Model evaluation paper 05 Nov 2020
Model evaluation paper | 05 Nov 2020
Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites
Petra Lasch-Born et al.
Related authors
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Genki Katata, Rüdiger Grote, Matthias Mauder, Matthias J. Zeeman, and Masakazu Ota
Biogeosciences, 17, 1071–1085, https://doi.org/10.5194/bg-17-1071-2020, https://doi.org/10.5194/bg-17-1071-2020, 2020
Short summary
Short summary
In this paper, we demonstrate that high physiological activity levels during the extremely warm winter are allocated into the below-ground biomass and only to a minor extent used for additional plant growth during early spring. This process is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, and it may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Boris Bonn, Erika von Schneidemesser, Dorota Andrich, Jörn Quedenau, Holger Gerwig, Anja Lüdecke, Jürgen Kura, Axel Pietsch, Christian Ehlers, Dieter Klemp, Claudia Kofahl, Rainer Nothard, Andreas Kerschbaumer, Wolfgang Junkermann, Rüdiger Grote, Tobias Pohl, Konradin Weber, Birgit Lode, Philipp Schönberger, Galina Churkina, Tim M. Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 7785–7811, https://doi.org/10.5194/acp-16-7785-2016, https://doi.org/10.5194/acp-16-7785-2016, 2016
Short summary
Short summary
The distribution of air pollutants (gases and particles) have been investigated in different environments in Potsdam, Germany. Remarkable variations of the pollutants have been observed for distances of tens of meters by bicycles, vans and aircraft. Vegetated areas caused reductions depending on the pollutants, the vegetation type and dimensions. Our measurements show the pollutants to be of predominantly local origin, resulting in a huge challenge for common models to resolve.
Andrea Ghirardo, Junfei Xie, Xunhua Zheng, Yuesi Wang, Rüdiger Grote, Katja Block, Jürgen Wildt, Thomas Mentel, Astrid Kiendler-Scharr, Mattias Hallquist, Klaus Butterbach-Bahl, and Jörg-Peter Schnitzler
Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, https://doi.org/10.5194/acp-16-2901-2016, 2016
Short summary
Short summary
Trees can impact urban air quality. Large emissions of plant volatiles are emitted in Beijing as a stress response to the urban polluted environment, but their impacts on secondary particulate matter remain relatively low compared to those originated from anthropogenic activities. The present study highlights the importance of including stress-induced compounds when studying plant volatile emissions.
Paul E. Reyerson, Anne Alexandre, Araks Harutyunyan, Remi Corbineau, Hector A. Martinez De La Torre, Franz Badeck, Luigi Cattivelli, and Guaciara M. Santos
Biogeosciences, 13, 1269–1286, https://doi.org/10.5194/bg-13-1269-2016, https://doi.org/10.5194/bg-13-1269-2016, 2016
Short summary
Short summary
We characterize the origin of carbon (C) in phytoliths (biosilica of higher plants) by a multi-isotope approach. We show that phytoliths occlude soil organic C adsorbed through the roots, making them unsuitable for paleo-proxy studies, 14C dating or atmospheric CO2 sequestration. Our findings are in parallel with recent soil paradigm shifts showing that soil microbes access old C and therefore call for further investigations on the role of old C in root–plant interactions and biomineralization.
D. R. Cameron, M. Van Oijen, C. Werner, K. Butterbach-Bahl, R. Grote, E. Haas, G. B. M. Heuvelink, R. Kiese, J. Kros, M. Kuhnert, A. Leip, G. J. Reinds, H. I. Reuter, M. J. Schelhaas, W. De Vries, and J. Yeluripati
Biogeosciences, 10, 1751–1773, https://doi.org/10.5194/bg-10-1751-2013, https://doi.org/10.5194/bg-10-1751-2013, 2013
Related subject area
Biogeosciences
Calibrating soybean parameters in JULES 5.0 from the US-Ne2/3 FLUXNET sites and the SoyFACE-O3 experiment
Modeling long-term fire impact on ecosystem characteristics and surface energy using a process-based vegetation–fire model SSiB4/TRIFFID-Fire v1.0
Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0
Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation
Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14
Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model
A multi-isotope model for simulating soil organic carbon cycling in eroding landscapes (WATEM_C v1.0)
One-dimensional models of radiation transfer in heterogeneous canopies: a review, re-evaluation, and improved model
An improved mechanistic model for ammonia volatilization in Earth system models: Flow of Agricultural Nitrogen version 2 (FANv2)
Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0)
Short-term forecasting of regional biospheric CO2 fluxes in Europe using a light-use-efficiency model (VPRM, MPI-BGC version 1.2)
FLiES-SIF version 1.0: three-dimensional radiative transfer model for estimating solar induced fluorescence
The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage
Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands
Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
Simulating stable carbon isotopes in the ocean component of the FAMOUS general circulation model with MOSES1 (XOAVI)
Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project
Marine biogeochemical cycling and oceanic CO2 uptake simulated by the NUIST Earth System Model version 3 (NESM v3)
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework and site-level performance
Integrated Modeling of Photosynthesis and Transfer of Energy, Mass and Momentum in the Soil-Plant-Atmosphere Continuum System
Conceptual Model to Simulate Long-term Soil Organic Carbon and Ground Ice Budget with Permafrost and Ice Sheets (SOC-ICE-v1.0)
HR3DHG version 1: modeling the spatiotemporal dynamics of mercury in the Augusta Bay (southern Italy)
CoupModel (v6.0): an ecosystem model for coupled phosphorus, nitrogen and carbon dynamics – evaluated against empirical data from a climatic and fertility gradient in Sweden
BPOP-v1 model: exploring the impact of changes in the biological pump on the shelf sea and ocean nutrient and redox state
P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production
HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 2: Phenology and water cycle
Dynamic upscaling of decomposition kinetics for carbon cycling models
CE-DYNAM (v1): a spatially explicit process-based carbon erosion scheme for use in Earth system models
A coupled pelagic–benthic–sympagic biogeochemical model for the Bering Sea: documentation and validation of the BESTNPZ model (v2019.08.23) within a high-resolution regional ocean model
FORests and HYdrology under Climate Change in Switzerland v1.0: a spatially distributed model combining hydrology and forest dynamics
ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions – Part 2: Model evaluation over the Lena River basin
GLOBAL-FATE (version 1.0.0): A geographical information system (GIS)-based model for assessing contaminants fate in the global river network
A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall?
Improving the LPJmL4-SPITFIRE vegetation–fire model for South America using satellite data
Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production
A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996)
Modelling biomass burning emissions and the effect of spatial resolution: a case study for Africa based on the Global Fire Emissions Database (GFED)
A lattice-automaton bioturbation simulator with coupled physics, chemistry, and biology in marine sediments (eLABS v0.2)
The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description
The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America
Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES)
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Evaluation of leaf-level optical properties employed in land surface models
ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions – Part 1: Rationale, model description, and simulation protocol
Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488)
Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
Description and validation of an intermediate complexity model for ecosystem photosynthesis and evapotranspiration: ACM-GPP-ETv1
The quasi-equilibrium framework revisited: analyzing long-term CO2 enrichment responses in plant–soil models
Bayesian inference and predictive performance of soil respiration models in the presence of model discrepancy
CO2 drawdown due to particle ballasting by glacial aeolian dust: an estimate based on the ocean carbon cycle model MPIOM/HAMOCC version 1.6.2p3
Felix Leung, Karina Williams, Stephen Sitch, Amos P. K. Tai, Andy Wiltshire, Jemma Gornall, Elizabeth A. Ainsworth, Timothy Arkebauer, and David Scoby
Geosci. Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-6201-2020, https://doi.org/10.5194/gmd-13-6201-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is detrimental to plant productivity and crop yield. Currently, the Joint UK Land Environment Simulator (JULES) includes a representation of crops (JULES-crop). The parameters for O3 damage in soybean in JULES-crop were calibrated against photosynthesis measurements from the Soybean Free Air Concentration Enrichment (SoyFACE). The result shows good performance for yield, and it helps contribute to understanding of the impacts of climate and air pollution on food security.
Huilin Huang, Yongkang Xue, Fang Li, and Ye Liu
Geosci. Model Dev., 13, 6029–6050, https://doi.org/10.5194/gmd-13-6029-2020, https://doi.org/10.5194/gmd-13-6029-2020, 2020
Short summary
Short summary
We developed a fire-coupled dynamic vegetation model that captures the spatial distribution, temporal variability, and especially the seasonal variability of fire regimes. The fire model is applied to assess the long-term fire impact on ecosystems and surface energy. We find that fire is an important determinant of the structure and function of the tropical savanna. By changing the vegetation composition and ecosystem characteristics, fire significantly alters surface energy balance.
Virginie Moreaux, Simon Martel, Alexandre Bosc, Delphine Picart, David Achat, Christophe Moisy, Raphael Aussenac, Christophe Chipeaux, Jean-Marc Bonnefond, Soisick Figuères, Pierre Trichet, Rémi Vezy, Vincent Badeau, Bernard Longdoz, André Granier, Olivier Roupsard, Manuel Nicolas, Kim Pilegaard, Giorgio Matteucci, Claudy Jolivet, Andrew T. Black, Olivier Picard, and Denis Loustau
Geosci. Model Dev., 13, 5973–6009, https://doi.org/10.5194/gmd-13-5973-2020, https://doi.org/10.5194/gmd-13-5973-2020, 2020
Short summary
Short summary
The model GO+ describes the functioning of managed forests based upon biophysical and biogeochemical processes. It accounts for the impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes versatile descriptions of management operations. Its sensitivity and uncertainty are detailed and predictions are compared with observations about mass and energy exchanges, hydrological data, and tree growth variables from different sites.
Toni Viskari, Maisa Laine, Liisa Kulmala, Jarmo Mäkelä, Istem Fer, and Jari Liski
Geosci. Model Dev., 13, 5959–5971, https://doi.org/10.5194/gmd-13-5959-2020, https://doi.org/10.5194/gmd-13-5959-2020, 2020
Short summary
Short summary
The research here established whether a Bayesian statistical method called state data assimilation could be used to improve soil organic carbon (SOC) forecasts. Our test case was a fallow experiment where SOC content was measured over several decades from a plot where all vegetation was removed. Our results showed that state data assimilation improved projections and allowed for the detailed model state be updated with coarse total carbon measurements.
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020, https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary
Short summary
This study developed a spatially distributed carbon cycling model applicable in an eroding landscape. It includes all three carbon isotopes so that it is able to represent the carbon isotopic compositions. The model is able to represent the observations that eroding area is enriched in 13C and depleted of 14C compared to depositional area. Our simulations show that the spatial variability of carbon isotopic properties in an eroding landscape is mainly caused by the soil redistribution.
Brian N. Bailey, María A. Ponce de León, and E. Scott Krayenhoff
Geosci. Model Dev., 13, 4789–4808, https://doi.org/10.5194/gmd-13-4789-2020, https://doi.org/10.5194/gmd-13-4789-2020, 2020
Short summary
Short summary
Numerous models of plant radiation interception based on a range of assumptions are available in the literature, but the importance of each assumption is not well understood. In this work, we evaluate several assumptions common in simple models of radiation interception in canopies with widely spaced plants by comparing against a detailed 3-D model. This yielded a simple model based on readily measurable parameters that could accurately predict interception for a wide range of architectures.
Julius Vira, Peter Hess, Jeff Melkonian, and William R. Wieder
Geosci. Model Dev., 13, 4459–4490, https://doi.org/10.5194/gmd-13-4459-2020, https://doi.org/10.5194/gmd-13-4459-2020, 2020
Short summary
Short summary
Mostly emitted by the agricultural sector, ammonia has an important role in atmospheric chemistry. We developed a model to simulate how ammonia emissions respond to changes in temperature and soil moisture, and we evaluated agricultural ammonia emissions globally. The simulated emissions agree with earlier estimates over many regions, but the results highlight the variability of ammonia emissions and suggest that emissions in warm climates may be higher than previously thought.
Emily Kyker-Snowman, William R. Wieder, Serita D. Frey, and A. Stuart Grandy
Geosci. Model Dev., 13, 4413–4434, https://doi.org/10.5194/gmd-13-4413-2020, https://doi.org/10.5194/gmd-13-4413-2020, 2020
Short summary
Short summary
Microbes drive carbon (C) and nitrogen (N) transformations in soil, and soil models have started to include explicit microbial physiology and functioning to try to reduce uncertainty in soil–climate feedbacks. Here, we add N cycling to a microbially explicit soil C model and reproduce C and N dynamics in soil during litter decomposition across a range of sites. We discuss model-generated hypotheses about soil C and N cycling and highlight the need for landscape-scale model evaluation data.
Jinxuan Chen, Christoph Gerbig, Julia Marshall, and Kai Uwe Totsche
Geosci. Model Dev., 13, 4091–4106, https://doi.org/10.5194/gmd-13-4091-2020, https://doi.org/10.5194/gmd-13-4091-2020, 2020
Short summary
Short summary
One of the essential challenge for atmospheric CO2 forecasting is predicting CO2 flux variation on synoptic timescale. For CAMS CO2 forecast, a process-based vegetation model is used.
In this research we evaluate another type of model (i.e., the light-use-efficiency model VPRM), which is a data-driven approach and thus ideal for realistic estimation, on its ability of flux prediction. Errors from different sources are assessed, and overall the model is capable of CO2 flux prediction.
Yuma Sakai, Hideki Kobayashi, and Tomomichi Kato
Geosci. Model Dev., 13, 4041–4066, https://doi.org/10.5194/gmd-13-4041-2020, https://doi.org/10.5194/gmd-13-4041-2020, 2020
Short summary
Short summary
Chlorophyll fluorescence is one of the energy release pathways of excess incident light in the photosynthetic process. The canopy-scale Sun-induced chlorophyll fluorescence (SIF), which potentially provides a direct pathway to link leaf-level photosynthesis to global GPP, can be observed from satellites. We develop the three-dimensional Monte Carlo plant canopy radiative transfer model to understand the biological and physical mechanisms behind SIF emission from complex forest canopies.
Femke Lutz, Stephen Del Grosso, Stephen Ogle, Stephen Williams, Sara Minoli, Susanne Rolinski, Jens Heinke, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 13, 3905–3923, https://doi.org/10.5194/gmd-13-3905-2020, https://doi.org/10.5194/gmd-13-3905-2020, 2020
Short summary
Short summary
Previous findings have shown deviations between the LPJmL5.0-tillage model and results from meta-analyses on global estimates of tillage effects on N2O emissions. By comparing model results with observational data of four experimental sites and outputs from field-scale DayCent model simulations, we show that advancing information on agricultural management, as well as the representation of soil moisture dynamics, improves LPJmL5.0-tillage and the estimates of tillage effects on N2O emissions.
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020, https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary
Short summary
Reliable models are required to estimate global wetland CH4 emissions, which are the largest and most uncertain source of atmospheric CH4. This paper evaluated CH4MODwetland and TEM models against CH4 measurements from different continents and wetland types. Based on best-model performance, we estimated 117–125 Tg yr−1 of global CH4 emissions from wetlands for the period 2000–2010. Efforts should be made to reduce estimate uncertainties for different wetland types and regions.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks-Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-241, https://doi.org/10.5194/gmd-2020-241, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
In this study we were able to significantly improve the CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameters for important cash crops and a cover cropping subroutine to its crop module. We anticipate that our findings and modifications can help to improve regional scale yield predictions, and offer the possibility to study the effects of large-scale cover cropping on energy fluxes, CN pools and the terrestrial water cycle.
Jennifer E. Dentith, Ruza F. Ivanovic, Lauren J. Gregoire, Julia C. Tindall, and Laura F. Robinson
Geosci. Model Dev., 13, 3529–3552, https://doi.org/10.5194/gmd-13-3529-2020, https://doi.org/10.5194/gmd-13-3529-2020, 2020
Short summary
Short summary
We have added a new tracer (13C) into the ocean of the FAMOUS climate model to study large-scale circulation and the marine carbon cycle. The model captures the large-scale spatial pattern of observations but the simulated values are consistently higher than observed. In the first instance, our new tracer is therefore useful for recalibrating the physical and biogeochemical components of the model.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Yifei Dai, Long Cao, and Bin Wang
Geosci. Model Dev., 13, 3119–3144, https://doi.org/10.5194/gmd-13-3119-2020, https://doi.org/10.5194/gmd-13-3119-2020, 2020
Short summary
Short summary
NESM v3 is one of the CMIP6 registered Earth system models. We evaluate its ocean carbon cycle component and present its present-day and future oceanic CO2 uptake based on the CMIP6 historical and SSP5–8.5 scenarios. We hope that this paper can serve as a documentation of the marine biogeochemical cycle in NESM v3. Also, the model defects found and their underlying causes analyzed in this paper could help users and further model development.
Joe R. Melton, Vivek K. Arora, Eduard Wisernig-Cojoc, Christian Seiler, Matthew Fortier, Ed Chan, and Lina Teckentrup
Geosci. Model Dev., 13, 2825–2850, https://doi.org/10.5194/gmd-13-2825-2020, https://doi.org/10.5194/gmd-13-2825-2020, 2020
Short summary
Short summary
We transitioned the CLASS-CTEM land surface model to an open-source community model format by modernizing the code base to make the model easier to use and understand, providing a complete software environment to run the model within, developing a benchmarking suite for model evaluation, and creating an infrastructure to support community involvement. The new model, the Canadian Land Surface Scheme including Biogeochemical Cycles (CLASSIC), is now available for the community to use and develop.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van de Tol, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-85, https://doi.org/10.5194/gmd-2020-85, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil-plant-atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved due to considering the root water uptake, especially when vegetation is experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer on simulating ecosystem functioning.
Kazuyuki Saito, Hirokazu Machiya, Go Iwahana, Tokuta Yokohata, and Hiroshi Ohno
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-80, https://doi.org/10.5194/gmd-2020-80, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
The circum-Arctic distribution of soil organic carbon (SOC) and ground ice (ICE) is essential to assess the impacts of permafrost degradation, but uncertainties remain. A new conceptual numerical model for long-term SOC and ICE budget with frozen ground, ice sheets and coastlines changes was run for north of 50° N for the last 125 thousand years, and compared well with observation data for reproducibility. The simulated timeseries can produce maps of SOC and ICE for past, present and future.
Giovanni Denaro, Daniela Salvagio Manta, Alessandro Borri, Maria Bonsignore, Davide Valenti, Enza Quinci, Andrea Cucco, Bernardo Spagnolo, Mario Sprovieri, and Andrea De Gaetano
Geosci. Model Dev., 13, 2073–2093, https://doi.org/10.5194/gmd-13-2073-2020, https://doi.org/10.5194/gmd-13-2073-2020, 2020
Short summary
Short summary
The HR3DHG (high-resolution 3D mercury model) investigates the spatiotemporal behavior, in seawater and marine sediments, of three mercury species (elemental, inorganic, and organic mercury) in a highly polluted marine environment (Augusta Bay, southern Italy). The model shows fair agreement with the experimental data collected during six different oceanographic cruises and can possibly be used for a detailed exploration of the effects of climate change on mercury distribution.
Hongxing He, Per-Erik Jansson, and Annemieke Gärdenäs
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-65, https://doi.org/10.5194/gmd-2020-65, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
We present the integration of the phosphorus (P) cycle into CoupModel (Coup-CNP). The extended Coup-CNP enables simulations of coupled C, N and P dynamics for terrestrial ecosystems which explicitly consider mycorrhizal interactions. The development and evaluation of the new Coup-CNP model demonstrate that P fluxes need to be further considered in studies of how climate change will influence C turnover and ecosystem responses.
Elisa Lovecchio and Timothy M. Lenton
Geosci. Model Dev., 13, 1865–1883, https://doi.org/10.5194/gmd-13-1865-2020, https://doi.org/10.5194/gmd-13-1865-2020, 2020
Short summary
Short summary
We present here the newly developed BPOP box model. BPOP is aimed at studying the impact of large-scale changes in the biological pump, i.e. the cycle of production, export and remineralization of the marine organic matter, on the nutrient and oxygen concentrations in the shelf and open ocean. This model has been developed to investigate the global consequences of the evolution of larger and heavier phytoplankton cells but can be applied to a variety of past and future case studies.
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020, https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Short summary
Given their key role in the simulation of climate impacts on tree growth, phenological and water balance processes must be integrated in models simulating forest dynamics under a changing environment. Here, we describe these processes integrated in HETEROFOR, a model accounting simultaneously for the functional, structural and spatial complexity to explore the forest response to forestry practices. The model evaluation using phenological and soil water content observations is quite promising.
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Short summary
Soils are heterogeneous, which results in a nonuniform spatial distribution of substrates and the microorganisms feeding on them. Our results show that the variability in the spatial distribution of substrates and microorganisms at the pore scale is crucial because it affects how fast substrates are used by microorganisms and thus the decomposition rate observed at the soil core scale. This work provides a methodology to include microscale heterogeneity in soil carbon cycling models.
Victoria Naipal, Ronny Lauerwald, Philippe Ciais, Bertrand Guenet, and Yilong Wang
Geosci. Model Dev., 13, 1201–1222, https://doi.org/10.5194/gmd-13-1201-2020, https://doi.org/10.5194/gmd-13-1201-2020, 2020
Short summary
Short summary
In this study we present the Carbon Erosion DYNAMics model (CE-DYNAM) that links sediment dynamics resulting from water erosion with the soil carbon cycle along a cascade of hillslopes, floodplains, and rivers. The model can simulate the removal of soil and carbon from eroding areas and their destination at regional scale. We calibrated and validated the model for the Rhine catchment, and we show that soil erosion is a potential large net carbon sink over the period 1850–2005.
Kelly Kearney, Albert Hermann, Wei Cheng, Ivonne Ortiz, and Kerim Aydin
Geosci. Model Dev., 13, 597–650, https://doi.org/10.5194/gmd-13-597-2020, https://doi.org/10.5194/gmd-13-597-2020, 2020
Short summary
Short summary
We describe an ecosystem model for the Bering Sea. Biological components in the Bering Sea can be found in the water column, on and within the bottom sediments, and within the porous lower layer of seasonal sea ice. This model simulates the exchange of material between nutrients and plankton within all three environments. Here, we thoroughly document the model and assess its skill in capturing key biophysical features across the Bering Sea.
Matthias J. R. Speich, Massimiliano Zappa, Marc Scherstjanoi, and Heike Lischke
Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, https://doi.org/10.5194/gmd-13-537-2020, 2020
Short summary
Short summary
Climate change is expected to substantially affect natural processes, and simulation models are a valuable tool to anticipate these changes. In this study, we combine two existing models that each describe one aspect of the environment: forest dynamics and the terrestrial water cycle. The coupled model better described observed patterns in vegetation structure. We also found that including the effect of water availability on tree height and rooting depth improved the model.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Pierre Regnier, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 13, 507–520, https://doi.org/10.5194/gmd-13-507-2020, https://doi.org/10.5194/gmd-13-507-2020, 2020
Short summary
Short summary
In this second part of the study, we performed simulations of the carbon and water budget of the Lena catchment with the land surface model ORCHIDEE MICT-LEAK, enabled to simulate dissolved organic carbon (DOC) production in soils and its transport and fate in high-latitude inland waters. We compare simulations using this model to existing data sources to show that it is capable of reproducing dissolved carbon fluxes of potentially great importance for the future of the global permafrost.
Carme Font, Francesco Bregoli, Vicenç Acuña, Sergi Sabater, and Rafael Marcé
Geosci. Model Dev., 12, 5213–5228, https://doi.org/10.5194/gmd-12-5213-2019, https://doi.org/10.5194/gmd-12-5213-2019, 2019
Short summary
Short summary
GLOBAL-FATE is an open-source, multiplatform, and flexible model that simulates the fate of pharmaceutical-like compounds in the global river network. The model considers the consumption of pharmaceuticals by humans, differentiates between pharmaceutical load treated in wastewater treatment plants from that directly delivered to streams and rivers, and integrates lakes and reservoirs in calculations. GLOBAL-FATE is a powerful tool for pollutant impact studies at the global scale.
