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Abstract. The Canadian Land Surface Scheme and the Cana-
dian Terrestrial Ecosystem Model (CLASS-CTEM) together
form the land surface component in the family of Cana-
dian Earth system models (CanESMs). Here, CLASS-CTEM
is coupled to Environment and Climate Change Canada
(ECCC)’s weather and greenhouse gas forecast model
(GEM-MACH-GHG) to consistently model atmosphere–
land exchange of CO2. The coupling between the land and
the atmospheric transport model ensures consistency be-
tween meteorological forcing of CO2 fluxes and CO2 trans-
port. The procedure used to spin up carbon pools for CLASS-
CTEM for multi-decadal simulations needed to be signifi-
cantly altered to deal with the limited availability of consis-
tent meteorological information from a constantly changing
operational environment in the GEM-MACH-GHG model.
Despite the limitations in the spin-up procedure, the simu-
lated fluxes obtained by driving the CLASS-CTEM model
with meteorological forcing from GEM-MACH-GHG were
comparable to those obtained from CLASS-CTEM when
it is driven with standard meteorological forcing from the
Climate Research Unit (CRU) combined with reanalysis
fields from the National Centers for Environmental Predic-
tion (NCEP) to form CRU-NCEP dataset. This is due to the
similarity of the two meteorological datasets in terms of tem-
perature and radiation. However, notable discrepancies in the
seasonal variation and spatial patterns of precipitation esti-
mates, especially in the tropics, were reflected in the esti-
mated carbon fluxes, as they significantly affected the mag-

nitude of the vegetation productivity and, to a lesser extent,
the seasonal variations in carbon fluxes. Nevertheless, the
simulated fluxes based on the meteorological forcing from
the GEM-MACH-GHG model are consistent to some ex-
tent with other estimates from bottom-up or top-down ap-
proaches. Indeed, when simulated fluxes obtained by driv-
ing the CLASS-CTEM model with meteorological data from
the GEM-MACH-GHG model are used as prior estimates for
an atmospheric CO2 inversion analysis using the adjoint of
the GEOS-Chem model, the retrieved CO2 flux estimates are
comparable to those obtained from other systems in terms of
the global budget and the total flux estimates for the northern
extratropical regions, which have good observational cover-
age. In data-poor regions, as expected, differences in the re-
trieved fluxes due to the prior fluxes become apparent. Cou-
pling CLASS-CTEM into the Environment Canada Carbon
Assimilation System (EC-CAS) is considered an important
step toward understanding how meteorological uncertainties
affect both CO2 flux estimates and modeled atmospheric
transport. Ultimately, such an approach will provide more di-
rect feedback to the CLASS-CTEM developers and thus help
to improve the performance of CLASS-CTEM by identifying
the model limitations based on atmospheric constraints.
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1 Introduction

Terrestrial ecosystems play a crucial role in the global
climate–carbon system. Therefore, there is a need to bet-
ter understand terrestrial biospheric processes related to the
carbon cycle in order to obtain more reliable projections of
their behavior under a changing climate. Given the great het-
erogeneity of vegetation and soils, the coverage and accu-
racy of the flux measurements are not sufficient for obtaining
large-scale flux estimates with high confidence (Jung et al.,
2009; Beer et al., 2010). As a result, considerable efforts have
been made to develop terrestrial ecosystem models (TEMs)
(whether simple regression or process-oriented) in order to
quantify the magnitude, geographical distribution, and evo-
lution of sources and sinks of carbon at regional and global
scales (Potter et al., 1993; McGuire et al., 2001; Sitch et al.,
2003; Thornton et al., 2005; Krinner et al., 2005; Reichstein
et al., 2005; Badawy et al., 2013; Arora and Boer, 2005;
Melton and Arora, 2016). However, systematic errors and
uncertainties in the models can result from driving or forc-
ing data (Jung et al., 2007; Clein et al., 2007; Zhao et al.,
2006; Garnaud et al., 2014; Dalmonech et al., 2015; Anav
et al., 2015; Wei et al., 2014), process formulation (also
called model structure) (Sitch et al., 2015), model parameter
specification, and initial conditions (Carvalhais et al., 2008,
2010; Melton et al., 2015; Zhu and Zhuang, 2015), leading
to differing estimates of CO2 fluxes from different models
(McGuire et al., 2001; Piao et al., 2013; Sitch et al., 2015).
Such differences in TEMs are among the main sources of un-
certainty in future projections from coupled carbon–climate
models (Anav et al., 2013; Friedlingstein et al., 2006; Arora
et al., 2013; Friedlingstein et al., 2014). Therefore, there is a
need to evaluate the performance of TEMs in order to iden-
tify and diagnose their weaknesses and strengths and ulti-
mately reduce model uncertainties. Indeed, this is the mo-
tivation behind TEM multi-model intercomparisons efforts
such as the Multi-scale Synthesis and Terrestrial Ecosys-
tem Model Intercomparison Project (MsTMIP) (Huntzinger
et al., 2013).

