, C., and Reyer, C. P. O.:
4C model description,
PIK, Potsdam, 133, https://doi.org/10.2312/pik.2018.006, 2018.
Lasch-Born, P., Suckow, F., Gutsch, M., Kollas, C., Badeck, F.-W., Bugmann, H., Grote, R., Fürstenau, C., Schaber, J., Lindner, M., and Reyer, C.:
FORESEE – 4C. V. 2.2. ,
GFZ Data Services, Potsdam, https://doi.org/10.5880/PIK.2019.015, 2019.
Launiainen, S.:
Canopy processes, fluxes and microclimate in a pine forest,
PhD, Department of Physics, University of Helsinki, Helsinki, 55 pp., 2011.
Lexer, M. J. and Hönninger, K.:
A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes,
Forest. Ecol. Manag.,
144, 43–65, https://doi.org/10.1016/S0378-1127(00)00386-8, 2001.
Lindner, M.:
Developing adaptive forest management strategies to cope with climate change,
Tree Physiol.,
20, 299–307, https://doi.org/10.1093/treephys/20.5-6.299, 2000.
Lindner, M., Lasch, P., Badeck, F.-W., Beguiristain, P. P., Junge, S., Kellomäki, S., Peltola, H., Gracia, C., Sabate, S., Jäger, D., Lexer, M., and Freeman, M.:
Chapter 4: SilviStrat Model Evaluation Exercises,
in: Management of European Forests under Changing Climatic Conditions,
edited by: Kellomäki, S. and Leinonen, S.,
University of Joensuu, Faculty of Forerstry, Joensuu, 117–157, 2005.
Loague, K. and Green, R. E.:
Statistical and graphical methods for evaluating solute transport models: Overview and application,
J. Contam. Hydrol.,
7, 51, https://doi.org/10.1016/0169-7722(91)90038-3, 1991.
Lüttschwager, D., Rust, S., Wulf, M., Forkert, J., and Hüttl, R. F.:
Tree canopy and herb layer transpiration in three Scots pine stands with different stand structures,
Ann. For. Sci.,
56, 265–274, 1999.
Mäkelä, A.:
Modeling structural-functional relationships in whole-tree growth: resource allocation,
in: Process modeling of forest growth responses to environmental stress,
edited by: Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren, W. G.,
Timber Press, Portland, Oregon, 81–95, 1990.
Mäkelä, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., Agren, G. I., Oliver, C. D., and Puttonen, P.:
Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation,
Tree Physiol.,
20, 289–298, https://doi.org/10.1093/treephys/20.5-6.289, 2000a.
Mäkelä, A., Sievänen, R., Lindner, M., and Lasch, P.:
Application of volume growth and survival graphs in the evaluation of four process-based forest growth models,
Tree Physiol.,
20, 347–355, https://doi.org/10.1093/treephys/20.5-6.347, 2000b.
Manusch, C., Bugmann, H., Heiri, C., and Wolf, A.:
Tree mortality in dynamic vegetation models – A key feature for accurately simulating forest properties,
Ecol. Model.,
243, 101–111, https://doi.org/10.1016/j.ecolmodel.2012.06.008, 2012.
Marconi, S., Chiti, T., Nole, A., Valentini, R., and Collalti, A.:
The Role of Respiration in Estimation of Net Carbon Cycle: Coupling Soil Carbon Dynamics and Canopy Turnover in a Novel Version of 3D-CMCC Forest Ecosystem Model,
Forests,
8, 220, https://doi.org/10.3390/f8060220, 2017.
Mayer, D. G. and Butler, D. G.:
Statistical Validation,
Ecol. Model.,
68, 21–32, https://doi.org/10.1016/0304-3800(93)90105-2, 1993.
Medlyn, B. E., Berbigier, P., Clement, R., Grelle, A., Loustau, D., Linder, S., Wingate, L., Jarvis, P. G., Sigurdsson, B. D., and McMurtrie, R. E.:
Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis,
Agr. Forest Meteorol.,
131, 97–124, https://doi.org/10.1016/j.agrformet.2005.05.004, 2005a.
