Articles | Volume 11, issue 2
https://doi.org/10.5194/gmd-11-631-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-631-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupling the Canadian Terrestrial Ecosystem Model (CTEM v. 2.0) to Environment and Climate Change Canada's greenhouse gas forecast model (v.107-glb)
Bakr Badawy
CORRESPONDING AUTHOR
Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
now at: Faculty of Environment, University of Waterloo, Waterloo, Canada
Saroja Polavarapu
Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
Dylan B. A. Jones
Department of Physics, University of Toronto, Toronto, Canada
Feng Deng
Department of Physics, University of Toronto, Toronto, Canada
Michael Neish
Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
Joe R. Melton
Climate Research Division, Environment and Climate Change Canada, Victoria, Canada
Ray Nassar
Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
Vivek K. Arora
Climate Research Division, Environment and Climate Change Canada, Victoria, Canada
Related authors
No articles found.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024, https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Short summary
Methane (CH4) emissions in Canada for 2007–2017 were estimated using Canada’s surface greenhouse gas measurements. The estimated emissions show no significant trend, but emission uncertainty was reduced as more measurement sites became available. Notably for climate change, we find the wetland CH4 emissions show a positive correlation with surface air temperature in summer. Canada’s measurement network could monitor future CH4 emission changes and compliance with climate change mitigation goals.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024, https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Short summary
Terrestrial biosphere models can either prescribe the geographical distribution of biomes or simulate them dynamically, capturing climate-change-driven biome shifts. We isolate and examine the differences between these different land cover implementations. We find that the simulated terrestrial carbon sink at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with prescribed land cover due to important range shifts in the Arctic and Amazon.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2024-188, https://doi.org/10.5194/egusphere-2024-188, 2024
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations. We successfully identified problems of global carbon budget in each model. We also found urgent issues that should be solved in the latest generation of models, land use change CO2 emissions.
Vivek K. Arora, Aranildo Lima, and Rajesh Shrestha
EGUsphere, https://doi.org/10.5194/egusphere-2024-182, https://doi.org/10.5194/egusphere-2024-182, 2024
Short summary
Short summary
This study is likely the first Canada-wide assessment of climate change impact on the hydro-climatology of its major river basins. It finds that the precipitation, runoff, and temperature are all expected to increase over Canada in the future. The northerly Mackenzie and Yukon Rivers are relatively less affected by climate change compared to the southerly Fraser and Columbia Rivers which are located in the milder Pacific north-western region.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Daniel H. Cusworth, Andrew K. Thorpe, Charles E. Miller, Alana K. Ayasse, Ralph Jiorle, Riley M. Duren, Ray Nassar, Jon-Paul Mastrogiacomo, and Robert R. Nelson
Atmos. Chem. Phys., 23, 14577–14591, https://doi.org/10.5194/acp-23-14577-2023, https://doi.org/10.5194/acp-23-14577-2023, 2023
Short summary
Short summary
Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we tasked two satellites to routinely observe CO2 emissions at 30 coal-fired power plants between 2021 and 2022. These results present the largest dataset of space-based CO2 emission estimates to date.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Bo Qu, Alexandre Roy, Joe R. Melton, Jennifer L. Baltzer, Youngryel Ryu, Matteo Detto, and Oliver Sonnentag
EGUsphere, https://doi.org/10.5194/egusphere-2023-1167, https://doi.org/10.5194/egusphere-2023-1167, 2023
Preprint archived
Short summary
Short summary
Accurately simulating photosynthesis and evapotranspiration challenges terrestrial biosphere models across North America’s boreal biome, in part due to uncertain representation of the maximum rate of photosynthetic carboxylation (Vcmax). This study used forest stand scale observations in an optimization framework to improve Vcmax values for representative vegetation types. Several stand characteristics well explained spatial Vcmax variability and were useful to improve boreal forest modelling.
Libo Wang, Vivek K. Arora, Paul Bartlett, Ed Chan, and Salvatore R. Curasi
Biogeosciences, 20, 2265–2282, https://doi.org/10.5194/bg-20-2265-2023, https://doi.org/10.5194/bg-20-2265-2023, 2023
Short summary
Short summary
Plant functional types (PFTs) are groups of plant species used to represent vegetation distribution in land surface models. There are large uncertainties associated with existing methods for mapping land cover datasets to PFTs. This study demonstrates how fine-resolution tree cover fraction and land cover datasets can be used to inform the PFT mapping process and reduce the uncertainties. The proposed largely objective method makes it easier to implement new land cover products in models.
Vivek K. Arora, Christian Seiler, Libo Wang, and Sian Kou-Giesbrecht
Biogeosciences, 20, 1313–1355, https://doi.org/10.5194/bg-20-1313-2023, https://doi.org/10.5194/bg-20-1313-2023, 2023
Short summary
Short summary
The behaviour of natural systems is now very often represented through mathematical models. These models represent our understanding of how nature works. Of course, nature does not care about our understanding. Since our understanding is not perfect, evaluating models is challenging, and there are uncertainties. This paper illustrates this uncertainty for land models and argues that evaluating models in light of the uncertainty in various components provides useful information.
Cameron G. MacDonald, Jon-Paul Mastrogiacomo, Joshua L. Laughner, Jacob K. Hedelius, Ray Nassar, and Debra Wunch
Atmos. Chem. Phys., 23, 3493–3516, https://doi.org/10.5194/acp-23-3493-2023, https://doi.org/10.5194/acp-23-3493-2023, 2023
Short summary
Short summary
We use three satellites measuring carbon dioxide (CO2), carbon monoxide (CO) and nitrogen dioxide (NO2) to calculate atmospheric enhancements of these gases from 27 urban areas. We calculate enhancement ratios between the species and compare those to ratios derived from four globally gridded anthropogenic emission inventories. We find that the global inventories generally underestimate CO emissions in many North American and European cities relative to our observed enhancement ratios.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Tai-Long He, Dylan B. A. Jones, Kazuyuki Miyazaki, Kevin W. Bowman, Zhe Jiang, Xiaokang Chen, Rui Li, Yuxiang Zhang, and Kunna Li
Atmos. Chem. Phys., 22, 14059–14074, https://doi.org/10.5194/acp-22-14059-2022, https://doi.org/10.5194/acp-22-14059-2022, 2022
Short summary
Short summary
We use a deep-learning (DL) model to estimate Chinese NOx emissions by combining satellite analysis and in situ measurements. Our results are consistent with conventional analyses of Chinese NOx emissions. Comparison with mobility data shows that the DL model has a better capability to capture changes in NOx. We analyse Chinese NOx emissions during the COVID-19 pandemic lockdown period. Our results illustrate the potential use of DL as a complementary tool for conventional air quality studies.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Weichao Han, Tai-Long He, Zhaojun Tang, Min Wang, Dylan Jones, and Zhe Jiang
Geosci. Model Dev., 15, 4225–4237, https://doi.org/10.5194/gmd-15-4225-2022, https://doi.org/10.5194/gmd-15-4225-2022, 2022
Short summary
Short summary
We present an application of a hybrid deep learning (DL) model on prediction of surface CO in China from 2015 to 2020, which utilizes both convolutional neural networks and long short-term memory neural networks. The DL model performance is better than a Kalman filter (KF) system in the training period (2005–2018). Furthermore, the DL model demonstrates good temporal extensibility: the mean bias and correlation coefficients are 95.7 ppb and 0.93 in the test period (2019–2020) over eastern China.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022, https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary
Short summary
In this study, an analysis has been performed to understand the improvements in observational coverage over Canada in the new MOPITT V9 product. Temporal and spatial analysis of V9 indicates a general coverage gain of 15–20 % relative to V8, which varies regionally and seasonally; e.g., the number of successful MOPITT retrievals in V9 was doubled over Canada in winter. Also, comparison with the corresponding IASI instrument indicated generally good agreement, with about a 5–10 % positive bias.
Hélène Peiro, Sean Crowell, Andrew Schuh, David F. Baker, Chris O'Dell, Andrew R. Jacobson, Frédéric Chevallier, Junjie Liu, Annmarie Eldering, David Crisp, Feng Deng, Brad Weir, Sourish Basu, Matthew S. Johnson, Sajeev Philip, and Ian Baker
Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, https://doi.org/10.5194/acp-22-1097-2022, 2022
Short summary
Short summary
Satellite CO2 observations are constantly improved. We study an ensemble of different atmospheric models (inversions) from 2015 to 2018 using separate ground-based data or two versions of the OCO-2 satellite. Our study aims to determine if different satellite data corrections can yield different estimates of carbon cycle flux. A difference in the carbon budget between the two versions is found over tropical Africa, which seems to show the impact of corrections applied in satellite data.
Sabour Baray, Daniel J. Jacob, Joannes D. Maasakkers, Jian-Xiong Sheng, Melissa P. Sulprizio, Dylan B. A. Jones, A. Anthony Bloom, and Robert McLaren
Atmos. Chem. Phys., 21, 18101–18121, https://doi.org/10.5194/acp-21-18101-2021, https://doi.org/10.5194/acp-21-18101-2021, 2021
Short summary
Short summary
We use 2010–2015 surface and satellite observations to disentangle methane from anthropogenic and natural sources in Canada. Using a chemical transport model (GEOS-Chem), the mismatch between modelled and observed methane concentrations can be used to infer emissions according to Bayesian statistics. Compared to prior knowledge, we show higher anthropogenic emissions attributed to energy and/or agriculture in Western Canada and lower natural emissions from Boreal wetlands.