Inverse models (which relate observed concentrations to
fluxes using an atmospheric transport model) are powerful
tools to quantify carbon fluxes over large regions (Rödenbeck
et al., 2003; Peters et al., 2007; Peylin et al., 2013) and can
be used to evaluate the TEM results. However, inverse mod-
els suffer from deficiencies and uncertainties (Peylin et al.,
2013) arising from transport errors, choice of observation
network, observation uncertainties, and prior flux errors. In-

verse models also provide little or no information about the
underlying processes responsible for the estimated fluxes.
Hence, they cannot be used to understand or predict the fu-
ture behavior of the carbon cycle. Alternatively, there are car-
bon cycle data assimilation systems (CCDASs), which cou-
ple the strengths of the top-down (inversion) and bottom-
up (i.e., TEM) approaches by embedding a TEM within a
comprehensive climate model and using measurements from
multiple streams to constrain the TEM (Scholze et al., 2003;
Rayner et al., 2005; Koffi et al., 2013). The benefit is that
biospheric models can then be validated on the global scale
using atmospheric measurements of CO2 that integrate the
CO2 signal at various spatial and temporal scales. In CC-
DAS, key parameters of a TEM can also be optimized to
improve its fit to atmospheric CO2 observations (Scholze
et al., 2003; Rayner et al., 2005; Koffi et al., 2013; Kaminski
et al., 2013), which can potentially yield greater understand-
ing about underlying processes, and thus can help to improve
the model performance. Nevertheless, CCDAS is sometimes
challenging and has its limitations. For example, the opti-
mized fluxes (and parameters) are sensitive to CCDAS con-
figurations (Kaminski et al., 2013) (atmospheric transport,
background fluxes, observational network, processes repre-
sentations, missing process, etc.).

Comprehensive Earth system models need to include
TEMs because the ecosystem responds to a changing cli-
mate. However, weather and carbon fluxes are also intercon-
nected so that coupled weather and CO2 prediction models
operating on weather or seasonal timescales can also benefit
from online TEMs. Previous studies (Lin et al., 2011; Gar-
naud et al., 2014) have shown that uncertainties in meteo-
rological forcings (i.e., temperature, specific humidity, short-
wave radiation) contribute significantly to uncertainties in the
simulated fluxes. In addition, Miller et al. (2015) have shown
that several meteorological variables (i.e., temperature, spe-
cific humidity, zonal wind, and planetary boundary layer)
are correlated and contribute to biases in modeled atmo-
spheric transport. Therefore, inconsistencies may arise when
the TEM’s meteorological driving data differ from those in
the weather model. For example, at a given point in time, a
TEM’s grid cell might have experienced sunny weather and
thus produced large CO2 uptake, whereas the weather model
may indicate cloudy conditions and reduced CO2 uptake. An
online TEM constrained by the model’s weather would have
predicted this reduced CO2 uptake. If such inconsistent CO2
predictions are used to constrain inverse models, there is a
risk of misattributing some of the model–data mismatch to
the flux estimate. Therefore, coupling between TEMs and at-
mospheric transport models (i.e., using the same meteorolog-
ical variables) is considered an important step toward under-
standing how meteorological uncertainties impact both CO2
flux estimates and modeled atmospheric transport. Forecast-
ing systems that integrate land and ocean CO2 fluxes within
numerical weather prediction (NWP) models have recently
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been developed (Agusti-Panareda et al., 2014; Ott et al.,
2015) to produce short-term predictions of atmospheric CO2.