Medlyn, B. E., Robinson, A. P., Clement, R., and McMurtrie, R. E.:
On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls,
Tree Physiol.,
25, 839–857, https://doi.org/10.1093/treephys/25.7.839, 2005b.
Medlyn, B. E., Duursma, R. A., and Zeppel, M. J. B.:
Forest productivity under climate change: a checklist for evaluating model studies,
WIREs Clim. Change,
2, 332–355, https://doi.org/10.1002/wcc.108, 2011.
Menzel, A.:
Phänologie von Waldbäumen unter sich ändernden Klimabedingungen – Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten,
Forstliche Forschungsberichte, Universität München, München, 150 pp., 1997.
Minunno, F., Peltoniemi, M., Launiainen, S., Aurela, M., Lindroth, A., Lohila, A., Mammarella, I., Minkkinen, K., and Mäkelä, A.:
Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region,
Ecol. Model.,
341, 37–52, https://doi.org/10.1016/j.ecolmodel.2016.09.020, 2016.
Molina-Herrera, S., Grote, R., Santabárbara-Ruiz, I., Kraus, D., Klatt, S., Haas, E., Kiese, R., and Butterbach-Bahl, K.:
Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model “LandscapeDNDC”,
Forests,
6, 1779–1809, https://doi.org/10.3390/f6061779, 2015.
Monsi, M. and Saeki, T.:
On the Factor Light in Plant Communities and its Importance for Matter Production,
Ann. Bot.-London,
95, 549–567, https://doi.org/10.1093/aob/mci052, 2005.
Monteith, J. L. and Unsworth, M. H.:
Principles of environmental physics, second edn.,
Edward Arnold, London, 1990.
Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, 2015.
Neumann, M., Mues, V., Moreno, A., Hasenauer, H., and Seidl, R.:
Climate variability drives recent tree mortality in Europe,
Glob. Change Biol.,
23, 4788–4797, https://doi.org/10.1111/gcb.13724, 2017.
Nitsch, J. P.:
Photoperiodism in woody plants,
P. Am. Soc. Hortic. Sci.,
79, 526–544, 1957.
Peltoniemi, M., Pulkkinen, M., Aurela, M., Pumpanen, J., Kolari, P., and Makela, A.:
A semi-empirical model of boreal-forest gross primary production, evapotranspiration, and soil water – calibration and sensitivity analysis,
Boreal Environ. Res.,
20, 151–171, 2015.
Perry, T. O.:
Dormancy of trees in winter,
Science,
171, 29–36, https://doi.org/10.1126/science.171.3966.29, 1971.
Pilegaard, K., Hummelshoj, P., Jensen, N. O., and Chen, Z.:
Two years of continuous CO2 eddy-flux measurements over a Danish beech forest,
Agr. Forest Meteorol.,
107, 29–41, https://doi.org/10.1016/s0168-1923(00)00227-6, 2001.
Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshoj, P., and Jensen, N. O.:
Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009,
Agr. Forest Meteorol.,
151, 934–946, https://doi.org/10.1016/j.agrformet.2011.02.013, 2011.
Porte, A. and Bartelink, H. H.:
Modelling mixed forest growth: a review of models for forest management,
Ecol. Model.,
150, 141–188, https://doi.org/10.1016/S0304-3800(01)00476-8, 2002.
Post, J., Krysanova, V., Suckow, F., Mirschel, W., Rogasik, J., and Merbach, I.:
Integrated ecohydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins,
Ecol. Model.,
206, 93–109, https://doi.org/10.1016/j.ecolmodel.2007.03.028, 2007.
Pretzsch, H.:
Forest Dynamics, Growth and Yield,
Springer Berlin, Germany, 664 pp., 2010.
Pretzsch, H., Grote, R., Reineking, B., Rotzer, T., and Seifert, S.:
Models for forest ecosystem management: A European perspective,
Ann. Bot.-London,
101, 1065–1087, https://doi.org/10.1093/aob/mcm246, 2008.
