Articles | Volume 11, issue 3
Geosci. Model Dev., 11, 959–988, 2018
https://doi.org/10.5194/gmd-11-959-2018
Geosci. Model Dev., 11, 959–988, 2018
https://doi.org/10.5194/gmd-11-959-2018

Model evaluation paper 16 Mar 2018

Model evaluation paper | 16 Mar 2018

Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0

Takashi Sekiya et al.

Related authors

Full latitudinal marine atmospheric measurements of iodine monoxide
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-680,https://doi.org/10.5194/acp-2021-680, 2021
Preprint under review for ACP
Short summary
Modeling the impact of COVID-19 on air quality in southern California: implications for future control policies
Zhe Jiang, Hongrong Shi, Bin Zhao, Yu Gu, Yifang Zhu, Kazuyuki Miyazaki, Xin Lu, Yuqiang Zhang, Kevin W. Bowman, Takashi Sekiya, and Kuo-Nan Liou
Atmos. Chem. Phys., 21, 8693–8708, https://doi.org/10.5194/acp-21-8693-2021,https://doi.org/10.5194/acp-21-8693-2021, 2021
Short summary
Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018
Kazuyuki Miyazaki, Kevin Bowman, Takashi Sekiya, Henk Eskes, Folkert Boersma, Helen Worden, Nathaniel Livesey, Vivienne H. Payne, Kengo Sudo, Yugo Kanaya, Masayuki Takigawa, and Koji Ogochi
Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020,https://doi.org/10.5194/essd-12-2223-2020, 2020
Short summary
An intercomparison of tropospheric ozone reanalysis products from CAMS, CAMS interim, TCR-1, and TCR-2
Vincent Huijnen, Kazuyuki Miyazaki, Johannes Flemming, Antje Inness, Takashi Sekiya, and Martin G. Schultz
Geosci. Model Dev., 13, 1513–1544, https://doi.org/10.5194/gmd-13-1513-2020,https://doi.org/10.5194/gmd-13-1513-2020, 2020
Short summary
Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67° S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport
Yugo Kanaya, Kazuyuki Miyazaki, Fumikazu Taketani, Takuma Miyakawa, Hisahiro Takashima, Yuichi Komazaki, Xiaole Pan, Saki Kato, Kengo Sudo, Takashi Sekiya, Jun Inoue, Kazutoshi Sato, and Kazuhiro Oshima
Atmos. Chem. Phys., 19, 7233–7254, https://doi.org/10.5194/acp-19-7233-2019,https://doi.org/10.5194/acp-19-7233-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021,https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Mesoscale nesting interface of the PALM model system 6.0
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021,https://doi.org/10.5194/gmd-14-5435-2021, 2021
Short summary
Multi-sensor analyses of the skin temperature for the assimilation of satellite radiances in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS, cycle 47R1)
Sebastien Massart, Niels Bormann, Massimo Bonavita, and Cristina Lupu
Geosci. Model Dev., 14, 5467–5485, https://doi.org/10.5194/gmd-14-5467-2021,https://doi.org/10.5194/gmd-14-5467-2021, 2021
Short summary
The Grell–Freitas (GF) convection parameterization: recent developments, extensions, and applications
Saulo R. Freitas, Georg A. Grell, and Haiqin Li
Geosci. Model Dev., 14, 5393–5411, https://doi.org/10.5194/gmd-14-5393-2021,https://doi.org/10.5194/gmd-14-5393-2021, 2021
Short summary
Calibrating a global atmospheric chemistry transport model using Gaussian process emulation and ground-level concentrations of ozone and carbon monoxide
Edmund Ryan and Oliver Wild
Geosci. Model Dev., 14, 5373–5391, https://doi.org/10.5194/gmd-14-5373-2021,https://doi.org/10.5194/gmd-14-5373-2021, 2021
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. a
Akiyoshi, H., Zhou, L. B., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T.: A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios, J. Geophys. Res., 114, D03103, https://doi.org/10.1029/2007JD009261, 2009. a
Akiyoshi, H., Nakamura, T., Miyasaka, T., Shiotani, M., and Suzuki, M.: A nudged chemistry-climate model simulation of chemical constituent distribution at northern high-latitude stratosphere observed by SMILES and MLS during the 2009/2010 stratospheric sudden warming, J. Geophys. Res., 121, 1361–1380, https://doi.org/10.1002/2015JD023334, 2015JD023334, 2016. a
Arellano Jr., A. F., Raeder, K., Anderson, J. L., Hess, P. G., Emmons, L. K., Edwards, D. P., Pfister, G. G., Campos, T. L., and Sachse, G. W.: Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission, Atmos. Chem. Phys., 7, 5695–5710, https://doi.org/10.5194/acp-7-5695-2007, 2007. a
Banerjee, A., Archibald, A. T., Maycock, A. C., Telford, P., Abraham, N. L., Yang, X., Braesicke, P., and Pyle, J. A.: Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, 2014. a
Download
Short summary
We evaluate global tropospheric NO2 simulations using a chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8°. Agreement against satellite retrievals improved greatly at 0.56 and 1.1° resolutions (compared to 2.8°) over polluted and biomass burning regions, especially over areas with strong local sources, such as a megacity. The evaluations demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe.