Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-1139-2019
https://doi.org/10.5194/gmd-12-1139-2019
Model experiment description paper
 | 
25 Mar 2019
Model experiment description paper |  | 25 Mar 2019

The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification

Doug M. Smith, James A. Screen, Clara Deser, Judah Cohen, John C. Fyfe, Javier García-Serrano, Thomas Jung, Vladimir Kattsov, Daniela Matei, Rym Msadek, Yannick Peings, Michael Sigmond, Jinro Ukita, Jin-Ho Yoon, and Xiangdong Zhang

Related authors

Quantifying the contribution of forcing and three prominent modes of variability to historical climate
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023,https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023,https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
The Decadal Climate Prediction Project (DCPP) contribution to CMIP6
George J. Boer, Douglas M. Smith, Christophe Cassou, Francisco Doblas-Reyes, Gokhan Danabasoglu, Ben Kirtman, Yochanan Kushnir, Masahide Kimoto, Gerald A. Meehl, Rym Msadek, Wolfgang A. Mueller, Karl E. Taylor, Francis Zwiers, Michel Rixen, Yohan Ruprich-Robert, and Rosie Eade
Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016,https://doi.org/10.5194/gmd-9-3751-2016, 2016
Short summary

Related subject area

Climate and Earth system modeling
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025,https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary

Cited articles

Acosta Navarro, J. C., Varma, V., Riipinen, I., Seland, Ø., Kirkevåg, A., Struthers, H., Iversen, T., Hansson H.-C., and Ekman, A. M. L.: Amplification of Arctic warming by past air pollution reductions in Europe, Nat. Geosci., 9, 277–281, https://doi.org/10.1038/ngeo2673, 2016. 
Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., Miller, J. S., and Scott, J. D.: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter, J. Clim., 17, 890–905, 2004. 
Armour, K. C., Marshall, J., Scott, J., Donohoe A., and Newsom, E. R.: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport, Nat. Geosci., 9, 549–554, https://doi.org/10.1038/ngeo2731, 2016. 
Bader, J., Flügge, M., Kvamstø, N. G., Mesquita M. D. S., and Voigt, A.: Atmospheric winter response to a projected future Antarctic sea-ice reduction: a dynamical analysis, Clim. Dynam., 40, 2707–2718, 2013. 
Balmaseda, M. A., Ferranti, L., Molteni F., and Palmer, T. N.: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implciations for long-range predictions, Q. J. Roy. Meteor. Soc., 136, 1655–1664, 2010. 
Download
Short summary
The Polar Amplification Model Intercomparison Project (PAMIP) is an endorsed contribution to the sixth Coupled Model Intercomparison Project (CMIP6). It will investigate the causes and global consequences of polar amplification through coordinated multi-model numerical experiments. This paper documents the experimental protocol.
Share