Priestley, C. H. B. and Taylor, R. J.:
On the assessment of surface heat flux and evaporation using large-scale parameters,
Mon. Weather Rev.,
100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Reyer, C.:
Forest Productivity Under Environmental Change – a Review of Stand-Scale Modeling Studies,
Current Forestry Reports,
1, 53–68, https://doi.org/10.1007/s40725-015-0009-5, 2015.
Reyer, C., Lasch, P., Mohren, G. M. J., and Sterck, F. J.:
Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change – a model-based analysis,
Ann. For. Sci.,
67, 805, https://doi.org/10.1051/forest/2010041, 2010.
Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., and Pilz, T.:
Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide,
Ann. For. Sci.,
71, 211–225, https://doi.org/10.1007/s13595-013-0306-8, 2014.
Reyer, C., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Matteucci, G., Collalti, A., D'Andrea, E., Krupkova, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios, A., Cicuendez, V., Büchner, M., Lange, S., Volkholz, J., Kim, H., Horemans, J., Martel, S., Bohn, F., Steinkamp, J., Suckow, F., Weedon, G., Sheffield, J., Chikalanov, A., and Frieler, K.:
The PROFOUND database for evaluating vegetation models and simulating climate impacts on forests V. 0.1.12,
GFZ Data Services, https://doi.org/10.5880/PIK.2019.008, 2019.
Reyer, C. P. O., Flechsig, M., Lasch-Born, P., and van Oijen, M.:
Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity,
Climatic Change,
137, 395–409, https://doi.org/10.1007/s10584-016-1694-1, 2016.
Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T. G. M., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Collalti, A., Trotta, C., Matteucci, G., D'Andrea, E., Foltýnová, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios-Orueta, A., Cicuendez, V., Recuero, L., Wiese, K., Büchner, M., Lange, S., Volkholz, J., Kim, H., Horemans, J. A., Bohn, F., Steinkamp, J., Chikalanov, A., Weedon, G. P., Sheffield, J., Babst, F., Vega del Valle, I., Suckow, F., Martel, S., Mahnken, M., Gutsch, M., and Frieler, K.: The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests, Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, 2020.
Robinson, A. P., Duursma, R. A., and Marshall, J. D.:
A regression-based equivalence test for model validation: shifting the burden of proof,
Tree Physiol.,
25, 903–913, https://doi.org/10.1093/treephys/25.7.903, 2005.
Russ, A. and Riek, W.:
Pedotransferfunktionen zur Ableitung der nutzbaren Feldkapazität – Validierung für Waldböden des nordostdeutschen Tieflands,
Waldökologie, Landschaftsforschung und Naturschutz,
5–17, 2011.
Schaber, J.:
Phenology in Germany in the 20th century: methods, analyses and models,
Math.-Nat. Fakultät, Universität Potsdam, Potsdam, 164 pp., 2002.
Schaber, J. and Badeck, F.-W.:
Physiology based phenology models for forest tree species in Germany,
Int. J. Biometeorol.,
47, 193–201, https://doi.org/10.1007/s00484-003-0171-5, 2003.
Schall, P.:
Ein Ansatz zur Modellierung der Naturverjüngungsprozesse im Bergmischwald der östlichen bayrischen Alpen,
Forschungszentrum Waldökosysteme, Göttingen, Reihe A Bd 155, 1998.
Seidl, R., Rammer, W., Lasch, P., Badeck, F. W., and M.J., L.:
Does conversion of even-aged, secondary coniferous forest affect carbon sequestration? A simulation study under changing environmental conditions,
Silva Fenn.,
42, 369–386, https://doi.org/10.14214/sf.243, 2008.
Seidl, R., Rammer, W., Scheller, R. M., and Spies, T. A.:
An individual-based process model to simulate landscape-scale forest ecosystem dynamics,
Ecol. Model.,
231, 87–100, https://doi.org/10.1016/j.ecolmodel.2012.02.015, 2012.
Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.:
A quantitative analysis of plant form – the pipe model theory. I. Basic analysis,
Jap. J. Ecology,
14, 97–105, 1964.
Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M., and Whitmore, A. P.:
A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments,
Geoderma,
81, 153–225, https://doi.org/10.1016/S0016-7061(97)00087-6, 1997.