Joseph Mendonca, Ray Nassar, Christopher W. O'Dell, Rigel Kivi, Isamu Morino, Justus Notholt, Christof Petri, Kimberly Strong, and Debra Wunch
Atmos. Meas. Tech., 14, 7511–7524, https://doi.org/10.5194/amt-14-7511-2021, https://doi.org/10.5194/amt-14-7511-2021, 2021
Short summary
Short summary
Machine learning has become an important tool for pattern recognition in many applications. In this study, we used a neural network to improve the data quality of OCO-2 measurements made at northern high latitudes. The neural network was trained and used as a binary classifier to filter out bad OCO-2 measurements in order to increase the accuracy and precision of OCO-2 XCO2 measurements in the Boreal and Arctic regions.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Claude-Michel Nzotungicimpaye, Kirsten Zickfeld, Andrew H. MacDougall, Joe R. Melton, Claire C. Treat, Michael Eby, and Lance F. W. Lesack
Geosci. Model Dev., 14, 6215–6240, https://doi.org/10.5194/gmd-14-6215-2021, https://doi.org/10.5194/gmd-14-6215-2021, 2021
Short summary
Short summary
In this paper, we describe a new wetland methane model (WETMETH) developed for use in Earth system models. WETMETH consists of simple formulations to represent methane production and oxidation in wetlands. We also present an evaluation of the model performance as embedded in the University of Victoria Earth System Climate Model (UVic ESCM). WETMETH is capable of reproducing mean annual methane emissions consistent with present-day estimates from the regional to the global scale.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Beata Bukosa, Jenny Fisher, Nicholas Deutscher, and Dylan Jones
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-173, https://doi.org/10.5194/gmd-2021-173, 2021
Revised manuscript not accepted
Short summary
Short summary
Human activities led to rising levels of greenhouse gases (carbon dioxide (CO2), methane (CH4), carbon monoxide (CO)) in the atmosphere, threatening our future. We use models and measurements to predict and understand the climatological impact of these gases. Here, we describe a new simulation in the GEOS-Chem model that uses a more accurate method to simulate CO2, CH4 and CO, through their chemical dependence. Relative to the original simulations our results agree better with measurements.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Martin Keller, Daven K. Henze, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021, https://doi.org/10.5194/acp-21-9545-2021, 2021
Short summary
Short summary
We explore the utility of a weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation scheme for mitigating systematic errors in methane simulation in the GEOS-Chem model. We use data from the Greenhouse Gases Observing Satellite (GOSAT) and show that, compared to the traditional 4D-Var approach, the WC scheme improves the agreement between the model and independent observations. We find that the WC corrections to the model provide insight into the source of the errors.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Vikram Khade, Saroja M. Polavarapu, Michael Neish, Pieter L. Houtekamer, Dylan B. A. Jones, Seung-Jong Baek, Tai-Long He, and Sylvie Gravel
Geosci. Model Dev., 14, 2525–2544, https://doi.org/10.5194/gmd-14-2525-2021, https://doi.org/10.5194/gmd-14-2525-2021, 2021
Short summary
Short summary
A new modeling system has been developed at Environment and Climate Change Canada to ingest observations of carbon monoxide (CO) into a coupled weather and constituent transport model. We show that accounting for the uncertainty in surface flux leads to a better estimate of CO distributions. The benefit of assimilating observations from different simulated networks varies with region. This is the first step towards developing a state and flux estimation system for greenhouse gases.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021, https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
Short summary
This study evaluates how well the CLASSIC land surface model reproduces the energy, water, and carbon cycle when compared against a wide range of global observations. Special attention is paid to how uncertainties in the data used to drive and evaluate the model affect model skill. Our results show the importance of incorporating uncertainties when evaluating land surface models and that failing to do so may potentially misguide future model development.
Shoma Yamanouchi, Camille Viatte, Kimberly Strong, Erik Lutsch, Dylan B. A. Jones, Cathy Clerbaux, Martin Van Damme, Lieven Clarisse, and Pierre-Francois Coheur
Atmos. Meas. Tech., 14, 905–921, https://doi.org/10.5194/amt-14-905-2021, https://doi.org/10.5194/amt-14-905-2021, 2021
Short summary
Short summary
Ammonia (NH3) is a major source of pollution in the air. As such, there have been increasing efforts to measure the atmospheric abundance of NH3 and its spatial and temporal variability. In this study, long-term measurements of NH3 over Toronto, Canada, derived from multiscale datasets are examined. These NH3 datasets were compared to each other and to a model to better understand NH3 variability and to assess model performance.
Ali Asaadi and Vivek K. Arora
Biogeosciences, 18, 669–706, https://doi.org/10.5194/bg-18-669-2021, https://doi.org/10.5194/bg-18-669-2021, 2021
Short summary
Short summary
More than a quarter of the current anthropogenic CO2 emissions are taken up by land, reducing the atmospheric CO2 growth rate. This is because of the CO2 fertilization effect which benefits 80 % of global vegetation. However, if nitrogen and phosphorus nutrients cannot keep up with increasing atmospheric CO2, the magnitude of this terrestrial ecosystem service may reduce in future. This paper implements nitrogen constraints on photosynthesis in a model to understand the mechanisms involved.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Erik Lutsch, Kimberly Strong, Dylan B. A. Jones, Thomas Blumenstock, Stephanie Conway, Jenny A. Fisher, James W. Hannigan, Frank Hase, Yasuko Kasai, Emmanuel Mahieu, Maria Makarova, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Anatoly V. Poberovskii, Ralf Sussmann, and Thorsten Warneke
Atmos. Chem. Phys., 20, 12813–12851, https://doi.org/10.5194/acp-20-12813-2020, https://doi.org/10.5194/acp-20-12813-2020, 2020
Short summary
Short summary
This paper describes the use of a network of 10 Arctic and midlatitude ground-based FTIR measurement sites to detect enhancements of the wildfire tracers carbon monoxide, hydrogen cyanide, and ethane from 2003 to 2018. A tagged CO GEOS-Chem simulation is used for source attribution and to evaluate the relative contribution of CO sources to the FTIR measurements. The use of FTIR measurements allowed for the emission ratios of hydrogen cyanide and ethane to be quantified.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, https://doi.org/10.5194/gmd-13-3839-2020, 2020
Short summary
Short summary
Systematic errors in atmospheric models pose a challenge for inverse modeling studies of methane (CH4) emissions. We evaluated the CH4 simulation in the GEOS-Chem model at the horizontal resolutions of 4° × 5° and 2° × 2.5°. Our analysis identified resolution-dependent biases in the model, which we attributed to discrepancies between the two model resolutions in vertical transport in the troposphere and in stratosphere–troposphere exchange.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Joe R. Melton, Vivek K. Arora, Eduard Wisernig-Cojoc, Christian Seiler, Matthew Fortier, Ed Chan, and Lina Teckentrup
Geosci. Model Dev., 13, 2825–2850, https://doi.org/10.5194/gmd-13-2825-2020, https://doi.org/10.5194/gmd-13-2825-2020, 2020
Short summary
Short summary
We transitioned the CLASS-CTEM land surface model to an open-source community model format by modernizing the code base to make the model easier to use and understand, providing a complete software environment to run the model within, developing a benchmarking suite for model evaluation, and creating an infrastructure to support community involvement. The new model, the Canadian Land Surface Scheme including Biogeochemical Cycles (CLASSIC), is now available for the community to use and develop.
Matthew J. Cooper, Randall V. Martin, Daven K. Henze, and Dylan B. A. Jones
Atmos. Chem. Phys., 20, 7231–7241, https://doi.org/10.5194/acp-20-7231-2020, https://doi.org/10.5194/acp-20-7231-2020, 2020
Short summary
Short summary
Comparisons between satellite-retrieved and model-simulated NO2 columns are affected by differences between the model vertical profile and the assumed profile used in the retrieval process. We examine how such differences impact NOx emission estimates from satellite observations. Larger differences between the simulated and assumed profile shape correspond to larger emission errors. This reveals the importance of using consistent profile information when comparing satellite columns to models.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) links global water, carbon and energy cycles. We used 4 remote sensing models, 2 machine-learning algorithms and 14 land surface models to analyze the changes in global terrestrial ET. These three categories of approaches agreed well in terms of ET intensity. For 1982–2011, all models showed that Earth greening enhanced terrestrial ET. The small interannual variability of global terrestrial ET suggests it has a potential planetary boundary of around 600 mm yr-1.
Jinwoong Kim, Saroja M. Polavarapu, Douglas Chan, and Michael Neish
Geosci. Model Dev., 13, 269–295, https://doi.org/10.5194/gmd-13-269-2020, https://doi.org/10.5194/gmd-13-269-2020, 2020
Short summary
Short summary
GEM–MACH–GHG is a coupled weather and greenhouse gas transport model at Environment and Climate Change Canada. We have developed the regional version of GEM–MACH–GHG, mainly focusing on Canada and the United States, as a follow-up to the global version of GEM–MACH–GHG. The regional model is superior to our global model in terms of weather forecasts and CO2 simulation.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Neil C. Swart, Jason N. S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P. Gillett, James Anstey, Vivek Arora, James R. Christian, Sarah Hanna, Yanjun Jiao, Warren G. Lee, Fouad Majaess, Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Michael Sigmond, Larry Solheim, Knut von Salzen, Duo Yang, and Barbara Winter
Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, https://doi.org/10.5194/gmd-12-4823-2019, 2019
Short summary
Short summary
The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and quantifies the model performance. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science applications in Canada.
Joe R. Melton, Diana L. Verseghy, Reinel Sospedra-Alfonso, and Stephan Gruber
Geosci. Model Dev., 12, 4443–4467, https://doi.org/10.5194/gmd-12-4443-2019, https://doi.org/10.5194/gmd-12-4443-2019, 2019
Short summary
Short summary
Soils in cold regions store large amounts of carbon that could be released to the atmosphere if the soils thaw. To best simulate these soils, we explored different configurations and parameterizations of the CLASS-CTEM model and compared to observations. The revised model with a deeper soil column, new soil depth dataset, and inclusion of moss simulated greatly improved annual thaw depths and ground temperatures. We estimate subgrid-scale features limit further improvements against observations.
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019, https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Jacob K. Hedelius, Tai-Long He, Dylan B. A. Jones, Bianca C. Baier, Rebecca R. Buchholz, Martine De Mazière, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Laura T. Iraci, Pascal Jeseck, Matthäus Kiel, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Sébastien Roche, Coleen M. Roehl, Matthias Schneider, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Colm Sweeney, Yao Té, Osamu Uchino, Voltaire A. Velazco, Wei Wang, Thorsten Warneke, Paul O. Wennberg, Helen M. Worden, and Debra Wunch
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, https://doi.org/10.5194/amt-12-5547-2019, 2019
Short summary
Short summary
We seek ways to improve the accuracy of column measurements of carbon monoxide (CO) – an important tracer of pollution – made from the MOPITT satellite instrument. We devise a filtering scheme which reduces the scatter and also eliminates bias among the MOPITT detectors. Compared to ground-based observations, MOPITT measurements are about 6 %–8 % higher. When MOPITT data are implemented in a global assimilation model, they tend to reduce the model mismatch with aircraft measurements.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Matthäus Kiel, Christopher W. O'Dell, Brendan Fisher, Annmarie Eldering, Ray Nassar, Cameron G. MacDonald, and Paul O. Wennberg
Atmos. Meas. Tech., 12, 2241–2259, https://doi.org/10.5194/amt-12-2241-2019, https://doi.org/10.5194/amt-12-2241-2019, 2019
Debra Wunch, Dylan B. A. Jones, Geoffrey C. Toon, Nicholas M. Deutscher, Frank Hase, Justus Notholt, Ralf Sussmann, Thorsten Warneke, Jeroen Kuenen, Hugo Denier van der Gon, Jenny A. Fisher, and Joannes D. Maasakkers
Atmos. Chem. Phys., 19, 3963–3980, https://doi.org/10.5194/acp-19-3963-2019, https://doi.org/10.5194/acp-19-3963-2019, 2019
Short summary
Short summary
We used five atmospheric observatories in Europe measuring total column dry-air mole fractions of methane and carbon monoxide to infer methane emissions in the area between the observatories. We find that the methane emissions are overestimated by the state-of-the-art inventories, and that this is likely due, at least in part, to the inventory disaggregation. We find that there is significant uncertainty in the carbon monoxide inventories that requires further investigation.