At Environment and Climate Change Canada (ECCC),
a carbon assimilation system (EC-CAS) (Polavarapu et al.,
2016) is being developed by implementing an ensemble
Kalman filter (EnKF) for greenhouse gas state and flux es-
timation. EC-CAS will assimilate satellite and in situ data
to generate hindcasts of atmospheric CO2 and estimates
of regional fluxes of CO2. EC-CAS uses an ensemble of
coupled meteorological and constituent forecasts to directly
compute the complex transport error covariances needed for
proper flux estimation (Miller et al., 2015). The meteorolog-
ical model is an adaptation of the operational weather pre-
diction Global Environmental Multi-scale – Modelling Air
quality and CHemistry model (GEM-MACH) (Moran et al.,
2010; Robichaud and Ménard, 2014; Makar et al., 2015)
for greenhouse gases (called GEM-MACH-GHG hereafter;
see Sect. 2.2). In addition to an ensemble of meteorologi-
cal fields, EC-CAS also requires an ensemble of prior fluxes
to simulate prior flux uncertainty. With an online ecosystem
model, we can directly perturb parameters to get this ensem-
ble. In turn, the assimilation process would provide contin-
ual feedback on the ecosystem model, just as in CCDAS. For
this reason, we envision an online ecosystem model even-
tually within EC-CAS. However, we first consider the sim-
pler approach of offline coupling wherein the atmospheric
model’s meteorology is used to drive the ecosystem model.
Thus, a key objective of the work here is to assess the viabil-
ity of land surface fluxes of CO2 from the Canadian Terres-
trial Ecosystem Model (CTEM) (Melton and Arora, 2014),
coupled to the Canadian Land Surface Scheme (CLASS)
(Verseghy, 2012), as a source of a priori biospheric fluxes
of CO2 for EC-CAS and other CO2 flux inversion systems.
CLASS-CTEM is a process-based TEM which simulates the
exchange of carbon, water, and energy fluxes between the
land surface and the atmosphere. It is similar in level of com-
plexity to other TEMs (such as CASA from Potter et al.,
1993 or SiB from Sellers et al., 1996) which have been used
for flux inversions and which have participated in multi-
model intercomparisons such as that of Huntzinger et al.
(2012). In recent studies (Melton and Arora, 2014; Melton
et al., 2015; Melton and Arora, 2016; Badawy et al., 2016),
CLASS-CTEM was calibrated based on observation-based
climate data from the Climate Research Unit (CRU) (Harris
et al., 2014) combined with reanalysis fields from the Na-
tional Centers for Environmental Prediction (NCEP) (Kalnay
et al., 1996). By coupling CLASS-CTEM with the atmo-
spheric model, this work helps to pave the way for the cou-
pled meteorological and ecosystem model within the EnKF
(e.g., see conclusions of Miller et al., 2015).

Although incorporating CLASS-CTEM within EC-CAS is
potentially mutually beneficial, the incorporation of a TEM
designed for Earth system modeling (decadal timescales)
into a data assimilation system designed for short timescales
(i.e., months to a few years) is not without its challenges.