Suckow, F.:
A Model Serving The Calculation Of Soil Temperatures,
Z. Meteorol.,
35, 66–70, 1985.
Suckow, F.: Ein
Modell zur Berechnung der Bodentemperatur unter Brache und unter Pflanzenbestand,
Akademie der Landwirtschaftswissenschaften der DDR, Berlin, 1986.
Suckow, F., Badeck, F.-W., Lasch, P., and Schaber, J.:
Nutzung von Level-II-Beobachtungen für Test und Anwendungen des Sukzessionsmodells FORESEE,
Beiträge für Forstwirtschaft und Landschaftsökologie,
35, 84–87, 2001.
Suckow, F., Lasch-Born, P., Gerstengarbe, F.-W., Werner, P., and Reyer, C. P. O.:
Climate change impacts on a pine stand in Central Siberia,
Reg. Environ. Change,
16, 1671–1683, https://doi.org/10.1007/s10113-015-0915-x, 2016.
van't Hoff, J. H.:
Etudes de dynamique chimique,
Muller, Amsterdam, 214 pp., 1884.
Van Hees, A. F. M.:
Growth and Morphology of Pedunculate Oak (Quercus robur L.) and Beech (Fagus sylvatica L.) Seedlings in Relation to Shading and Drought,
Ann. Sci. Forest.,
54, 9–18, https://doi.org/10.1051/forest:19970102, 1997.
van Oijen, M., Reyer, C., Bohn, F. J., Cameron, D. R., Deckmyn, G., Flechsig, M., Härkönen, S., Hartig, F., Huth, A., Kiviste, A., Lasch, P., Mäkelä, A., Mette, T., Minunno, F., and Rammer, W.:
Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe,
Forest. Ecol. Manag.,
289, 255–268, https://doi.org/10.1016/j.foreco.2012.09.043, 2013.
Vegis, A.:
Dependence of growth processes on temperature,
in: Temperature and life,
edited by: Precht, H., Christophersen, J., H.Hensel, and Larcher, W.,
Springer-Verlag, Berlin, 145–169, 1973.
Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., and Heimann, M.: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, 5, 561–583, https://doi.org/10.5194/bg-5-561-2008, 2008.
Wang, J. Y.:
A critique of the heat unit approach to plant response studies,
Ecology,
41, 785–790, 1960.
Wareing, P. F.:
Photoperiodism in woody plants,
Annu. Rev. Plant Phys.,
7, 191–214, https://doi.org/10.1146/annurev.pp.07.060156.001203, 1956.
Waring, R. H., Landsberg, J. J., and Williams, M.:
Net Primary Production of Forests – a Constant Fraction of Gross Primary Production?,
Tree Physiol.,
18, 129–134, https://doi.org/10.1093/treephys/18.2.129, 1998.
Wösten, J. H. M., Pachepsky, Y. A., and Rawls, W. J.:
Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics,
J. Hydrol., 251, 123–150, https://doi.org/10.1016/S0022-1694(01)00464-4, 2001.
Wu, S. H., Jansson, P.-E., and Kolari, P.:
Modeling seasonal course of carbon fluxes and evapotranspiration in response to low temperature and moisture in a boreal Scots pine ecosystem,
Ecol. Model.,
222, 3103–3119, https://doi.org/10.1016/j.ecolmodel.2011.05.023, 2011.
Wu, S. H., Jansson, P.-E., and Kolari, P.:
The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem,
Agr. Forest Meteorol.,
156, 85–103, https://doi.org/10.1016/j.agrformet.2012.01.006, 2012.
Short summary
The process-based model 4C has been developed to study climate impacts on forests and is now freely available as an open-source tool. This paper provides a comprehensive description of the 4C version (v2.2) for scientific users of the model and presents an evaluation of 4C. The evaluation focused on forest growth, carbon water, and heat fluxes. We conclude that 4C is widely applicable, reliable, and ready to be released to the scientific community to use and further develop the model.
The process-based model 4C has been developed to study climate impacts on forests and is now...