Benjamin Gaubert, Britton B. Stephens, Sourish Basu, Frédéric Chevallier, Feng Deng, Eric A. Kort, Prabir K. Patra, Wouter Peters, Christian Rödenbeck, Tazu Saeki, David Schimel, Ingrid Van der Laan-Luijkx, Steven Wofsy, and Yi Yin
Biogeosciences, 16, 117–134, https://doi.org/10.5194/bg-16-117-2019, https://doi.org/10.5194/bg-16-117-2019, 2019
Short summary
Short summary
We have compared global carbon budgets calculated from numerical inverse models and CO2 observations, and evaluated how these systems reproduce vertical gradients in atmospheric CO2 from aircraft measurements. We found that available models have converged on near-neutral tropical total fluxes for several decades, implying consistent sinks in intact tropical forests, and that assumed fossil fuel emissions and predicted atmospheric growth rates are now the dominant axes of disagreement.
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Short summary
Weather, humans, and vegetation control the occurrence of fires. In this study we find that global fire–vegetation models underestimate the strong increase of burned area with higher previous-season plant productivity in comparison to satellite-derived relationships.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ali Asaadi, Vivek K. Arora, Joe R. Melton, and Paul Bartlett
Biogeosciences, 15, 6885–6907, https://doi.org/10.5194/bg-15-6885-2018, https://doi.org/10.5194/bg-15-6885-2018, 2018
Short summary
Short summary
Non-structural carbohydrates (NSCs), which play a central role in a plant's life processes and its response to environmental conditions, are typically not included in terrestrial biogeochemistry models used in Earth system models (ESMs). In this study, we include NSC pools in the framework of the land component of the Canadian ESM and show how they help address the long-standing problem of delayed leaf phenology.
Saroja M. Polavarapu, Feng Deng, Brendan Byrne, Dylan B. A. Jones, and Michael Neish
Atmos. Chem. Phys., 18, 12011–12044, https://doi.org/10.5194/acp-18-12011-2018, https://doi.org/10.5194/acp-18-12011-2018, 2018
Short summary
Short summary
A new diagnostic reveals how fluxes constrained by two different CO2 observing systems inform atmospheric CO2 simulations. The potential for GOSAT data to better resolve zonally asymmetric structures in the tropics year-round and in the northern extratropics in most seasons is shown. Using in situ data yields a better match to independent observations on the global, annual scale. Such complementarity of the observing systems can be exploited in greenhouse gas data assimilation systems.
Vivek K. Arora, Joe R. Melton, and David Plummer
Biogeosciences, 15, 4683–4709, https://doi.org/10.5194/bg-15-4683-2018, https://doi.org/10.5194/bg-15-4683-2018, 2018
Short summary
Short summary
Earth system models (ESMs) project future changes in climate in response to changes in anthropogenic emissions of greenhouse gases (GHGs). However, before this can be achieved the natural fluxes of a given GHG must also be modelled. This paper evaluates the natural methane fluxes simulated by the CLASS-CTEM model (which is the land component of the Canadian ESM) against observations to show that the simulated methane emissions from wetlands and fires, and soil uptake of methane are realistic.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Nian Bie, Liping Lei, ZhaoCheng Zeng, Bofeng Cai, Shaoyuan Yang, Zhonghua He, Changjiang Wu, and Ray Nassar
Atmos. Meas. Tech., 11, 1251–1272, https://doi.org/10.5194/amt-11-1251-2018, https://doi.org/10.5194/amt-11-1251-2018, 2018
Short summary
Short summary
The results imply that XCO2 from satellite observations could be reliably applied in the assessment of atmospheric CO2 enhancements induced by anthropogenic CO2 emissions. The large inconsistency among different algorithms presented in western deserts with a high albedo and dust aerosols demonstrates that further improvement is still necessary in such regions, even though many algorithms have endeavored to minimize the effects of aerosols and albedo.
Jenny A. Fisher, Lee T. Murray, Dylan B. A. Jones, and Nicholas M. Deutscher
Geosci. Model Dev., 10, 4129–4144, https://doi.org/10.5194/gmd-10-4129-2017, https://doi.org/10.5194/gmd-10-4129-2017, 2017
Short summary
Short summary
Carbon monoxide (CO) simulation in atmospheric chemistry models is used for source–receptor analysis, emission inversion, and interpretation of observations. We introduce a major update to CO simulation in the GEOS-Chem chemical transport model that removes fundamental inconsistencies relative to the standard model, resolving biases of more than 100 ppb and errors in vertical structure. We also add source tagging of secondary CO and demonstrate it provides added value in low-emission regions.
Rudra K. Shrestha, Vivek K. Arora, Joe R. Melton, and Laxmi Sushama
Biogeosciences, 14, 4733–4753, https://doi.org/10.5194/bg-14-4733-2017, https://doi.org/10.5194/bg-14-4733-2017, 2017
Short summary
Short summary
Computer models of vegetation provide a tool to assess how future changes in climate may the affect geographical distribution of vegetation. However, such models must first be assessed for their ability to reproduce the present-day geographical distribution of vegetation. Here, we assess the ability of one such dynamic vegetation model. We find that while the model is broadly successful in reproducing the geographical distribution of trees and grasses in North America some limitations remain.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Joe R. Melton, Reinel Sospedra-Alfonso, and Kelly E. McCusker
Geosci. Model Dev., 10, 2761–2783, https://doi.org/10.5194/gmd-10-2761-2017, https://doi.org/10.5194/gmd-10-2761-2017, 2017
Short summary
Short summary
Climate models have large grid cells due to the computational cost of running these complex models. Within grid cells like these, the land surface can vary dramatically impacting the exchange of water, carbon, and energy between the atmosphere and land. We use a technique to determine natural clusters of high-resolution soil texture within large grid cells and use them as inputs to our model. We find relatively low sensitivity to soil texture changes except in very dry regions and peatlands.
Yuanqiao Wu, Ed Chan, Joe R. Melton, and Diana L. Verseghy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-152, https://doi.org/10.5194/gmd-2017-152, 2017
Preprint withdrawn
Short summary
Short summary
Peatlands are an important component of the carbon cycle that is expected to change under climate change, but accurate information on the global distribution of peatlands is presently unavailable. We use a machine-learning method to create a map of global peatland extent suitable for use in an Earth system model. For areas where data exists we find excellent agreement with observations and our method has greater skill than solely using soil datasets to estimate peatland coverage.
Zhe Jiang, Helen Worden, John R. Worden, Daven K. Henze, Dylan B. A. Jones, Avelino F. Arellano, Emily V. Fischer, Liye Zhu, Kazuyuki Miyazaki, K. Folkert Boersma, and Vivienne H. Payne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-382, https://doi.org/10.5194/acp-2017-382, 2017
Preprint withdrawn
Short summary
Short summary
We investigated the variation of US tropospheric NO2 in the past decade. We demonstrated significant divergence between the time variation in tropospheric NO2 columns from OMI retrievals and surface measurements. Our analysis suggests limited contributions from local effects such as fossil fuel emissions, lightning, or instrument artifacts, and indicates possible important contributions from long-range transport of Asian emissions that are modulated by ENSO.
Zhe Jiang, John R. Worden, Helen Worden, Merritt Deeter, Dylan B. A. Jones, Avelino F. Arellano, and Daven K. Henze
Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp-17-4565-2017, https://doi.org/10.5194/acp-17-4565-2017, 2017
Short summary
Short summary
We constrain the long-term variation in global CO emissions for 2001–2015. Our results confirm that the decreasing trend of tropospheric CO in the Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning sources. In particular, we find decreasing CO emissions from the United States and China in the past 15 years, unchanged anthropogenic CO emissions from Europe since 2008, and likely a positive trend from India and southeast Asia.
Sam S. Rabin, Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn Hantson, Jed O. Kaplan, Fang Li, Stéphane Mangeon, Daniel S. Ward, Chao Yue, Vivek K. Arora, Thomas Hickler, Silvia Kloster, Wolfgang Knorr, Lars Nieradzik, Allan Spessa, Gerd A. Folberth, Tim Sheehan, Apostolos Voulgarakis, Douglas I. Kelley, I. Colin Prentice, Stephen Sitch, Sandy Harrison, and Almut Arneth
Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, https://doi.org/10.5194/gmd-10-1175-2017, 2017
Short summary
Short summary
Global vegetation models are important tools for understanding how the Earth system will change in the future, and fire is a critical process to include. A number of different methods have been developed to represent vegetation burning. This paper describes the protocol for the first systematic comparison of global fire models, which will allow the community to explore various drivers and evaluate what mechanisms are important for improving performance. It also includes equations for all models.
Jing M. Chen, Gang Mo, and Feng Deng
Geosci. Model Dev., 10, 1131–1156, https://doi.org/10.5194/gmd-10-1131-2017, https://doi.org/10.5194/gmd-10-1131-2017, 2017
Short summary
Short summary
A joint inversion system is developed for estimating the carbon fluxes in 39 land and 11 ocean regions of the globe using both atmospheric CO2 and 13CO2 stable isotope data. In particular, a biospheric model is developed to model both CO2 and 13CO2 fluxes over land to constrain the inversion. Relative to CO2-only inversion, the joint inversion system improved the partition between land and ocean carbon fluxes and possibly the distribution of the fluxes among land regions as well.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Saroja M. Polavarapu, Michael Neish, Monique Tanguay, Claude Girard, Jean de Grandpré, Kirill Semeniuk, Sylvie Gravel, Shuzhan Ren, Sébastien Roche, Douglas Chan, and Kimberly Strong
Atmos. Chem. Phys., 16, 12005–12038, https://doi.org/10.5194/acp-16-12005-2016, https://doi.org/10.5194/acp-16-12005-2016, 2016
Short summary
Short summary
CO2 predictions are used to compute model–data mismatches when estimating surfaces fluxes using atmospheric observations together with an atmospheric transport model. By isolating the component of transport error which is due to uncertain meteorological analyses, it is demonstrated that CO2 can only be defined on large spatial scales. Thus, there is a spatial scale below which we cannot infer fluxes simply due to the fact that meteorological analyes are imperfect.