Luke Gregor, Alice D. Lebehot, Schalk Kok, and Pedro M. Scheel Monteiro
Geosci. Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-5113-2019, https://doi.org/10.5194/gmd-12-5113-2019, 2019
Short summary
Short summary
The ocean plays a vital role in mitigating climate change by taking up atmospheric carbon dioxide (CO2). Historically sparse ship-based measurements of surface ocean CO2 make direct estimates of CO2 exchange changes unreliable. We introduce a machine-learning ensemble approach to fill these observational gaps. Our method performs incrementally better relative to past methods, leading to our hypothesis that we are perhaps reaching the limitation of machine-learning algorithms' capability.
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Nicolas Vuichard, Palmira Messina, Sebastiaan Luyssaert, Bertrand Guenet, Sönke Zaehle, Josefine Ghattas, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 12, 4751–4779, https://doi.org/10.5194/gmd-12-4751-2019, https://doi.org/10.5194/gmd-12-4751-2019, 2019
Short summary
Short summary
In this research, we present a new version of the global terrestrial ecosystem model ORCHIDEE in which carbon and nitrogen cycles are coupled. We evaluate its skills at simulating primary production at 78 sites and at a global scale. Based on a set of additional simulations in which carbon and nitrogen cycles are coupled and uncoupled, we show that the functional responses of the model with carbon–nitrogen interactions better agree with our current understanding of photosynthesis.
Tea Thum, Silvia Caldararu, Jan Engel, Melanie Kern, Marleen Pallandt, Reiner Schnur, Lin Yu, and Sönke Zaehle
Geosci. Model Dev., 12, 4781–4802, https://doi.org/10.5194/gmd-12-4781-2019, https://doi.org/10.5194/gmd-12-4781-2019, 2019
Short summary
Short summary
To predict the response of the vegetation to climate change, we need global models that describe the relevant processes taking place in the vegetation. Recently, we have obtained more in-depth understanding of vegetation processes and the role of nutrients in the biogeochemical cycles. We have developed a new global vegetation model that includes carbon, water, nitrogen, and phosphorus cycles. We show that the model is successful in evaluation against a wide range of observations.
Dave van Wees and Guido R. van der Werf
Geosci. Model Dev., 12, 4681–4703, https://doi.org/10.5194/gmd-12-4681-2019, https://doi.org/10.5194/gmd-12-4681-2019, 2019
Short summary
Short summary
For this paper, a novel high spatial-resolution fire emission model based on the Global Fire Emissions Database (GFED) modelling framework was developed and compared to a coarser-resolution version of the same model. Our findings highlight the importance of fine spatial resolution when modelling global-scale fire emissions, especially considering the comparison of model pixels to individual field measurements and the model representation of heterogeneity in the landscape.
Yoshiki Kanzaki, Bernard P. Boudreau, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 12, 4469–4496, https://doi.org/10.5194/gmd-12-4469-2019, https://doi.org/10.5194/gmd-12-4469-2019, 2019
Short summary
Short summary
This paper provides eLABS, an extension of the lattice-automaton bioturbation simulator LABS. In our new model, the benthic animal behavior interacts and changes dynamically with oxygen and organic matter concentrations and the water flows caused by benthic animals themselves, in a 2-D marine-sediment grid. The model can address the mechanisms behind empirical observations of bioturbation based on the interactions between physical, chemical and biological aspects of marine sediment.
Marcos Longo, Ryan G. Knox, David M. Medvigy, Naomi M. Levine, Michael C. Dietze, Yeonjoo Kim, Abigail L. S. Swann, Ke Zhang, Christine R. Rollinson, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, https://doi.org/10.5194/gmd-12-4309-2019, 2019
Short summary
Short summary
Our paper describes the Ecosystem Demography model. This computer program calculates how plants and ground exchange heat, water, and carbon with the air, and how plants grow, reproduce and die in different climates. Most models simplify forests to an average big tree. We consider that tall, deep-rooted trees get more light and water than small plants, and that some plants can with shade and drought. This diversity helps us to better explain how plants live and interact with the atmosphere.
Marcos Longo, Ryan G. Knox, Naomi M. Levine, Abigail L. S. Swann, David M. Medvigy, Michael C. Dietze, Yeonjoo Kim, Ke Zhang, Damien Bonal, Benoit Burban, Plínio B. Camargo, Matthew N. Hayek, Scott R. Saleska, Rodrigo da Silva, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019, https://doi.org/10.5194/gmd-12-4347-2019, 2019
Short summary
Short summary
The Ecosystem Demography model calculates the fluxes of heat, water, and carbon between plants and ground and the air, and the life cycle of plants in different climates. To test if our calculations were reasonable, we compared our results with field and satellite measurements. Our model predicts well the extent of the Amazon forest, how much light forests absorb, and how much water forests release to the air. However, it must improve the tree growth rates and how fast dead plants decompose.
Elias C. Massoud, Chonggang Xu, Rosie A. Fisher, Ryan G. Knox, Anthony P. Walker, Shawn P. Serbin, Bradley O. Christoffersen, Jennifer A. Holm, Lara M. Kueppers, Daniel M. Ricciuto, Liang Wei, Daniel J. Johnson, Jeffrey Q. Chambers, Charlie D. Koven, Nate G. McDowell, and Jasper A. Vrugt
Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, https://doi.org/10.5194/gmd-12-4133-2019, 2019
Short summary
Short summary
We conducted a comprehensive sensitivity analysis to understand behaviors of a demographic vegetation model within a land surface model. By running the model 5000 times with changing input parameter values, we found that (1) the photosynthetic capacity controls carbon fluxes, (2) the allometry is important for tree growth, and (3) the targeted carbon storage is important for tree survival. These results can provide guidance on improved model parameterization for a better fit to observations.
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019, https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Short summary
We assess the differences of six stomatal conductance formulations, embedded into a land–vegetation model JSBACH, on 10 boreal coniferous evergreen forest sites. We calibrate the model parameters using all six functions in a multi-year experiment, as well as for a separate drought event at one of the sites, using the adaptive population importance sampler. The analysis reveals weaknesses in the stomatal conductance formulation-dependent model behaviour that we are able to partially amend.
Titta Majasalmi and Ryan M. Bright
Geosci. Model Dev., 12, 3923–3938, https://doi.org/10.5194/gmd-12-3923-2019, https://doi.org/10.5194/gmd-12-3923-2019, 2019
Short summary
Short summary
Many land surface models rely on solutions derived from two-stream approximations utilizing leaf-level optical properties, many of which have not been formally reviewed or published. Using plant functional type groupings of the Community Land Model (CLM), we found large deviations between measured and CLM default near-infrared optical properties, implying that the modeled shortwave radiation budget including surface albedo may be expected to change after updating the biased parameters.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 12, 3503–3521, https://doi.org/10.5194/gmd-12-3503-2019, https://doi.org/10.5194/gmd-12-3503-2019, 2019
Short summary
Short summary
Few Earth system models represent permafrost soil biogeochemistry, contributing to uncertainty in estimating its response and that of the planet to warming. Because the permafrost contains over double the carbon in the present atmosphere, its fate as it is
unlockedby warming is globally significant. One way it can be mobilised is into rivers, the sea, or the atmosphere: a vector previously ignored in climate modelling. We present a model scheme for resolving this vector at a global scale.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Shushi Peng, Gerhard Krinner, Ardalan Tootchi, Agnès Ducharne, and Adam Hastie
Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, https://doi.org/10.5194/gmd-12-2961-2019, 2019
Short summary
Short summary
We present a model that can simulate the dynamics of peatland area extent and the vertical buildup of peat. The model is validated across a range of northern peatland sites and over the Northern Hemisphere (> 30° N). It is able to reproduce the spatial extent of northern peatlands and peat carbon accumulation over the Holocene.