For example, the spin-up of carbon pools to present climate
needs to be merged with the switch in climate data from re-
analyses to that from the weather forecasting model (e.g.,
EC-CAS). The challenge is that operational weather forecast-
ing systems are, by definition, constantly changing so that
long archives of consistent analyses (with the same horizon-
tal or vertical resolution or model coordinates or variable,
etc.) are not available (see also Agusti-Panareda et al., 2017,
for example), contrary to the case of reanalyses (e.g., ERA-
Interim, Dee et al., 2011; MERRA, Rienecker et al., 2011).
Given that the spin-up procedure is known to impact TEM
predictions (Wutzler and Reichstein, 2007; Carvalhais et al.,
2008, 2010), how will this affect the use of CLASS-CTEM
in the flux estimation context? In addition, the environmental
drivers of TEMs also impact their results, so will the change
in the climate forcing of CLASS-CTEM negatively impact
its predictions on these short “climate timescales”? Garnaud
et al. (2014) show that carbon pools and fluxes from CLASS-
CTEM are sensitive to climate datasets for the case of a lim-
ited area domain (North America). On the other hand, large
changes in fluxes are not necessarily detectable by observ-
ing systems such as Greenhouse Gases Observing SATellite
(GOSAT) (Ott et al., 2015) so such differences may not be
perceptible in flux inversion results. Finally, given that there
is already a well-documented sensitivity to prior flux esti-
mates in data-sparse regions (Gurney et al., 2004; Peylin
et al., 2013), do such deficiencies in spin-up procedure and
environmental drivers matter? In other words, despite the un-
avoidable imperfections in coupling a TEM from an Earth
system model to a carbon assimilation system focused on
short climate timescales, will the flux inversion results ob-
tained using CTEM fall within the range of uncertainty en-
compassed by an ensemble of recognized flux inversion sys-
tems? The goal of this work is to answer these questions.

We begin in Sect. 2 with a description of the various mod-
els and datasets involved in this study, followed by the ex-
perimental design (Sect. 3). In order to interpret differences
in fluxes resulting from the change in meteorological forc-
ing, we first compare the quality of the meteorological in-
puts from GEM-MACH-GHG against the standard climate
forcing (CRU-NCEP) that was used to drive CLASS-CTEM,
as well as against independent sources of data (Sect. 4.1).
Then, we examine the sensitivity of the simulated carbon
fluxes to the change in meteorological forcing to determine
whether biases in the simulated carbon fluxes can be at-
tributed to biases in the meteorological variables (Sect. 4.2).
The simulated fluxes are assessed both directly as well as in-
directly through their impact on CO2 concentrations. Finally,
in Sect. 4.3, the a priori fluxes from CTEM are used in a
flux inversion system and the results are analyzed in terms of
the seasonal cycle and annual totals of the optimized fluxes
and the a posteriori CO2 concentrations. The conclusions are
presented in Sect. 5.

www.geosci-model-dev.net/11/631/2018/ Geosci. Model Dev., 11, 631–663, 2018



634 B. Badawy et al.: Coupling CTEM to ECCC’s GHG forecast model

2 Models and data

Before presenting the experimental design, we first introduce
the TEM and the coupled meteorological and tracer transport
model to which the TEM will be coupled. Then, the valida-
tion datasets used to assess the various sources of climate
forcing are described, followed by the experimental method-
ology.

2.1 CLASS-CTEM

The coupled CLASS-CTEM model used here is based
on CLASS v3.6 (Verseghy, 2012) and an updated ver-
sion of CTEM v1.2 (Melton and Arora, 2014) and runs
globally on a Gaussian 128× 64 grid that corresponds to
∼ 2.8◦× 2.8◦ grid spacing. CLASS calculates the biophys-
ical exchange of energy and water fluxes between the land
surface (soil, snow, and vegetation canopy) and the atmo-
sphere. The model includes three soil layers, which extend
to a total depth of 4.1 m, and one vegetation canopy and one
snow layer. The model solves for the energy and hydrologi-
cal balances at each grid cell using a half-hourly time step.
The land surface of each grid cell is divided into four subar-
eas: bare soil, vegetation, snow over bare soil, and snow with
vegetation. The vegetation within a grid cell, in CLASS, can
be composed of four plant functional types (PFTs): needle-
leaf trees, broadleaf trees, crops, and grasses. For each PFT,
prescribed physiological characteristics, such as albedo, an-
nual maximum and minimum leaf area index (LAI), vegeta-
tion height, canopy mass, and rooting depth have to be speci-
fied. When coupled to CTEM, these structural vegetation at-
tributes are dynamically simulated by CTEM with a daily
time step and then passed to CLASS.