Chris D. Jones, Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather Graven, Forrest Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charlie Koven, Julia Pongratz, Thomas Raddatz, James T. Randerson, and Sönke Zaehle
Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, https://doi.org/10.5194/gmd-9-2853-2016, 2016
Short summary
Short summary
How the carbon cycle interacts with climate will affect future climate change and how society plans emissions reductions to achieve climate targets. The Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) is an endorsed activity of CMIP6 and aims to quantify these interactions and feedbacks in state-of-the-art climate models. This paper lays out the experimental protocol for modelling groups to follow to contribute to C4MIP. It is a contribution to the CMIP6 GMD Special Issue.
Yuanqiao Wu, Diana L. Verseghy, and Joe R. Melton
Geosci. Model Dev., 9, 2639–2663, https://doi.org/10.5194/gmd-9-2639-2016, https://doi.org/10.5194/gmd-9-2639-2016, 2016
Short summary
Short summary
About 20 % of the carbon stored in global soils occurs in peatlands. Warmer and drier conditions will both tend to stimulate the decomposition of peat and increase CO2 and methane emissions, thus potentially enhancing the warming trend. It is important that this feedback mechanism be captured in climate models. This work integrated peatlands into the Canadian Earth system model (CanESM) for global climate predictions and represent a valuable enhancement to the family of Earth system models.
Vivek K. Arora and John F. Scinocca
Geosci. Model Dev., 9, 2357–2376, https://doi.org/10.5194/gmd-9-2357-2016, https://doi.org/10.5194/gmd-9-2357-2016, 2016
Short summary
Short summary
This paper uses observed features of the global carbon cycle to constrain how much carbon the land should take up in an Earth system model in response to increasing fossil fuel CO2 emissions since the start of the industrial era. These models are the only tool available to us for projecting future climate change. Despite their uncertainties, if current observations can be used to constrain models then more confidence can be places in models' future climate change projections.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Zhe Jiang, Kazuyuki Miyazaki, John R. Worden, Jane J. Liu, Dylan B. A. Jones, and Daven K. Henze
Atmos. Chem. Phys., 16, 6537–6546, https://doi.org/10.5194/acp-16-6537-2016, https://doi.org/10.5194/acp-16-6537-2016, 2016
Short summary
Short summary
We quantify the impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East, using the adjoint of the GEOS-Chem model with updated NOx emissions estimates from an ensemble Kalman filter. We show that the global total contribution of lightning NOx on free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime free tropospheric O3 enhancement is primarily due to Asian NOx emissions.
Scot M. Miller, Roisin Commane, Joe R. Melton, Arlyn E. Andrews, Joshua Benmergui, Edward J. Dlugokencky, Greet Janssens-Maenhout, Anna M. Michalak, Colm Sweeney, and Doug E. J. Worthy
Biogeosciences, 13, 1329–1339, https://doi.org/10.5194/bg-13-1329-2016, https://doi.org/10.5194/bg-13-1329-2016, 2016
Short summary
Short summary
We use atmospheric data from the US and Canada to examine seven wetland methane flux estimates. Relative to existing estimates, we find a methane source that is smaller in magnitude with a broader seasonal cycle. Furthermore, we estimate the largest fluxes over the Hudson Bay Lowlands, a spatial distribution that differs from commonly used remote sensing estimates of wetland location.
J. R. Melton and V. K. Arora
Geosci. Model Dev., 9, 323–361, https://doi.org/10.5194/gmd-9-323-2016, https://doi.org/10.5194/gmd-9-323-2016, 2016
Short summary
Short summary
We use a modified form of the Lotka–Volterra (L–V) equations to simulate competition between plant functional types (PFTs) on a global scale with the Canadian Terrestrial Ecosystem Model (CTEM) version 2.0. Our modified L–V simulations compare well against observation-based records of PFT distributions, while simulations with unmodified L–V equations show significant biases. We include an appendix detailing all aspects of CTEM v. 2.0.
F. Deng, D. B. A. Jones, T. W. Walker, M. Keller, K. W. Bowman, D. K. Henze, R. Nassar, E. A. Kort, S. C. Wofsy, K. A. Walker, A. E. Bourassa, and D. A. Degenstein
Atmos. Chem. Phys., 15, 11773–11788, https://doi.org/10.5194/acp-15-11773-2015, https://doi.org/10.5194/acp-15-11773-2015, 2015
Short summary
Short summary
The upper troposphere and lower stratosphere (UTLS) is characterized by strong gradients in the distribution of long-lived tracers, which are sensitive to discrepancies in transport in models. We found that our model overestimates CO2 in the polar UTLS through comparison of modeled CO2 with aircraft observations. We then corrected the modeled CO2 and quantified the impact of the correction on the flux estimates using an atmospheric model together with atmospheric CO2 measured from a satellite.
C. D. Koven, J. Q. Chambers, K. Georgiou, R. Knox, R. Negron-Juarez, W. J. Riley, V. K. Arora, V. Brovkin, P. Friedlingstein, and C. D. Jones
Biogeosciences, 12, 5211–5228, https://doi.org/10.5194/bg-12-5211-2015, https://doi.org/10.5194/bg-12-5211-2015, 2015
Short summary
Short summary
Terrestrial carbon feedbacks are a large uncertainty in climate change. We separate modeled feedback responses into those governed by changed carbon inputs (productivity) and changed outputs (turnover). The disaggregated responses show that both are important in controlling inter-model uncertainty. Interactions between productivity and turnover are also important, and research must focus on these interactions for more accurate projections of carbon cycle feedbacks.
Y. H. Mao, Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-15-7685-2015, https://doi.org/10.5194/acp-15-7685-2015, 2015
Z. Jiang, D. B. A. Jones, J. Worden, H. M. Worden, D. K. Henze, and Y. X. Wang
Atmos. Chem. Phys., 15, 6801–6814, https://doi.org/10.5194/acp-15-6801-2015, https://doi.org/10.5194/acp-15-6801-2015, 2015
Short summary
Short summary
We present a high-resolution (0.5 x 0.667) regional CO inversion over North America in the period of June 2004–May 2005, using a combination of GEOS-Chem model and MOPITT CO observations. With optimized lateral boundary conditions, we show that regional inversion analyses can reduce the sensitivity of the CO source estimates to errors in long-range transport and in the distributions of the hydroxyl radical (OH), and consequently, provide better quantification on regional CO source estimates.
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Short summary
We evaluated 21 forward models and 5 inversions over western Siberia in terms of CH4 emissions and simulated wetland areas and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite inundation products. In addition to assembling a definitive collection of methane emissions estimates for the region, we were able to identify the types of wetland maps and model features necessary for accurate simulations of high-latitude wetlands.
J. Huang, H. Liu, J. H. Crawford, C. Chan, D. B. Considine, Y. Zhang, X. Zheng, C. Zhao, V. Thouret, S. J. Oltmans, S. C. Liu, D. B. A. Jones, S. D. Steenrod, and M. R. Damon
Atmos. Chem. Phys., 15, 5161–5179, https://doi.org/10.5194/acp-15-5161-2015, https://doi.org/10.5194/acp-15-5161-2015, 2015
Short summary
Short summary
High ozone concentrations (up to 94.7ppbv) were frequently observed at an altitude of ~1.5--2km over Beijing during April--May 2005. Ozone due to Asian anthropogenic pollution made major contributions to the observed ozone enhancements. These enhancements typically occurred under southerly wind and warmer conditions. An earlier onset of the Asian summer monsoon would cause more ozone enhancement events in the lower troposphere over the North China Plain in late spring and early summer.
J. R. Melton, R. K. Shrestha, and V. K. Arora
Biogeosciences, 12, 1151–1168, https://doi.org/10.5194/bg-12-1151-2015, https://doi.org/10.5194/bg-12-1151-2015, 2015
Short summary
Short summary
Net ecosystem productivity (NEP) in seasonally dry Amazon forests varies
greatly between sites with similar precipitation patterns. We ran CLASS-CTEM at two LBA Amazon sites (Tapajós 83km & Jarú Reserve) that exhibit opposite seasonal NEP cycles despite reasonably similar meteorological conditions. We find the influence of soil texture and depth, through soil moisture, on seasonal patterns of GPP and, especially, heterotrophic respiration is important for correctly simulating NEP seasonality.
Z. Jiang, D. B. A. Jones, H. M. Worden, and D. K. Henze
Atmos. Chem. Phys., 15, 1521–1537, https://doi.org/10.5194/acp-15-1521-2015, https://doi.org/10.5194/acp-15-1521-2015, 2015
Short summary
Short summary
Using MOPITT (version 5) tropospheric profile and surface layer retrievals, we constrain global CO emissions in the period of June 2004 – May 2005. The inversions suggest a reduction in CO emission in the tropics and an increase in emissions at middle and high latitudes. The results demonstrate that the use of the surface layer retrievals from MOPITT can significantly mitigate the potential impacts of model bias in OH and long-range transport on CO emission estimates.
Z. Jiang, J. R. Worden, D. B. A. Jones, J.-T. Lin, W. W. Verstraeten, and D. K. Henze
Atmos. Chem. Phys., 15, 99–112, https://doi.org/10.5194/acp-15-99-2015, https://doi.org/10.5194/acp-15-99-2015, 2015
Short summary
Short summary
We use satellite measurements of O3, CO and NO2 from TES, MOPITT and OMI to quantify O3 precursor emissions for 2006 and their impact on free tropospheric O3 over northeastern Asia. Using the adjoint of GEOS-Chem, we found that Chinese emissions have the largest influence on the free tropospheric O3. The contributions from lightning NOx in summer and India and southeastern Asia emissions in winter are sizable, comparable with Chinese emissions.