Femke Lutz, Tobias Herzfeld, Jens Heinke, Susanne Rolinski, Sibyll Schaphoff, Werner von Bloh, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 12, 2419–2440, https://doi.org/10.5194/gmd-12-2419-2019, https://doi.org/10.5194/gmd-12-2419-2019, 2019
Short summary
Short summary
Tillage practices are under-represented in global biogeochemical models so that assessments of agricultural greenhouse gas emissions and climate mitigation options are hampered. We describe the implementation of tillage modules into the model LPJmL5.0, including multiple feedbacks between soil water, nitrogen, and productivity. By comparing simulation results with observational data, we show that the model can reproduce reported tillage effects on carbon and water dynamics and crop yields.
Thomas Luke Smallman and Mathew Williams
Geosci. Model Dev., 12, 2227–2253, https://doi.org/10.5194/gmd-12-2227-2019, https://doi.org/10.5194/gmd-12-2227-2019, 2019
Short summary
Short summary
Photosynthesis and evapotranspiration are processes with global significance for climate, carbon and water cycling. Process-orientated simulation of these processes and their interactions have till now come at high computational cost. Here we present a new coupled model of intermediate complexity operating at orders of magnitude greater speed. Independent evaluation at FLUXNET sites for a single, global parameterization shows good agreement, with a typical R2 value of ~ 0.60.
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069–2089, https://doi.org/10.5194/gmd-12-2069-2019, https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Short summary
Here we used a simple analytical framework developed by Comins and McMurtrie (1993) to investigate how different model assumptions affected plant responses to elevated CO2. This framework is useful in revealing both the consequences and the mechanisms through which different assumptions affect predictions. We therefore recommend the use of this framework to analyze the likely outcomes of new assumptions before introducing them to complex model structures.
Ahmed S. Elshall, Ming Ye, Guo-Yue Niu, and Greg A. Barron-Gafford
Geosci. Model Dev., 12, 2009–2032, https://doi.org/10.5194/gmd-12-2009-2019, https://doi.org/10.5194/gmd-12-2009-2019, 2019
Short summary
Short summary
The assumptions that the residuals are independent, identically distributed, and have constant variance tend to simplify the underlying mathematics of data models for Bayesian inference. We relax these three assumptions step-wise, resulting in eight data models. Using three mechanistic soil respiration models with different levels of model discrepancy, we discuss the impacts of data models on parameter estimation and predictive performance, and provide recommendations for data model selection.
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869–1883, https://doi.org/10.5194/gmd-12-1869-2019, https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Short summary
Ocean CO2 uptake played a crucial role for the global cooling during ice ages. Dust formation, e.g. by ice scraping over bedrock, potentially contributed to this CO2 uptake because (1) the iron in the dust is a fertilizer and (2) the heavy dust particles can accelerate sinking organic matter (ballasting hypothesis). This study tests the glacial dust ballasting hypothesis for the first time, using an ocean model. It turns out, however, that the ballasting effect probably played a minor role.
Cited articles
Anderegg, W. R. L., Martinez-Vilalta, J., Cailleret, M., Camarero, J. J., Ewers, B. E., Galbraith, D., Gessler, A., Grote, R., Huang, C.-y., Levick, S. R., Powell, T. L., Rowland, L., Sánchez-Salguero, R., and Trotsiuk, V.:
When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes,
Ecosystems,
19, 1133–1147, https://doi.org/10.1007/s10021-016-9982-1, 2016.
Badeck, F. W., Beese, F., Berthold, D., Einert, P., Jochheim, H., Kallweit, R., Konopatzky, A., Lasch, P., Meesenburg, H., Meiwes, K.-J., Puhlmann, M., Raspe, S., Schulte-Bisping, H., Schulz, C., and Suckow, F.:
Parametrisierung, Kalibrierung und Validierung von Modellen des Kohlenstoffumsatzes in Waldökosystemen und deren Böden,
Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF), Institut für Bodenkunde und Waldernährung der Universität Göttingen (IBW), Landesforstanstalt Eberswalde (LFE), Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF), Nordwestdeutsche Forstliche Versuchsanstalt (NW-FVA), Potsdam-Institut für Klimafolgenforschung (PIK), 110, 2007.
Baldocchi, D., Chu, H., and Reichstein, M.:
Inter-annual variability of net and gross ecosystem carbon fluxes: A review,
Agr. Forest Meteorol.,
249, 520–533, https://doi.org/10.1016/j.agrformet.2017.05.015, 2018.
Botkin, D.:
Forest Dynamics: An Ecological Model,
Oxford University Press, Oxford & New York, 309 pp., 1993.
Bugmann, H., Grote, R., Lasch, P., Lindner, M., and Suckow, F.:
A new forest gap model to study the effects of environmental change on forest structure and functioning,
in: Impacts of Global Change of Tree Physiology and Forest Ecosystem,
Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen,
edited by: Mohren, G. M. J., Kramer, K., and Sabate, S.,
Forestry Science, Kluwer Academic Publisher, Dordrecht, 255–261, 1997.
Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M., François, L., Heinke, J., Henrot, A.-J., Hickler, T., Hülsmann, L., Huth, A., Jacquemin, I., Kollas, C., Lasch-Born, P., Lexer, M. J., Merganič, J., Merganičová, K., Mette, T., Miranda, B. R., Nadal-Sala, D., Rammer, W., Rammig, A., Reineking, B., Roedig, E., Sabaté, S., Steinkamp, J., Suckow, F., Vacchiano, G., Wild, J., Xu, C., and Reyer, C. P. O.: Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale, Ecosphere, 10, e02616, https://doi.org/10.1002/ecs2.2616, 2019.
Cameron, D. R., Van Oijen, M., Werner, C., Butterbach-Bahl, K., Grote, R., Haas, E., Heuvelink, G. B. M., Kiese, R., Kros, J., Kuhnert, M., Leip, A., Reinds, G. J., Reuter, H. I., Schelhaas, M. J., De Vries, W., and Yeluripati, J.: Environmental change impacts on the C- and N-cycle of European forests: a model comparison study, Biogeosciences, 10, 1751–1773, https://doi.org/10.5194/bg-10-1751-2013, 2013.
Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., D'Andrea, E., Matteucci, G., Montagnani, L., Gielen, B., Mammarella, I., Grünwald, T., Knohl, A., Berninger, F., Zhao, Y., Valentini, R., and Santini, M.: Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites, Geosci. Model Dev., 9, 479–504, https://doi.org/10.5194/gmd-9-479-2016, 2016.
DVWK:
Ermittlung der Verdunstung von Land- und Wasserflächen, DVWK-Merkblätter zur Wasserwirtschaft,
edited by: Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.,
Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH Bonn, Bonn, 134 pp., 1996.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Granier, A., Reichstein, M., Breda, N., Janssens, I. A., Falge, E., Ciais, P., Grunwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Kostner, B., Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D., Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, T., and Wang, Q.:
Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003,
Agr. Forest Meteorol.,
143, 123–145, https://doi.org/10.1016/j.agrformet.2006.12.004, 2007.
Grote, R., Suckow, F., and Bellmann, K.:
Modelling of carbon-, nitrogen-, and water balances in pine stands under changing air pollution and deposition,
in: Changes of Atmospheric Chemistry and Effects on Forest Ecosystems. A Roof Experiment Without Roof,
edited by: Hüttl, R. F. and Bellmann, K.,
Nutrients in Ecosystems, Kluwer, Dordrecht, 251–281, 1998.
Haxeltine, A. and Prentice, I. C.:
BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types,
Global Biogeochem. Cy.,
10, 693–709, https://doi.org/10.1029/96GB02344, 1996a.