CTEM is a process-based terrestrial biosphere model that
grows vegetation from bare ground and simulates the main
processes governing carbon fluxes between the land bio-
sphere and atmosphere. The model is parametrized and de-
signed to simulate land–atmosphere exchanges of carbon
through photosynthesis, ecosystem respiration (sum of au-
totrophic and heterotrophic respiration), phenology, turnover,
mortality, allocation, fire, and land use change (Arora, 2003;
Arora and Boer, 2005; Melton and Arora, 2016). The model
is represented by three living vegetation pools (leaves, stems,
and roots) and two dead carbon pools (soil organic matter
and litter). The terrestrial ecosystem processes are calculated
for nine PFTs: needleleaf evergreen, needleleaf deciduous,
broadleaf evergreen, broadleaf cold deciduous, broadleaf
drought/dry deciduous, crops (C3 and C4), and grasses (C3
and C4). When coupled, CTEM provides time-varying vege-
tation structure attributes to CLASS and the calculated vari-
ables for the nine PFTs are averaged (weighted by the frac-
tional coverage of each PFT) to obtain the four PFTs in
CLASS that share similar functionality.

Within CTEM, photosynthesis and leaf respiration sub-
modules operate on a half-hourly time step as in CLASS in

order to model the effect of the CO2 concentration on stom-
atal conductance. Other terrestrial ecosystem processes, in-
cluding stem, root, and heterotrophic respiration, are mod-
eled at a daily time step. Recently, Badawy et al. (2016)
modified CTEM to add the capability to simulate all respira-
tory fluxes at the same time step as CLASS (i.e., half-hourly)
in order to model their diurnal variation caused by subdiur-
nal signals in the driving climate data. The current version
of CTEM does not include the nitrogen cycle and its inter-
actions with the carbon cycle. Nevertheless, the model con-
strains the response of terrestrial photosynthesis to elevated
CO2 via an empirical formulation based on experimental
plant growth studies (Arora et al., 2009). The model structure
and its parameterizations are documented in Arora (2003),
Arora and Boer (2005), and Melton and Arora (2016), in
which a comprehensive description of model subroutines is
provided.

Besides the meteorological inputs (shortwave and long-
wave downward radiation, air temperature, precipitation,
specific humidity, surface pressure, wind speed; see
Sect. 2.4), the model requires data on soil texture (i.e., per-
centage of sand and clay for the three soil layers), fractional
vegetation coverage for each PFT, organic matter content,
permeable soil depth, and atmospheric CO2. The soil texture
information is based on Zobler (1986). The vegetation frac-
tional coverage for the nine PFTs in CTEM is adapted from
Arora and Boer (2010) but using the HYDE v3.1 dataset for
crop area (Hurtt et al., 2011) to reconstruct the historical land
cover. The model uses inputs of annual mean atmospheric
CO2 concentrations, which are based on phase 5 of the Cou-
pled model Intercomparison Project (CMIP5) (Meinshausen
et al., 2011).

2.2 GEM-MACH-GHG

GEM-MACH is based on the dynamics and physics of the
Global Environmental Multiscale (GEM) model (Côté et al.,
1998a; Girard et al., 2013) at the Canadian Meteorological
Centre (CMC). GEM is used for operational weather fore-
casting in both global and regional (North America) do-
mains, whereas GEM-MACH includes an online chemical
model that is fully integrated into the meteorological model
to provide air quality forecasts over North America. GEM-
MACH-GHG (v.107-glb) (Polavarapu et al., 2016) is a vari-
ant of GEM-MACH that removes the reactive chemistry and
replaces it with climate–chemistry (e.g., OH climatology).
In addition, a number of modifications to GEM-MACH were
made, including the implementation of a mass conservation
scheme, and modifying the vertical mixing in the boundary
layer. A horizontal resolution of 0.9◦ (400× 200 grid points)
and a time step of 30 min are used.