L. R. Boysen, V. Brovkin, V. K. Arora, P. Cadule, N. de Noblet-Ducoudré, E. Kato, J. Pongratz, and V. Gayler
Earth Syst. Dynam., 5, 309–319, https://doi.org/10.5194/esd-5-309-2014, https://doi.org/10.5194/esd-5-309-2014, 2014
J. B. Fisher, M. Sikka, W. C. Oechel, D. N. Huntzinger, J. R. Melton, C. D. Koven, A. Ahlström, M. A. Arain, I. Baker, J. M. Chen, P. Ciais, C. Davidson, M. Dietze, B. El-Masri, D. Hayes, C. Huntingford, A. K. Jain, P. E. Levy, M. R. Lomas, B. Poulter, D. Price, A. K. Sahoo, K. Schaefer, H. Tian, E. Tomelleri, H. Verbeeck, N. Viovy, R. Wania, N. Zeng, and C. E. Miller
Biogeosciences, 11, 4271–4288, https://doi.org/10.5194/bg-11-4271-2014, https://doi.org/10.5194/bg-11-4271-2014, 2014
V. K. Arora and G. J. Boer
Biogeosciences, 11, 4157–4171, https://doi.org/10.5194/bg-11-4157-2014, https://doi.org/10.5194/bg-11-4157-2014, 2014
C. E. Sioris, C. D. Boone, R. Nassar, K. J. Sutton, I. E. Gordon, K. A. Walker, and P. F. Bernath
Atmos. Meas. Tech., 7, 2243–2262, https://doi.org/10.5194/amt-7-2243-2014, https://doi.org/10.5194/amt-7-2243-2014, 2014
K. E. O. Todd-Brown, J. T. Randerson, F. Hopkins, V. Arora, T. Hajima, C. Jones, E. Shevliakova, J. Tjiputra, E. Volodin, T. Wu, Q. Zhang, and S. D. Allison
Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014, https://doi.org/10.5194/bg-11-2341-2014, 2014
F. Deng, D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. W. T. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke
Atmos. Chem. Phys., 14, 3703–3727, https://doi.org/10.5194/acp-14-3703-2014, https://doi.org/10.5194/acp-14-3703-2014, 2014
J. R. Melton and V. K. Arora
Biogeosciences, 11, 1021–1036, https://doi.org/10.5194/bg-11-1021-2014, https://doi.org/10.5194/bg-11-1021-2014, 2014
Y. Peng, V. K. Arora, W. A. Kurz, R. A. Hember, B. J. Hawkins, J. C. Fyfe, and A. T. Werner
Biogeosciences, 11, 635–649, https://doi.org/10.5194/bg-11-635-2014, https://doi.org/10.5194/bg-11-635-2014, 2014
F. Deng, J. M. Chen, Y. Pan, W. Peters, R. Birdsey, K. McCullough, and J. Xiao
Biogeosciences, 10, 5335–5348, https://doi.org/10.5194/bg-10-5335-2013, https://doi.org/10.5194/bg-10-5335-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
Related subject area
Biogeosciences
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
The biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of the carbon cycle in central European beech forests
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Exploring the potential of history matching for land surface model calibration
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
In silico calculation of soil pH by SCEPTER v1.0
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
A global behavioural model of human fire use and management: WHAM! v1.0
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCO v4-Hg: the role of surfactants and waves
Lambda-PFLOTRAN 1.0: Workflow for Incorporating Organic Matter Chemistry Informed by Ultra High Resolution Mass Spectrometry into Biogeochemical Modeling
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Implementing a dynamic representation of fire and harvest including subgrid-scale heterogeneity in the tile-based land surface model CLASSIC v1.45
Inferring the tree regeneration niche from inventory data using a dynamic forest model
Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
A model of the within-population variability of budburst in forest trees
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
The community-centered freshwater biogeochemistry model unified RIVE v1.0: a unified version for water column
Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
A novel Eulerian model based on central moments to simulate age and reactivity continua interacting with mixing processes
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
An along-track Biogeochemical Argo modelling framework: a case study of model improvements for the Nordic seas
Peatland-VU-NUCOM (PVN 1.0): using dynamic plant functional types to model peatland vegetation, CH4, and CO2 emissions
Quantification of hydraulic trait control on plant hydrodynamics and risk of hydraulic failure within a demographic structured vegetation model in a tropical forest (FATES–HYDRO V1.0)
SedTrace 1.0: a Julia-based framework for generating and running reactive-transport models of marine sediment diagenesis specializing in trace elements and isotopes
A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry
Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands
Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3
Forcing the Global Fire Emissions Database burned-area dataset into the Community Land Model version 5.0: impacts on carbon and water fluxes at high latitudes
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024, https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use and also taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers was lost due to NH3 emissions. Hot and dry conditions and regions with high-pH soils can expect higher NH3 emissions.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024, https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values aiming to strike a balance between their local precision and broad applicability. Using the Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024, https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024, https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary
Short summary
We use computer models to predict how the land surface will respond to climate change. However, these complex models do not always simulate what we observe in real life, limiting their effectiveness. To improve their accuracy, we use sophisticated statistical and computational techniques. We test a technique called history matching against more common approaches. This method adapts well to these models, helping us better understand how they work and therefore how to make them more realistic.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024, https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie Fisher, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-978, https://doi.org/10.5194/egusphere-2024-978, 2024
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land Surface Models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes and variability of carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research on these processes.
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-81, https://doi.org/10.5194/gmd-2024-81, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The estimation of Hg0 fluxes is of great uncertainty due to neglecting wave breaking and sea surfactant. Integrating these factors into MITgcm significantly rise Hg0 transfer velocity. The updated model shows increased fluxes in high wind and wave regions and vice versa, enhancing the spatial heterogeneity. It shows a stronger correlation between Hg0 transfer velocity and wind speed. These findings may elucidate the discrepancies in previous estimations and offer insights into global Hg cycling.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-34, https://doi.org/10.5194/gmd-2024-34, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The newly developed Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate respiration and the resulting biogeochemistry. Lambda-PFLOTRAN is a python-based workflow via a Jupyter Notebook interface, that digests raw organic matter chemistry data via FTICR-MS, develops the representative reaction network, and completes a biogeochemical simulation with the open source, parallel reactive flow and transport code PFLOTRAN.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024, https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Short summary
By including microbial processes in soil models, we learn how the soil system interacts with its environment and responds to climate change. We present a soil process model, MIMICS+, which is able to reproduce carbon stocks found in boreal forest soils better than a conventional land model. With the model we also find that when adding nitrogen, the relationship between soil microbes changes notably. Coupling the model to a vegetation model will allow for further study of these mechanisms.
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024, https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Short summary
Soil microbes provide a strong link for elemental fluxes in the earth system. The SESAM model applies an optimality assumption to model those linkages and their adaptation. We found that a previous heuristic description was a special case of a newly developed more rigorous description. The finding of new behaviour at low microbial biomass led us to formulate the constrained enzyme hypothesis. We now can better describe how microbially mediated linkages of elemental fluxes adapt across decades.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Yannek Käber, Florian Hartig, and Harald Bugmann
Geosci. Model Dev., 17, 2727–2753, https://doi.org/10.5194/gmd-17-2727-2024, https://doi.org/10.5194/gmd-17-2727-2024, 2024
Short summary
Short summary
Many forest models include detailed mechanisms of forest growth and mortality, but regeneration is often simplified. Testing and improving forest regeneration models is challenging. We address this issue by exploring how forest inventories from unmanaged European forests can be used to improve such models. We find that competition for light among trees is captured by the model, unknown model components can be informed by forest inventory data, and climatic effects are challenging to capture.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024, https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
Short summary
Creating computational models of how phytoplankton grows in the ocean is a technical challenge. We developed a new tool set (Xarray-simlab-ODE) for building such models using the programming language Python. We demonstrate the tool set in a library of plankton models (Phydra). Our goal was to allow scientists to develop models quickly, while also allowing the model structures to be changed easily. This allows us to test many different structures of our models to find the most appropriate one.
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024, https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
Short summary
Quantification of carbon fluxes of crops is an essential building block for the construction of a monitoring, reporting, and verification approach. We developed an end-to-end platform (AgriCarbon-EO) that assimilates, through a Bayesian approach, high-resolution (10 m) optical remote sensing data into radiative transfer and crop modelling at regional scale (100 x 100 km). Large-scale estimates of carbon flux are validated against in situ flux towers and yield maps and analysed at regional scale.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024, https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo
Geosci. Model Dev., 17, 449–476, https://doi.org/10.5194/gmd-17-449-2024, https://doi.org/10.5194/gmd-17-449-2024, 2024
Short summary
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev., 16, 6921–6941, https://doi.org/10.5194/gmd-16-6921-2023, https://doi.org/10.5194/gmd-16-6921-2023, 2023
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential earth-surface, ecological, and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how life and landforms co-evolve to produce distinct biodiversity patterns on geological timescales.
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev., 16, 6875–6897, https://doi.org/10.5194/gmd-16-6875-2023, https://doi.org/10.5194/gmd-16-6875-2023, 2023
Short summary
Short summary
We present an along BGC-Argo track 1D modelling framework. The model physics is constrained by the BGC-Argo temperature and salinity profiles to reduce the uncertainties related to mixed layer dynamics, allowing the evaluation of the biogeochemical formulation and parameterization. We objectively analyse the model with BGC-Argo and satellite data and improve the model biogeochemical dynamics. We present the framework, example cases and routines for model improvement and implementations.
Tanya J. R. Lippmann, Ype van der Velde, Monique M. P. D. Heijmans, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, https://doi.org/10.5194/gmd-16-6773-2023, 2023
Short summary
Short summary
Vegetation is a critical component of carbon storage in peatlands but an often-overlooked concept in many peatland models. We developed a new model capable of simulating the response of vegetation to changing environments and management regimes. We evaluated the model against observed chamber data collected at two peatland sites. We found that daily air temperature, water level, harvest frequency and height, and vegetation composition drive methane and carbon dioxide emissions.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Jianghui Du
Geosci. Model Dev., 16, 5865–5894, https://doi.org/10.5194/gmd-16-5865-2023, https://doi.org/10.5194/gmd-16-5865-2023, 2023
Short summary
Short summary
Trace elements and isotopes (TEIs) are important tools to study the changes in the ocean environment both today and in the past. However, the behaviors of TEIs in marine sediments are poorly known, limiting our ability to use them in oceanography. Here we present a modeling framework that can be used to generate and run models of the sedimentary cycling of TEIs assisted with advanced numerical tools in the Julia language, lowering the coding barrier for the general user to study marine TEIs.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Hocheol Seo and Yeonjoo Kim
Geosci. Model Dev., 16, 4699–4713, https://doi.org/10.5194/gmd-16-4699-2023, https://doi.org/10.5194/gmd-16-4699-2023, 2023
Short summary
Short summary
Wildfire is a crucial factor in carbon and water fluxes on the Earth system. About 2.1 Pg of carbon is released into the atmosphere by wildfires annually. Because the fire processes are still limitedly represented in land surface models, we forced the daily GFED4 burned area into the land surface model over Alaska and Siberia. The results with the GFED4 burned area significantly improved the simulated carbon emissions and net ecosystem exchange compared to the default simulation.
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023, https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Cited articles
Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo,
G., Beljaars, A., Ciais, P., Deutscher, N. M., Engelen, R., Jones, L., Kivi,
R., Paris, J.-D., Peuch, V.-H., Sherlock, V., Vermeulen, A. T., Wennberg, P.