Horemans, J., A., Henrot, A., Delire, C., Kollas, C., Lasch-Born, P., Reyer, C., Suckow, F., François, L., and Ceulemans, R.:
Combining multiple statistical methods to evaluate the performance of process-based vegetation models across three forest stands,
Central European Forestry Journal,
63, 153–172, https://doi.org/10.1515/forj-2017-0025, 2017.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar C, C., Aleixo, I., Ali, H., Amiaud, B., Ammer, C., Amoroso, M. M., Anand, M., Anderson, C., Anten, N., Antos, J., Apgaua, D. M. G., Ashman, T.-L., Asmara, D. H., Asner, G. P., Aspinwall, M., Atkin, O., Aubin, I., Baastrup-Spohr, L., Bahalkeh, K., Bahn, M., Baker, T., Baker, W. J., Bakker, J. P., Baldocchi, D., Baltzer, J., Banerjee, A., Baranger, A., Barlow, J., Barneche, D. R., Baruch, Z., Bastianelli, D., Battles, J., Bauerle, W., Bauters, M., Bazzato, E., Beckmann, M., Beeckman, H., Beierkuhnlein, C., Bekker, R., Belfry, G., Belluau, M., Beloiu, M., Benavides, R., Benomar, L., Berdugo-Lattke, M. L., Berenguer, E., Bergamin, R., Bergmann, J., Bergmann Carlucci, M., Berner, L., Bernhardt-Römermann, M., Bigler, C., Bjorkman, A. D., Blackman, C., Blanco, C., Blonder, B., Blumenthal, D., Bocanegra-González, K. T., Boeckx, P., Bohlman, S., Böhning-Gaese, K., Boisvert-Marsh, L., Bond, W., Bond-Lamberty, B., Boom, A., Boonman, C. C. F., Bordin, K., Boughton, E. H., Boukili, V., Bowman, D. M. J. S., Bravo, S., Brendel, M. R., Broadley, M. R., Brown, K. A., Bruelheide, H., Brumnich, F., Bruun, H. H., Bruy, D., Buchanan, S. W., Bucher, S. F., Buchmann, N., Buitenwerf, R., Bunker, D. E., Bürger, J., Burrascano, S., Burslem, D. F. R. P., Butterfield, B. J., Byun, C., Marques, M., Scalon, M. C., Caccianiga, M., Cadotte, M., Cailleret, M., Camac, J., Camarero, J. J., Campany, C., Campetella, G., Campos, J. A., Cano-Arboleda, L., Canullo, R., Carbognani, M., Carvalho, F., Casanoves, F., Castagneyrol, B., Catford, J. A., Cavender-Bares, J., Cerabolini, B. E. L., Cervellini, M., Chacón-Madrigal, E., Chapin, K., Chapin, F. S., Chelli, S., Chen, S.-C., Chen, A., Cherubini, P., Chianucci, F., Choat, B., Chung, K.-S., Chytrý, M., Ciccarelli, D., Coll, L., Collins, C. G., Conti, L., Coomes, D., Cornelissen, J. H. C., Cornwell, W. K., Corona, P., Coyea, M., Craine, J., Craven, D., Cromsigt, J. P. G. M., Csecserits, A., Cufar, K., Cuntz, M., da Silva, A. C., Dahlin, K. M., Dainese, M., Dalke, I., Dalle Fratte, M., Dang-Le, A. T., Danihelka, J., Dannoura, M., Dawson, S., de Beer, A. J., De Frutos, A., De Long, J. R., Dechant, B., Delagrange, S., Delpierre, N., Derroire, G., Dias, A. S., Diaz-Toribio, M. H., Dimitrakopoulos, P. G., Dobrowolski, M., Doktor, D., Dřevojan, P., Dong, N., Dransfield, J., Dressler, S., Duarte, L., Ducouret, E., Dullinger, S., Durka, W., Duursma, R., Dymova, O., E-Vojtkó, A., Eckstein, R. L., Ejtehadi, H., Elser, J., Emilio, T., Engemann, K., Erfanian, M. B., Erfmeier, A., Esquivel-Muelbert, A., Esser, G., Estiarte, M., Domingues, T. F., Fagan, W. F., Fagúndez, J., Falster, D. S., Fan, Y., Fang, J., Farris, E., Fazlioglu, F., Feng, Y., Fernandez-Mendez, F., Ferrara, C., Ferreira, J., Fidelis, A., Finegan, B., Firn, J., Flowers, T. J., Flynn, D. F. B., Fontana, V., Forey, E., Forgiarini, C., François, L., Frangipani, M., Frank, D., Frenette-Dussault, C., Freschet, G. T., Fry, E. L., Fyllas, N. M., Mazzochini, G. G., Gachet, S., Gallagher, R., Ganade, G., Ganga, F., García-Palacios, P., Gargaglione, V., Garnier, E., Garrido, J. L., de Gasper, A. L., Gea-Izquierdo, G., Gibson, D., Gillison, A. N., Giroldo, A., Glasenhardt, M.-C., Gleason, S., Gliesch, M., Goldberg, E., Göldel, B., Gonzalez-Akre, E., Gonzalez-Andujar, J. L., González-Melo, A., González-Robles, A., Graae, B. J., Granda, E., Graves, S., Green, W. A., Gregor, T., Gross, N., Guerin, G. R., Günther, A., Gutiérrez, A. G., Haddock, L., Haines, A., Hall, J., Hambuckers, A., Han, W., Harrison, S. P., Hattingh, W., Hawes, J. E., He, T., He, P., Heberling, J. M., Helm, A., Hempel, S., Hentschel, J., Hérault, B., Hereş, A.-M., Herz, K., Heuertz, M., Hickler, T., Hietz, P., Higuchi, P., Hipp, A. L., Hirons, A., Hock, M., Hogan, J. A., Holl, K., Honnay, O., Hornstein, D., Hou, E., Hough-Snee, N., Hovstad, K. A., Ichie, T., Igić, B., Illa, E., Isaac, M., Ishihara, M., Ivanov, L., Ivanova, L., Iversen, C. M., Izquierdo, J., Jackson, R. B., Jackson, B., Jactel, H., Jagodzinski, A. M., Jandt, U., Jansen, S., Jenkins, T., Jentsch, A., Jespersen, J. R. P., Jiang, G.-F., Johansen, J. L., Johnson, D., Jokela, E. J., Joly, C. A., Jordan, G. J., Joseph, G. S., Junaedi, D., Junker, R. R., Justes, E., Kabzems, R., Kane, J., Kaplan, Z., Kattenborn, T., Kavelenova, L., Kearsley, E., Kempel, A., Kenzo, T., Kerkhoff, A., Khalil, M. I., Kinlock, N. L., Kissling, W. D., Kitajima, K., Kitzberger, T., Kjøller, R., Klein, T., Kleyer, M., Klimešová, J., Klipel, J., Kloeppel, B., Klotz, S., Knops, J. M. H., Kohyama, T., Koike, F., Kollmann, J., Komac, B., Komatsu, K., König, C., Kraft, N. J. B., Kramer, K., Kreft, H., Kühn, I., Kumarathunge, D., Kuppler, J., Kurokawa, H., Kurosawa, Y., Kuyah, S., Laclau, J.-P., Lafleur, B., Lallai, E., Lamb, E., Lamprecht, A., Larkin, D. J., Laughlin, D., Le Bagousse-Pinguet, Y., le Maire, G., le Roux, P. C., le Roux, E., Lee, T., Lens, F., Lewis, S. L., Lhotsky, B., Li, Y., Li, X., Lichstein, J. W., Liebergesell, M., Lim, J. Y., Lin, Y.