In this study, the meteorological fields required to
drive CLASS-CTEM are produced from GEM-MACH-GHG
(v.107-glb) following the same approach as in Polavarapu
et al. (2016) for the 2009–2010 period. Prior to 22 June 2009,
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the operational analyses were produced using a model with a
lid at 10 hPa. Since that date, the operational model has used
a much higher lid of 0.1 hPa and since the period of interest
for greenhouse gas simulations commences with the launch
of the GOSAT (Kuze et al., 2009; Yokota et al., 2009) in
2009, GEM-MACH-GHG uses the more recent model con-
figuration. As a result, it is difficult to make use of CMC
analyses prior to 22 June 2009. Thus, early in 2009, these
analyses were supplemented by CMC archives of the “par-
allel run” (the system during its testing phase) and a prelim-
inary run. Given that GEM-MACH-GHG was under devel-
opment during this study, only a few years were simulated
(2009–2010). There will always be an unsatisfactory length
of analyses available for a TEM spin-up period whenever
an operational weather forecast system is involved. More-
over, greenhouse gas assimilation systems are constrained
(by time, computational expense, and the observing system)
and thus often focus on a few years of study at one time (e.g.,
Deng et al., 2014, 2016). Thus, the challenge is to merge this
small dataset into the spin-up procedure used for the TEM.
As we shall see, despite this considerable challenge, the re-
sulting net fluxes are still comparable to other observation-
based estimates and model simulations. The meteorologi-
cal fields are initialized at the start of each 24 h cycle with
archived analyses from the CMC which were produced by
the previously operational four-dimensional variational (4D-
Var) data assimilation system (Charron et al., 2012), interpo-
lated to GEM-MACH-GHG’s 0.9◦ resolution. The 24 h fore-
casts of shortwave and longwave radiation, surface temper-
ature, wind speed, surface pressure, total precipitation, and
specific humidity were generated every 30 min and then in-
terpolated to the CLASS-CTEM grid.

2.3 GEOS-Chem

Previous inversion studies show that optimized fluxes are
sensitive to prior fluxes particularly for regions that are
poorly constrained by atmospheric observations such as the
tropics (Peylin et al., 2013). In order to assess the quality
of NEE from CTEM-GEM in comparison to other flux esti-
mates, it is necessary to perform some inversion studies. Ide-
ally, such inversions would be conducted with GEM-MACH-
GHG but since the assimilation capability of EC-CAS is still
under development, an alternative inversion system based on
the GEOS-Chem model (http://geos-chem.org) is used. The
GEOS-Chem model has often been used to simulate atmo-
spheric CO2 (e.g., Suntharalingam et al., 2004; Nassar et al.,
2010). This model is a global 3-D chemical transport model
driven by assimilated meteorology from the Goddard Earth
Observing System (GEOS-5) of the NASA Global Model-
ing and Assimilation Office (GMAO). Nassar et al. (2010)
described an update of the atmospheric CO2 simulation in
GEOS-Chem. In this study, the model has a horizontal reso-
lution of 4◦× 5◦, with 47 vertical layers from the surface to
0.01 hPa. The assimilation system is a 4D-Var data assimila-

tion system in which a set of scaling factors is optimized to
adjust the fluxes in each model grid box to better reproduce
the observations over a given time period. In the 4D-Var sys-
tem, the adjoint of the GEOS-Chem model is used to opti-
mize the fluxes. Details of the GEOS-Chem adjoint model
are given in Henze et al. (2007) and a description of its appli-
cation for inverse modeling of atmospheric CO2 is provided
in Deng et al. (2014, 2016).

2.4 CRU-NCEP

The observation-based 0.5◦ monthly climatology from CRU
(version TS3.2) (Harris et al., 2014) and the ∼ 2.5◦, 6-
hourly reanalysis fields from NCEP (Kalnay et al., 1996)
were combined to produce the CRU-NCEP global climate
dataset (Viovy, 2016) that has been described in Wei et al.
(2014). The CRU-NCEP dataset provides globally gridded
(0.5◦×0.5◦) 6-hourly time-varying climatology products that
cover the period 1901–2014. The input data from CRU-
NCEP include shortwave and longwave radiation, surface
temperature, wind speed, surface pressure, total precipita-
tion, and specific humidity. These climate data were inter-
polated to the CLASS-CTEM’s grid and disaggregated to a
half-hourly time step as described in Arora and Boer (2005),
and Melton and Arora (2014).