O., and Wunch, D.: Forecasting global atmospheric CO2, Atmos. Chem. Phys.,
14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014, 2014. a
Agusti-Panareda, A., Diamantakis, M., Bayona, V., Klappenbach, F., and Butz,
A.: Improving the inter-hemispheric gradient of total column atmospheric CO2
and CH4 in simulations with the ECMWF semi-Lagrangian atmospheric global
model, Geosci. Model Dev., 10, 1–18, https://doi.org/10.5194/gmd-10-1-2017,
2017. a
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P.,
Jones,
C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the Land and Ocean
Components of the Global Carbon Cycle in the CMIP5 Earth System Models,
J. Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1,
2013. a, b
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C.,
Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S.,
Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatiotemporal patterns of
terrestrial gross primary production: A review, Rev. Geophys., 53,
785–818, https://doi.org/10.1002/2015RG000483,
2015. a, b, c
Arora, V. K. and Boer, G. J.: Fire as an interactive component of dynamic
vegetation models, J. Geophys. Res.-Biogeo., 110,
G02008, https://doi.org/10.1029/2005JG000042, 2005. a, b, c, d
Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget
associated with land use change, Glob. Change Biol., 16, 3327–3348,
https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2010. a
Arora, V. K., Boer, G. J., Christian, J. R., Curry, C. L., Denman, K. L.,
Zahariev, K., Flato, G. M., Scinocca, J. F., Merryfield, W. J., and Lee,
W. G.: The Effect of Terrestrial Photosynthesis Down Regulation on the
Twentieth-Century Carbon Budget Simulated with the CCCma Earth System
Model, J. Climate, 22, 6066–6088, https://doi.org/10.1175/2009JCLI3037.1, 2009. a, b
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon-Concentration
and Carbon-Climate Feedbacks in CMIP5 Earth System Models, J.
Climate, 26, 5289–5314, https://doi.org/10.1175/JCLI-D-12-00494.1,
2013. a
Badawy, B., Rödenbeck, C., Reichstein, M., Carvalhais, N., and Heimann, M.:
Technical Note: The Simple Diagnostic Photosynthesis and Respiration Model
(SDPRM), Biogeosciences, 10, 6485–6508,
https://doi.org/10.5194/bg-10-6485-2013, 2013. a
Badawy, B., Arora, V. K., Melton, J. R., and Nassar, R.: Modeling the diurnal
variability of respiratory fluxes in the Canadian Terrestrial Ecosystem Model
(CTEM), J. Adv. Model. Earth Syst., 8, 614–633,
https://doi.org/10.1002/2015MS000540, 2016. a, b, c
Balsamo, G., Boussetta, S., Lopez, P., and Ferranti, L.: Evaluation of
ERA-Interim and ERA-Interim GPCP-rescaled precipitation over the U.S.A., ERA
Report Series 5, ECMWF, Reading, England, 10 pp., 2010. a
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N.,
Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A.,
Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis,
H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C.,
Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake:
Global Distribution and Covariation with Climate, Science, 329, 834–838,
https://doi.org/10.1126/science.1184984, 2010. a, b, c, d, e, f
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M.,
Kållberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim
archive Version 2.0, Shinfield Park, Reading, 2011. a
Blumenstock, T., Hase, F., Schneider, M., Garcia, O., and Sepulveda, E.:
TCCON
data from Izana, Tenerife, Spain, Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.izana01.R0/1149295,
TCCON data archive, hosted
by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, U.S.A., 2014. a
Bruhwiler, L. M. P., Michalak, A. M., and Tans, P. P.: Spatial and temporal
resolution of carbon flux estimates for 1983–2002, Biogeosciences, 8,
1309–1331, https://doi.org/10.5194/bg-8-1309-2011, 2011. a
Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G. J., Pereira, J. S.,
Berbigier, P., Carrara, A., Granier, A., Montagnani, L., Papale, D., Rambal,
S., Sanz, M. J., and Valentini, R.: Implications of the carbon cycle steady
state assumption for biogeochemical modeling performance and inverse
parameter retrieval, Global Biogeochem. Cy., 22, gB2007,
https://doi.org/10.1029/2007GB003033,
2008. a, b, c
Carvalhais, N., Reichstein, M., Ciais, P., Collatz, G. J., Mahecha, M. D.,
Montagnani, L., Papale, D., Rambal, S., and Seixas, J.: Identification of
vegetation and soil carbon pools out of equilibrium in a process model via
eddy covariance and biometric constraints, Glob. Change Biol., 16,
2813–2829, https://doi.org/10.1111/j.1365-2486.2010.02173.x,
2010. a, b, c, d
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C.,
Roch, M., Morneau, J., Garand, L., Aparicio, J. M., MacPherson, S., Pellerin,
S., St-James, J., and Heilliette, S.: The Stratospheric Extension of the
Canadian Global Deterministic Medium-Range Weather Forecasting System and Its
Impact on Tropospheric Forecasts, Mon. Weather Rev., 140, 1924–1944,
https://doi.org/10.1175/MWR-D-11-00097.1,
2012. a
Chen, J. M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., and Chan,
D.:
Effects of foliage clumping on the estimation of global terrestrial gross
primary productivity, Global Biogeochem. Cy., 26, gB1019,
https://doi.org/10.1029/2010GB003996,
2012. a
Clein, J., McGuire, A. D., Euskirchen, E. S., and Calef, M.: The Effects of
Different Climate Input Datasets on Simulated Carbon Dynamics in the Western
Arctic, Earth Interact., 11, 1–24, https://doi.org/10.1175/EI229.1,
2007. a
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and
Staniforth,
A.: The Operational CMC-MRB Global Environmental Multiscale (GEM) Model.
Part I: Design Considerations and Formulation, Mon. Weather Rev., 126,
1373–1395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2,
1998a. a
Dalmonech, D., Zaehle, S., Schuermann, G. J., Brovkin, V., Reick, C., and
Schnur, R.: Separation of the Effects of Land and Climate Model Errors on
Simulated Contemporary Land Carbon Cycle Trends in the MPI Earth System Model
version 1, J. Climate, 28, 272–291,
https://doi.org/10.1175/JCLI-D-13-00593.1,
2015. a, b, c
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011. a, b, c
Deng, F. and Chen, J. M.: Recent global CO2 flux inferred from atmospheric
CO2 observations and its regional analyses, Biogeosciences, 8, 3263–3281,
https://doi.org/10.5194/bg-8-3263-2011, 2011. a
Deng, F., Jones, D. B. A., Henze, D. K., Bousserez, N., Bowman, K. W.,
Fisher, J. B., Nassar, R., O'Dell, C., Wunch, D., Wennberg, P. O., Kort, E.
A., Wofsy, S. C., Blumenstock, T., Deutscher, N. M., Griffith, D. W. T.,
Hase, F., Heikkinen, P., Sherlock, V., Strong, K., Sussmann, R., and Warneke,
T.: Inferring regional sources and sinks of atmospheric CO2 from GOSAT
XCO2 data, Atmos. Chem. Phys., 14, 3703–3727,
https://doi.org/10.5194/acp-14-3703-2014, 2014. a, b, c, d, e, f, g, h, i, j
Deng, F., Jones, D. B. A., O'Dell, C. W., Nassar, R., and Parazoo, N. C.:
Combining GOSAT X CO2 observations over land and ocean to improve
regional CO2 flux estimates, J. Geophys. Res.-Atmos., 121, 1896–1913, https://doi.org/10.1002/2015JD024157,
2016. a, b, c, d
Deutscher, N., Notholt, J., Messerschmidt, J., Weinzierl, C., Warneke, T.,
Petri, C., Grupe, P., and Katrynski, K.: TCCON data from Bialystok, Poland,
Release GGG2014R1,
https://doi.org/10.14291/tccon.ggg2014.bialystok01.R1/1183984, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Dlugokencky, E., Lang, P., Masarie, K., Crotwell, A., and Crotwell, M.:
Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon
Cycle Cooperative Global Air Sampling Network, 1968–2014, Version:
2015-08-03, available at:
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (last access: November 2017),
2015. a, b
Exbrayat, J.-F., Pitman, A. J., and Abramowitz, G.: Response of microbial
decomposition to spin-up explains CMIP5 soil carbon range until 2100, Geosci.
Model Dev., 7, 2683–2692, https://doi.org/10.5194/gmd-7-2683-2014, 2014. a
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model
Intercomparison, J. Climate, 19, 3337–3353, https://doi.org/10.1175/JCLI3800.1, 2006. a
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections
due to Carbon Cycle Feedbacks, J. Climate, 27, 511–526,
https://doi.org/10.1175/JCLI-D-12-00579.1,
2014. a
Girard, C., Plante, A.and Desgagné, M., McTaggart-Cowan, R., Côté, J.,
Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M.,
Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered
Vertical Discretization of the Canadian Environmental Multiscale (GEM) Model
Using a Coordinate of the Log-Hydrostatic-Pressure Type, Mon. Weather Rev.,
142, 1183–1196, https://doi.org/10.1175/MWR-D-13-00255.1,
2013. a
Griffith, D. W. T., Deutscher, N., Velazco, V. A., Wennberg, P. O., Yavin,
Y.,
Aleks, G. K., Washenfelder, R., Toon, G. C., Blavier, J.-F., Murphy, C.,
Jones, N., Kettlewell, G., Connor, B., Macatangay, R., Roehl, C., Ryczek, M.,
Glowacki, J., Culgan, T., and Bryant, G.: TCCON data from Darwin, Australia,
Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.darwin01.R0/1149290, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014a. a
Griffith, D. W. T., Velazco, V. A., Deutscher, N., Murphy, C., Jones, N.,
Wilson, S., Macatangay, R., Kettlewell, G., Buchholz, R. R., and Riggenbach,
M.: TCCON data from Wollongong, Australia, Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.wollongong01.R0/1149291, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014b. a
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D.,
Bousquet,
P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S. M., Fung, I. Y., Gloor,
M., Heimann, M., Higuchi, K., John, J., Kowalczyk, E., Maki, T., Maksyutov,
S., Peylin, P., Prather, M., Pak, B. C., Sarmiento, J., Taguchi, S.,
Takahashi, T., and Yuen, C.-W.: TransCom 3 CO2 inversion
intercomparison: 1. Annual mean control results and sensitivity to
transport and prior flux information, Tellus B, 55, 555–579, 2003. a, b
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Pak, B. C., Baker,
D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y.,
Heimann, M., John, J., Maki, T., Maksyutov, S., Peylin, P., Prather, M., and
Taguchi, S.: Transcom 3 inversion intercomparison: Model mean results for
the estimation of seasonal carbon sources and sinks, Global Biogeochem.