-S., Linares, J. C., Liu, C., Liu, D., Liu, U., Livingstone, S., Llusià, J., Lohbeck, M., López-García, Á., Lopez-Gonzalez, G., Lososová, Z., Louault, F., Lukács, B. A., Lukeš, P., Luo, Y., Lussu, M., Ma, S., Maciel Rabelo Pereira, C., Mack, M., Maire, V., Mäkelä, A., Mäkinen, H., Malhado, A. C. M., Mallik, A., Manning, P., Manzoni, S., Marchetti, Z., Marchino, L., Marcilio-Silva, V., Marcon, E., Marignani, M., Markesteijn, L., Martin, A., Martínez-Garza, C., Martínez-Vilalta, J., Mašková, T., Mason, K., Mason, N., Massad, T. J., Masse, J., Mayrose, I., McCarthy, J., McCormack, M. L., McCulloh, K., McFadden, I. R., McGill, B. J., McPartland, M. Y., Medeiros, J. S., Medlyn, B., Meerts, P., Mehrabi, Z., Meir, P., Melo, F. P. L., Mencuccini, M., Meredieu, C., Messier, J., Mészáros, I., Metsaranta, J., Michaletz, S. T., Michelaki, C., Migalina, S., Milla, R., Miller, J. E. D., Minden, V., Ming, R., Mokany, K., Moles, A. T., Molnár V, A., Molofsky, J., Molz, M., Montgomery, R. A., Monty, A., Moravcová, L., Moreno-Martínez, A., Moretti, M., Mori, A. S., Mori, S., Morris, D., Morrison, J., Mucina, L., Mueller, S., Muir, C. D., Müller, S. C., Munoz, F., Myers-Smith, I. H., Myster, R. W., Nagano, M., Naidu, S., Narayanan, A., Natesan, B., Negoita, L., Nelson, A. S., Neuschulz, E. L., Ni, J., Niedrist, G., Nieto, J., Niinemets, Ü., Nolan, R., Nottebrock, H., Nouvellon, Y., Novakovskiy, A., Network, T. N., Nystuen, K. O., O'Grady, A., O'Hara, K., O'Reilly-Nugent, A., Oakley, S., Oberhuber, W., Ohtsuka, T., Oliveira, R., Öllerer, K., Olson, M. E., Onipchenko, V., Onoda, Y., Onstein, R. E., Ordonez, J. C., Osada, N., Ostonen, I., Ottaviani, G., Otto, S., Overbeck, G. E., Ozinga, W. A., Pahl, A. T., Paine, C. E. T., Pakeman, R. J., Papageorgiou, A. C., Parfionova, E., Pärtel, M., Patacca, M., Paula, S., Paule, J., Pauli, H., Pausas, J. G., Peco, B., Penuelas, J., Perea, A., Peri, P. L., Petisco-Souza, A. C., Petraglia, A., Petritan, A. M., Phillips, O. L., Pierce, S., Pillar, V. D., Pisek, J., Pomogaybin, A., Poorter, H., Portsmuth, A., Poschlod, P., Potvin, C., Pounds, D., Powell, A. S., Power, S. A., Prinzing, A., Puglielli, G., Pyšek, P., Raevel, V., Rammig, A., Ransijn, J., Ray, C. A., Reich, P. B., Reichstein, M., Reid, D. E. B., Réjou-Méchain, M., de Dios, V. R., Ribeiro, S., Richardson, S., Riibak, K., Rillig, M. C., Riviera, F., Robert, E. M. R., Roberts, S., Robroek, B., Roddy, A., Rodrigues, A. V., Rogers, A., Rollinson, E., Rolo, V., Römermann, C., Ronzhina, D., Roscher, C., Rosell, J. A., Rosenfield, M. F., Rossi, C., Roy, D. B., Royer-Tardif, S., Rüger, N., Ruiz-Peinado, R., Rumpf, S. B., Rusch, G. M., Ryo, M., Sack, L., Saldaña, A., Salgado-Negret, B., Salguero-Gomez, R., Santa-Regina, I., Santacruz-García, A. C., Santos, J., Sardans, J., Schamp, B., Scherer-Lorenzen, M., Schleuning, M., Schmid, B., Schmidt, M., Schmitt, S., Schneider, J. V., Schowanek, S. D., Schrader, J., Schrodt, F., Schuldt, B., Schurr, F., Selaya Garvizu, G., Semchenko, M., Seymour, C., Sfair, J. C., Sharpe, J. M., Sheppard, C. S., Sheremetiev, S., Shiodera, S., Shipley, B., Shovon, T. A., Siebenkäs, A., Sierra, C., Silva, V., Silva, M., Sitzia, T., Sjöman, H., Slot, M., Smith, N. G., Sodhi, D., Soltis, P., Soltis, D., Somers, B., Sonnier, G., Sørensen, M. V., Sosinski Jr, E. E., Soudzilovskaia, N. A., Souza, A. F., Spasojevic, M., Sperandii, M. G., Stan, A. B., Stegen, J., Steinbauer, K., Stephan, J. G., Sterck, F., Stojanovic, D. B., Strydom, T., Suarez, M. L., Svenning, J.-C., Svitková, I., Svitok, M., Svoboda, M., Swaine, E., Swenson, N., Tabarelli, M., Takagi, K., Tappeiner, U., Tarifa, R., Tauugourdeau, S., Tavsanoglu, C., te Beest, M., Tedersoo, L., Thiffault, N., Thom, D., Thomas, E., Thompson, K., Thornton, P. E., Thuiller, W., Tichý, L., Tissue, D., Tjoelker, M. G., Tng, D. Y. P., Tobias, J., Török, P., Tarin, T., Torres-Ruiz, J. M., Tóthmérész, B., Treurnicht, M., Trivellone, V., Trolliet, F., Trotsiuk, V., Tsakalos, J. L., Tsiripidis, I., Tysklind, N., Umehara, T., Usoltsev, V., Vadeboncoeur, M., Vaezi, J., Valladares, F., Vamosi, J., van Bodegom, P. M., van Breugel, M., Van Cleemput, E., van de Weg, M., van der Merwe, S., van der Plas, F., van der Sande, M. T., van Kleunen, M., Van Meerbeek, K., Vanderwel, M., Vanselow, K. A., Vårhammar, A., Varone, L., Vasquez Valderrama, M. Y., Vassilev, K., Vellend, M., Veneklaas, E. J., Verbeeck, H., Verheyen, K., Vibrans, A., Vieira, I., Villacís, J., Violle, C., Vivek, P., Wagner, K., Waldram, M., Waldron, A., Walker, A. P., Waller, M., Walther, G., Wang, H., Wang, F., Wang, W., Watkins, H., Watkins, J., Weber, U., Weedon, J. T., Wei, L., Weigelt, P., Weiher, E., Wells, A. W., Wellstein, C., Wenk, E., Westoby, M., Westwood, A., White, P. J., Whitten, M., Williams, M., Winkler, D. E., Winter, K., Womack, C., Wright, I. J., Wright, S. J., Wright, J., Pinho, B. X., Ximenes, F., Yamada, T., Yamaji, K., Yanai, R., Yankov, N., Yguel, B., Zanini, K. J., Zanne, A. E., Zelený, D., Zhao, Y.-P., Zheng, J., Zheng, J., Ziemińska, K., Zirbel, C. R., Zizka, G., Zo-Bi, I. C., Zotz, G., and Wirth, C.:
TRY plant trait database – enhanced coverage and open access,
Glob. Change Biol.,
26, 119–188, https://doi.org/10.1111/gcb.14904, 2020.
Keane, R. E., Morgan, P., and Running, S. W.:
FIRE-BGC – A mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains,
Research Paper INT-RP-484,
United States Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, 1996.
Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D., Gough, C. M., Grant, R., Hollinger, D., Hufkens, K., Poulter, B., McCaughey, H., Raczka, B., Ryu, Y., Schaefer, K., Tian, H., Verbeeck, H., Zhao, M., and Richardson, A. D.:
Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange,
Glob. Change Biol.,
18, 1971–1987, https://doi.org/10.1111/j.1365-2486.2012.02678.x, 2012.
Kramer, K., Leinonen, I., Bartelink, H. H., Berbigier, P., Borghetti, M., Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, C. A., Granier, A., Grunwald, T., Hari, P., Jans, W., Kellomaki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., Mohren, G. M. J., Moors, E., Nissinen, A., Peltola, H., Sabate, S., Sanchez, A., Sontag, M., Valentini, R., and Vesala, T.:
Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe,
Glob. Change Biol.,
8, 213–230, https://doi.org/10.1046/j.1365-2486.2002.00471.x, 2002.
Lagergren, F., Lindroth, A., Dellwik, E., Ibrom, A., Lankreijer, H., Launiainen, S., MÖLder, M., Kolari, P., Pilegaard, K. I. M., and Vesala, T.:
Biophysical controls on CO2 fluxes of three Northern forests based on long-term eddy covariance data,
Tellus B,
60, 143–152, https://doi.org/10.1111/j.1600-0889.2006.00324.x, 2008.
Landsberg, J.:
Modelling forest ecosystems: state of the art, challenges, and future directions,
Can. J. Forest Res.,
33, 385–397, 2003.
Lasch, P., Suckow, F., and Badeck, F.-W.:
Analyses of forest ecosystems' response to climate change at level II monitoring sites,
in: Symposium: Forests in a Changing Environment – Results of 20 years ICP Forests Monitoring Göttingen, 25.-28.10.2006,
edited by: Eichhorn, J.,
Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Nordwestdeutschen Forstlichen Versuchsanstalt,
J.D. Sauerländer's Verlag Frankfurt am Main, Göttingen, 136–141, 2007.
Lasch-Born, P., Suckow, F., Gutsch, M., Reyer, C., Hauf, Y., Murawski, A., and Pilz, T.:
Forests under climate change: potential risks and opportunities,
Meteorol. Z.,
24, 157–172, https://doi.org/10.1127/metz/2014/0526, 2015.
Lindner, M., Lasch, P., Badeck, F.-W., Beguiristain, P. P., Junge, S., Kellomäki, S., Peltola, H., Gracia, C., Sabate, S., Jäger, D., Lexer, M., and Freeman, M.:
Chapter 4: SilviStrat Model Evaluation Exercises,
in: Management of European Forests under Changing Climatic Conditions,
edited by: Kellomäki, S. and Leinonen, S.,
University of Joensuu, Faculty of Forerstry, Joensuu, 117–157, 2005.
Loague, K. and Green, R. E.:
Statistical and graphical methods for evaluating solute transport models: Overview and application,
J. Contam. Hydrol.,
7, 51, https://doi.org/10.1016/0169-7722(91)90038-3, 1991.
Mäkelä, A.:
Modeling structural-functional relationships in whole-tree growth: resource allocation,
in: Process modeling of forest growth responses to environmental stress,
edited by: Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren, W. G.,
Timber Press, Portland, Oregon, 81–95, 1990.
Mäkelä, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., Agren, G. I., Oliver, C. D., and Puttonen, P.:
Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation,
Tree Physiol.,
20, 289–298, https://doi.org/10.1093/treephys/20.5-6.289, 2000a.
Marconi, S., Chiti, T., Nole, A., Valentini, R., and Collalti, A.:
The Role of Respiration in Estimation of Net Carbon Cycle: Coupling Soil Carbon Dynamics and Canopy Turnover in a Novel Version of 3D-CMCC Forest Ecosystem Model,
Forests,
8, 220, https://doi.org/10.3390/f8060220, 2017.
Medlyn, B. E., Berbigier, P., Clement, R., Grelle, A., Loustau, D., Linder, S., Wingate, L., Jarvis, P. G., Sigurdsson, B. D., and McMurtrie, R. E.:
Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis,
Agr. Forest Meteorol.,
131, 97–124, https://doi.org/10.1016/j.agrformet.2005.05.004, 2005a.
Medlyn, B. E., Robinson, A. P., Clement, R., and McMurtrie, R. E.:
On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls,
Tree Physiol.,
25, 839–857, https://doi.org/10.1093/treephys/25.7.839, 2005b.
Medlyn, B. E., Duursma, R. A., and Zeppel, M. J. B.:
Forest productivity under climate change: a checklist for evaluating model studies,
WIREs Clim. Change,
2, 332–355, https://doi.org/10.1002/wcc.108, 2011.
Minunno, F., Peltoniemi, M., Launiainen, S., Aurela, M., Lindroth, A., Lohila, A., Mammarella, I., Minkkinen, K., and Mäkelä, A.:
Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region,
Ecol. Model.,
341, 37–52, https://doi.org/10.1016/j.ecolmodel.2016.09.020, 2016.
Molina-Herrera, S., Grote, R., Santabárbara-Ruiz, I., Kraus, D., Klatt, S., Haas, E., Kiese, R., and Butterbach-Bahl, K.:
Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model “LandscapeDNDC”,
Forests,
6, 1779–1809, https://doi.org/10.3390/f6061779, 2015.
Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, 2015.
Porte, A. and Bartelink, H. H.:
Modelling mixed forest growth: a review of models for forest management,
Ecol. Model.,
150, 141–188, https://doi.org/10.1016/S0304-3800(01)00476-8, 2002.
Post, J., Krysanova, V., Suckow, F., Mirschel, W., Rogasik, J., and Merbach, I.:
Integrated ecohydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins,
Ecol. Model.,
206, 93–109, https://doi.org/10.1016/j.ecolmodel.2007.03.028, 2007.
Pretzsch, H., Grote, R., Reineking, B., Rotzer, T., and Seifert, S.:
Models for forest ecosystem management: A European perspective,
Ann. Bot.-London,
101, 1065–1087, https://doi.org/10.1093/aob/mcm246, 2008.
Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., and Pilz, T.:
Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide,
Ann. For. Sci.,
71, 211–225, https://doi.org/10.1007/s13595-013-0306-8, 2014.
Reyer, C., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Matteucci, G., Collalti, A., D'Andrea, E., Krupkova, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios, A., Cicuendez, V., Büchner, M., Lange, S., Volkholz, J., Kim, H., Horemans, J., Martel, S., Bohn, F., Steinkamp, J., Suckow, F., Weedon, G., Sheffield, J., Chikalanov, A., and Frieler, K.:
The PROFOUND database for evaluating vegetation models and simulating climate impacts on forests V. 0.1.12,
GFZ Data Services, https://doi.org/10.5880/PIK.2019.008, 2019.
Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T. G. M., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Collalti, A., Trotta, C., Matteucci, G., D'Andrea, E., Foltýnová, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios-Orueta, A., Cicuendez, V., Recuero, L., Wiese, K., Büchner, M., Lange, S., Volkholz, J., Kim, H., Horemans, J. A., Bohn, F., Steinkamp, J., Chikalanov, A., Weedon, G. P., Sheffield, J., Babst, F., Vega del Valle, I., Suckow, F., Martel, S., Mahnken, M., Gutsch, M., and Frieler, K.: The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests, Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, 2020.
Robinson, A. P., Duursma, R. A., and Marshall, J. D.:
A regression-based equivalence test for model validation: shifting the burden of proof,
Tree Physiol.,
25, 903–913, https://doi.org/10.1093/treephys/25.7.903, 2005.
Schaber, J.:
Phenology in Germany in the 20th century: methods, analyses and models,
Math.-Nat. Fakultät, Universität Potsdam, Potsdam, 164 pp., 2002.
Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M., and Whitmore, A. P.:
A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments,
Geoderma,
81, 153–225, https://doi.org/10.1016/S0016-7061(97)00087-6, 1997.
Suckow, F.: Ein
Modell zur Berechnung der Bodentemperatur unter Brache und unter Pflanzenbestand,
Akademie der Landwirtschaftswissenschaften der DDR, Berlin, 1986.
van Oijen, M., Reyer, C., Bohn, F. J., Cameron, D. R., Deckmyn, G., Flechsig, M., Härkönen, S., Hartig, F., Huth, A., Kiviste, A., Lasch, P., Mäkelä, A., Mette, T., Minunno, F., and Rammer, W.:
Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe,
Forest. Ecol. Manag.,
289, 255–268, https://doi.org/10.1016/j.foreco.2012.09.043, 2013.
Vegis, A.:
Dependence of growth processes on temperature,
in: Temperature and life,
edited by: Precht, H., Christophersen, J., H.Hensel, and Larcher, W.,
Springer-Verlag, Berlin, 145–169, 1973.
Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N., and Heimann, M.: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, 5, 561–583, https://doi.org/10.5194/bg-5-561-2008, 2008.
Wösten, J. H. M., Pachepsky, Y. A., and Rawls, W. J.:
Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics,
J. Hydrol., 251, 123–150, https://doi.org/10.1016/S0022-1694(01)00464-4, 2001.
Short summary
The process-based model 4C has been developed to study climate impacts on forests and is now freely available as an open-source tool. This paper provides a comprehensive description of the 4C version (v2.2) for scientific users of the model and presents an evaluation of 4C. The evaluation focused on forest growth, carbon water, and heat fluxes. We conclude that 4C is widely applicable, reliable, and ready to be released to the scientific community to use and further develop the model.
The process-based model 4C has been developed to study climate impacts on forests and is now...