Cy., 18, GB1010, https://doi.org/10.1029/2003GB002111, 2004. a, b
Hase, F., Blumenstock, T., Dohe, S., Gross, J., and Kiel, M.: TCCON data
from
Karlsruhe, Germany, Release GGG2014R1,
https://doi.org/10.14291/tccon.ggg2014.karlsruhe01.R1/1182416, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of
GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433,
https://doi.org/10.5194/acp-7-2413-2007, 2007. a
Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R.
S., Hansen, M. C., Le Quéré, C., and Ramankutty, N.: Carbon emissions
from land use and land-cover change, Biogeosciences, 9, 5125–5142,
https://doi.org/10.5194/bg-9-5125-2012, 2012. a, b
Huntzinger, D., Post, W., Wei, Y., Michalak, A., West, T., Jacobson, A.,
Baker,
I., Chen, J., Davis, K., Hayes, D., Hoffman, F., Jain, A., Liu, S., McGuire,
A., Neilson, R., Potter, C., Poulter, B., Price, D., Raczka, B., Tian, H.,
Thornton, P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao,
M., and Cook, R.: North American Carbon Program (NACP) regional interim
synthesis: Terrestrial biospheric model intercomparison, Ecological
Modelling, 232, 144–157,
https://doi.org/10.1016/j.ecolmodel.2012.02.004,
2012. a
Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W.,
Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G.,
Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng,
S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao,
F., and Zhu, Q.: The North American Carbon Program Multi-Scale Synthesis and
Terrestrial Model Intercomparison Project – Part 1: Overview and
experimental design, Geosci. Model Dev., 6, 2121–2133,
https://doi.org/10.5194/gmd-6-2121-2013, 2013. a
Hurtt, G., Chini, L., Frolking, S., Betts, R., Feddema, J., Fischer, G.,
Fisk,
J., Hibbard, K., Houghton, R., Janetos, A., Jones, C., Kindermann, G.,
Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S.,
Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D., and Wang, Y.:
Harmonization of land-use scenarios for the period 1500-2100: 600 years of
global gridded annual land-use transitions, wood harvest, and resulting
secondary lands, Climatic Change, 109, 117–161, 2011. a
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P.,
Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global
monitoring of terrestrial chlorophyll fluorescence from
moderate-spectral-resolution near-infrared satellite measurements:
methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6,
2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013. a
Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S.,
Ciais, P., Viovy, N., Bondeau, A., Chen, Y., Trusilova, K., Feser, F., and
Heimann, M.: Uncertainties of modeling gross primary productivity over
Europe: A systematic study on the effects of using different drivers and
terrestrial biosphere models, Global Biogeochem. Cy., 21, gB4021,
https://doi.org/10.1029/2006GB002915,
2007. a, b
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling
of FLUXNET eddy covariance observations: validation of a model tree ensemble
approach using a biosphere model, Biogeosciences, 6, 2001–2013,
https://doi.org/10.5194/bg-6-2001-2009, 2009. a
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström,
A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F.,
Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B., Raduly, B.,
Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P., Weber, U., Zaehle, S.,
and Zeng, N.: Compensatory water effects link yearly global land CO2 sink
changes to temperature, Nature, 541, 516–520, https://doi.org/10.1038/nature20780,
2017. a, b
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996. a, b
Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner, P. J., Zaehle,
S., Blessing, S., Dorigo, W., Gayler, V., Giering, R., Gobron, N., Grant,
J. P., Heimann, M., Hooker-Stroud, A., Houweling, S., Kato, T., Kattge, J.,
Kelley, D., Kemp, S., Koffi, E. N., Köstler, C., Mathieu, P.-P., Pinty, B.,
Reick, C. H., Rödenbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke,
T., van Scheltinga, A. T., Vossbeck, M., Widmann, H., and Ziehn, T.: The
BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences
and challenges, J. Geophys. Res.-Biogeo., 118,
1414–1426, https://doi.org/10.1002/jgrg.20118, 2013. a, b
Kivi, R., Heikkinen, P., and Kyro, E.: TCCON data from Sodankyla, Finland,
Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.sodankyla01.R0/1149280, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Koffi, E. N., Rayner, P. J., Scholze, M., and Beer, C.: Atmospheric
constraints
on gross primary productivity and net ecosystem productivity: Results from a
carbon-cycle data assimilation system, Global Biogeochem. Cy., 26, GB1024,
https://doi.org/10.1029/2010gb003900, 2012. a
Koffi, E. N., Rayner, P. J., Scholze, M., Chevallier, F., and Kaminski, T.:
Quantifying the constraint of biospheric process parameters by CO2
concentration and flux measurement networks through a carbon cycle data
assimilation system, Atmos. Chem. Phys., 13, 10555–10572,
https://doi.org/10.5194/acp-13-10555-2013, 2013. a, b
Köhler, P., Guanter, L., and Joiner, J.: A linear method for the retrieval
of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data,
Atmos. Meas. Tech., 8, 2589–2608, https://doi.org/10.5194/amt-8-2589-2015,
2015. a
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J.,
Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GB1015,
https://doi.org/10.1029/2003GB002199, 2005. a
Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Initial Onboard
Performance of TANSO-FTS on GOSAT, in: Advances in Imaging, FTuC2,
Optical Society of America, https://doi.org/10.1364/FTS.2009.FTuC2,
2009. a
Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S.,
Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden,
T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A.,
Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L.
P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck,
J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K.,
Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A.,
Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E.
M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F.
F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito,
S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B.
D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T.,
van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A.,
Zaehle, S., and Zeng, N.: Global Carbon Budget 2015, Earth Syst. Sci. Data,
7, 349–396, https://doi.org/10.5194/essd-7-349-2015, 2015. a, b
Lin, J. C., Pejam, M. R., Chan, E., Wofsy, S. C., Gottlieb, E. W., Margolis,
H. A., and McCaughey, J. H.: Attributing uncertainties in simulated
biospheric carbon fluxes to different error sources, Global Biogeochem.
Cy., 25, GB2018, https://doi.org/10.1029/2010gb003884, 2011. a
Makar, P., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G.,
Žabkar, R., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung,
P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
Jiménez-Guerrero, P., Langer, M., Moran, M., Pabla, B., Pérez, J.,
Pirovano, G., José, R. S., Tuccella, P., Werhahn, J., Zhang, J., and
Galmarini, S.: Feedbacks between air pollution and weather, Part 1: Effects
on weather, Atmos. Environ., 115, 442–469,
https://doi.org/10.1016/j.atmosenv.2014.12.003,
2015. a
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley,
J.,
Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo,
J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T.,
Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: Carbon balance of
the terrestrial biosphere in the twentieth century: Analyses of CO2,
climate and land use effects with four process-based ecosystem models, Global
Biogeochem. Cy., 15, 183–206, 2001. a, b
Meinshausen, M., Smith, S., Calvin, K., Daniel, J., Kainuma, M., Lamarque,
J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A.,
Velders, G., and van Vuuren, D.: The RCP greenhouse gas concentrations and
their extensions from 1765 to 2300, Climatic Change, 109, 213–241, 2011. a
Melton, J. R., Shrestha, R. K., and Arora, V. K.: The influence of soils on
heterotrophic respiration exerts a strong control on net ecosystem
productivity in seasonally dry Amazonian forests, Biogeosciences, 12,
1151–1168, https://doi.org/10.5194/bg-12-1151-2015, 2015. a, b, c
Moran, M., Meńard, S., Talbot, D., Huang, P., Makar, P., Gong, W., Landry,
H., Gravel, S., Gong, S., Crevier, L., Kallaur, A., and Sassi, M.:
Particulate-matter forecasting with GEM-MACH15, a new Canadian air-quality
forecast model, in: Air Pollution
Modelling and Its Application XX, edited by: Steyn, D. G. and Rao, S. T., Springer, Dordrecht, 2010. a
Nassar, R., Jones, D. B. A., Suntharalingam, P., Chen, J. M., Andres, R. J.,
Wecht, K. J., Yantosca, R. M., Kulawik, S. S., Bowman, K. W., Worden, J. R.,
Machida, T., and Matsueda, H.: Modeling global atmospheric CO2 with
improved emission inventories and CO2 production from the oxidation of
other carbon species, Geosci. Model Dev., 3, 689–716,
https://doi.org/10.5194/gmd-3-689-2010, 2010. a, b
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven increases in
global terrestrial net primary production from 1982 to 1999, Science, 300,
1560–1563, 2003. a
Niwa, Y., Machida, T., Sawa, Y., Matsueda, H., Schuck, T. J., Brenninkmeijer,
C. A. M., Imasu, R., and Satoh, M.: Imposing strong constraints on tropical
terrestrial CO2fluxes using passenger aircraft based measurements,
J. Geophys. Res.-Atmos., 117, D11303,
https://doi.org/10.1029/2012jd017474, 2012. a
Notholt, J., Petri, C., Warneke, T., Deutscher, N., Buschmann, M., Weinzierl,
C., Macatangay, R., and Grupe, P.: TCCON data from Bremen, Germany, Release
GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.bremen01.R0/1149275, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Ott, L. E., Pawson, S., Collatz, G. J., Gregg, W. W., Menemenlis, D., Brix,
H.,
Rousseaux, C. S., Bowman, K. W., Liu, J., Eldering, A., Gunson, M. R., and
Kawa, S. R.: Assessing the magnitude of CO2 flux uncertainty in atmospheric
CO2 records using products from NASA's Carbon Monitoring Flux Pilot Project,
J. Geophys. Res.-Atmos., 120, 734–765,
https://doi.org/10.1002/2014JD022411,
2015. a, b, c
Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol,
M. C., Zupanski, D., Bruhwiler, L., and Tans, P. P.: An ensemble data
assimilation system to estimate CO2 surface fluxes from atmospheric
trace gas observations, J. Geophys. Res.-Atmos., 110, D24304,
https://doi.org/10.1029/2005JD006157,
2005. a
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J.,
Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A. I.,
Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O.,
Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American
carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, 2007. a, b, c, d, e, f, g
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki,
T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van
der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget:
results from an ensemble of atmospheric CO2 inversions, Biogeosciences,
10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, 2013. a, b, c, d, e, f, g, h, i
Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S.,
Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet, P.:
A new stepwise carbon cycle data assimilation system using multiple data
streams to constrain the simulated land surface carbon cycle, Geosci. Model
Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016. a, b, c
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X.,
Ahlstrom, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M.,
Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma,
Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and
Zeng, N.: Evaluation of terrestrial carbon cycle models for their response
to climate variability and to CO2 trends, Glob. Change Biol., 19,
2117–2132, https://doi.org/10.1111/gcb.12187,
2013. a, b, c, d, e
Polavarapu, S. M., Neish, M., Tanguay, M., Girard, C., de Grandpré, J.,
Semeniuk, K., Gravel, S., Ren, S., Roche, S., Chan, D., and Strong, K.:
Greenhouse gas simulations with a coupled meteorological and transport model:
the predictability of CO2, Atmos. Chem. Phys., 16, 12005–12038,
https://doi.org/10.5194/acp-16-12005-2016, 2016. a, b, c, d, e, f, g, h
Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and
Widmann,
H.: Two decades of terrestrial carbon fluxes from a carbon cycle data
assimilation system (CCDAS), Global Biogeochem. Cy., 19, GB2026,
https://doi.org/10.1029/2004GB002254, 2005. a, b
Reichstein, M., Kätterer, T., Andrén, O., Ciais, P., Schulze, E.-D.,
Cramer, W., Papale, D., and Valentini, R.: Temperature sensitivity of
decomposition in relation to soil organic matter pools: critique and outlook,
Biogeosciences, 2, 317–321, https://doi.org/10.5194/bg-2-317-2005, 2005. a
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu,
E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S.,
Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster,
R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder,
C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and
Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research
and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1,
2011. a
Robichaud, A. and Ménard, R.: Multi-year objective analyses of warm season
ground-level ozone and PM2.5 over North America using real-time
observations and Canadian operational air quality models, Atmos. Chem. Phys.,
14, 1769–1800, https://doi.org/10.5194/acp-14-1769-2014, 2014. a
Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2 flux
history 1982–2001 inferred from atmospheric data using a global inversion of
atmospheric transport, Atmos. Chem. Phys., 3, 1919–1964,
https://doi.org/10.5194/acp-3-1919-2003, 2003. a, b
Scholze, M., Kaplan, J. O., Knorr, W., and Heimann, M.: Climate and
interannual
variability of the atmosphere-biosphere 13CO2 flux, Geophys. Res.
Lett., 30, 1097, https://doi.org/10.1029/2002GL015631, 2003. a, b
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B.,
Dazlich, D. A., Zhang, C., Collelo, C. D., and Bounoua, L.: A revised land
surface parameterization (SiB2) for atmospheric GCMs: Part 1. Model
formulation, J. Climate, 9, 676–705, 1996. a
Sherlock, V., Connor, B., Robinson, J., Shiona, H., Smale, D., and Pollard,
D.:
TCCON data from Lauder, New Zealand, 125HR, Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.lauder02.R0/1149298, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Shirai, T., Ishizawa, M., Zhuravlev, R., Ganshin, A., Belikov, D., Saito, M.,
Oda, T., Valsala, V., Gomez-Pelaez, A., Langenfelds, R., and Maksyutov, S.: A
decadal inversion of CO2using the Global Eulerian–Lagrangian
Coupled Atmospheric model (GELCA): sensitivity to the ground-based
observation network, Tellus B, 69,
1291158, https://doi.org/10.1080/16000889.2017.1291158, 2017. a
Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D. P.:
Low-frequency variations in surface atmospheric humidity, temperature, and
precipitation: Inferences from reanalyses and monthly gridded observational
data sets, J. Geophys. Res.-Atmos., 115, d01110,
https://doi.org/10.1029/2009JD012442,
2010. a
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model,
Glob. Change Biol., 9, 161–185, 2003. a
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo,
G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C.,
Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng,
N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais,
P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith,
B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources
and sinks of carbon dioxide, Biogeosciences, 12, 653-679,
https://doi.org/10.5194/bg-12-653-2015, 2015. a, b
Strong, K., Mendonca, J., Weaver, D., Fogal, P., Drummond, J., Batchelor, R.,
and Lindenmaier, R.: TCCON data from Eureka, Canada, Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.eureka01.R0/1149271, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Suntharalingam, P., Jacob, D. J., Palmer, P. I., Logan, J. A., Yantosca,
R. M.,
Xiao, Y. P., Evans, M. J., Streets, D. G., Vay, S. L., and Sachse, G. W.:
Improved quantification of Chinese carbon fluxes using CO2/CO
correlations in Asian outflow, J. Geophys. Res.-Atmos.,
109, D18S18, https://doi.org/10.1029/2003JD004362, 2004. a
Sussmann, R. and Rettinger, M.: TCCON data from Garmisch, Germany, Release
GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.garmisch01.R0/1149299, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Szczypta, C., Calvet, J.-C., Albergel, C., Balsamo, G., Boussetta, S.,
Carrer, D., Lafont, S., and Meurey, C.: Verification of the new ECMWF
ERA-Interim reanalysis over France, Hydrol. Earth Syst. Sci., 15, 647–666,
https://doi.org/10.5194/hess-15-647-2011, 2011. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmo., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719,
2001. a
Thornton, P. E., Cook, R. B., Braswell, B. H., Law, B. E., Post, W. M.,
Shugart, H. H., Rhyne, B. T., and Hook, L. A.: Archiving numerical models of
biogeochemical dynamics, EOS Transactions, American Geophysical Union, 86,
431 pp., 2005. a
Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R.,
Michalak, A. M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jain,
A. K., Lei, H., Mao, J., Pan, S., Post, W. M., Peng, S., Poulter, B., Ren,
W., Ricciuto, D., Schaefer, K., Shi, X., Tao, B., Wang, W., Wei, Y., Yang,
Q., Zhang, B., and Zeng, N.: Global patterns and controls of soil organic
carbon dynamics as simulated by multiple terrestrial biosphere models:
Current status and future directions, Global Biogeochem. Cy., 29,
775–792, https://doi.org/10.1002/2014GB005021, 2015. a, b
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G.,
Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold,
L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting
carbon dioxide and energy fluxes across global FLUXNET sites with regression
algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016,
2016. a
Viovy, N.: CRUNCEP data set version 6, available at:
https://vesg.ipsl.upmc.fr/thredds/catalog/store/p529viov/cruncep/V6_1901_2014/catalog.html,
last access: June 2016. a
Warneke, T., Messerschmidt, J., Notholt, J., Weinzierl, C., Deutscher, N.,
Petri, C., Grupe, P., Vuillemin, C., Truong, F., Schmidt, M., Ramonet, M.,
and Parmentier, E.: TCCON data from Orleans, France, Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.orleans01.R0/1149276, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014. a
Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M.,
Schwalm, C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D.
M., Cook, R. B., Mao, J., and Shi, X.: The North American Carbon Program
Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part
2: Environmental driver data, Geosci. Model Dev., 7, 2875–2893,
https://doi.org/10.5194/gmd-7-2875-2014, 2014. a, b, c
Welp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper,
S. C., Yoshimura, K., Francey, R. J., Allison, C. E., and Wahlen, M.:
Interannual variability in the oxygen isotopes of atmospheric CO2 driven by
El Niño, Nature, 477, 579–582, https://doi.org/10.1038/nature10421, 2011. a
Wennberg, P. O., Roehl, C., Wunch, D., Toon, G. C., Blavier, J.-F.,
Washenfelder, R., Keppel-Aleks, G., Allen, N., and Ayers, J.: TCCON data
from Park Falls, Wisconsin, USA, Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.parkfalls01.R0/1149161, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014a. a
Wennberg, P. O., Wunch, D., Roehl, C., Blavier, J.-F., Toon, G. C., Allen,
N.,
Dowell, P., Teske, K., Martin, C., and Martin., J.: TCCON data from Lamont,
Oklahoma, USA, Release GGG2014R0,
https://doi.org/10.14291/tccon.ggg2014.lamont01.R0/1149159, TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 2014b. a
Wofsy, S., Daube, B., Jimenez, R., Kort, E., Pittman, J., Park, S., Commane,
R., Xiang, B., Santoni, G., Jacob, D., Fisher, J., Pickett-Heaps, C., Wang,
H., Wecht, K., Wang, Q.-Q., Stephens, B., Shertz, S., Watt, A., Romashkin,
P., Campos, T., Haggerty, J., Cooper, W., Rogers, D., Beaton, S., Hendershot,
R., Elkins, J., Fahey, D., Gao, R., Moore, F., Montzka, S., Schwarz, J.,
Perring, A., Hurst, D., Miller, B., Sweeney, C., Oltmans, S., Nance, D.,
Hintsa, E., Dutton, G., Watts, L., Spackman, J., Rosenlof, K., Ray, E., Hall,
B., Zondlo, M., Diao, M., Keeling, R., Bent, J., Atlas, E., Lueb, R., and
Mahoney, M.: HIPPO Merged 10-second Meteorology, Atmospheric Chemistry, and
Aerosol Data (R20121129), https://doi.org/10.3334/cdiac/hippo_010, 2012. a
Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained,
global-scale measurements of climatically important atmospheric gases and
aerosols, Philos. T. R. Soc. A, 369, 2073–2086, 2011. a
Worthy, D. E. J., Chan, E., Ishizawa, M., Chan, D., Poss, C., Dlugokencky,
E. J., Maksyutov, S., and Levin, I.: Decreasing anthropogenic methane
emissions in Europe and Siberia inferred from continuous carbon dioxide and
methane observations at Alert, Canada, J. Geophys. Res.-Atmos., 114, d10301, https://doi.org/10.1029/2008JD011239,
2009. a, b
Wutzler, T. and Reichstein, M.: Soils apart from equilibrium – consequences
for soil carbon balance modelling, Biogeosciences, 4, 125–136,
https://doi.org/10.5194/bg-4-125-2007, 2007. a
Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and
Maksyutov, S.: Global Concentrations of CO2 and CH4 Retrieved from
GOSAT: First Preliminary Results, SOLA, 5, 160–163,
https://doi.org/10.2151/sola.2009-041, 2009. a
Zhao, M., Running, S. W., and Nemani, R. R.: Sensitivity of Moderate
Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production
to the accuracy of meteorological reanalyses, J. Geophys. Res., 111, G01002,
https://doi.org/10.1029/2004JG000004, 2006.
a, b, c, d
Zhu, Q. and Zhuang, Q.: Ecosystem biogeochemistry model parameterization: Do
more flux data result in a better model in predicting carbon flux?,
Ecosphere, 6, 1–20, https://doi.org/10.1890/ES15-00259.1,
2015. a
Zobler, L.: A World Soil File for Global Climate Modeling, NASA Technical
Memorandum 87802, 32 pp.,1986. a
Short summary
We assess the impact of using the meteorological fields from GEM-MACH-GHG to drive CLASS-CTEM. This coupling is considered an important step toward understanding how meteorological uncertainties affect both CO2 flux estimates and modeled atmospheric transport. Ultimately, such an approach will provide more direct feedback to the CLASS-CTEM developers and thus help to improve the performance of CLASS-CTEM by identifying the model limitations based on atmospheric constraints.
We assess the impact of using the meteorological fields from GEM-MACH-GHG to drive CLASS-CTEM....