2.5 Other datasets

To evaluate the quality of the GEM driving data, the fore-
casted fields of shortwave radiation, temperature, and pre-
cipitation for 2009 and 2010 are compared with CRU-NCEP,
and both are evaluated against the CRU dataset and the ERA-
Interim reanalysis (hereafter called ERAI) of the European
Centre for Medium-Range Weather Forecasts (ECMWF)
(Berrisford et al., 2011; Dee et al., 2011). The 2.5◦ monthly
ERAI data are available on the ECMWF data server. Com-
parison to ERAI is done only to get a sense of how well a
reputable reanalysis product compares to independent obser-
vations. Since the GEM products are only analyses, they are
not expected to perform as well as reanalysis products like
ERAI. Thus, if reanalyses also have difficulty in matching
observations, this provides context or bounds for the kind of
agreement we can expect from our analyses.

To assess the impact of using alternative driving data on
the simulated fluxes, the CLASS-CTEM fluxes obtained with
GEM and CRU-NCEP meteorology are compared and eval-
uated against independent observation-based flux estimates
and other model results. For example, the simulated gross
primary production (GPP) was compared with the upscaled
GPP from FLUXCOM (Jung et al., 2017). The FLUXCOM
GPP data are based on machine-learning methods that inte-
grate in situ flux measurements, satellite-based vegetation in-
dices, and meteorological data (Tramontana et al., 2016; Jung
et al., 2017). In this study, we used the ensemble mean of
GPP estimates (for 2009–2010) generated using multivariate
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regression splines (MARS), random forests (RF), and artifi-
cial neural networks (ANN) available through the data por-
tal of the Max Planck Institute for Biogeochemistry (https:
//www.bgc-jena.mpg.de). The model results are also com-
pared with the multi-year average 3-hourly GPP and ecosys-
tem respiration (Reco) from the Boreal Ecosystem Productiv-
ity Simulator (BEPS) (Chen et al., 2012), which is normally
used by GEOS-Chem in flux inversions (Deng et al., 2014,
2016). In BEPS, the annual terrestrial ecosystem exchange
imposed in each grid box (4◦× 5◦) is neutral (Deng and
Chen, 2011) (i.e., GPP=Reco). BEPS is driven by the NCEP
reanalysis dataset. Finally, the model results are evaluated us-
ing the a posteriori CO2 fluxes from the CarbonTracker data
assimilation system (Peters et al., 2007) (version CT2013B)
available at http://carbontracker.noaa.gov. All datasets used
in evaluating the model’s results are regridded to the CLASS-
CTEM grid.

We evaluate the results of the inversion analyses (de-
scribed in Sect. 3.3) using the GEOS-Chem model by com-
paring the a posteriori CO2 fields to atmospheric CO2 obser-
vations from the Total Carbon Column Observing Network
(TCCON) from which the column-averaged dry-air mole
fractions of CO2 (XCO2) are retrieved (Wunch et al., 2011).
TCCON data were obtained from the TCCON data archive,
hosted by the Carbon Dioxide Information Analysis Center
(CDIAC) (http://tccon.ornl.gov/). For the comparisons, we
use observations from the current TCCON GGG2014 dataset
from 13 different sites (Table 2) (see also Deng et al., 2014)
in 2009 and 2010. We also evaluate the inversion analyses
using aircraft data from the HIAPER Pole-to-Pole Obser-
vations (HIPPO) project (http://hippo.ornl.gov/). We use the
10 s averaged data from the HIPPO-1, HIPPO-2, and HIPPO-
3 campaigns (Wofsy, 2011; Wofsy et al., 2012), for 9 to
21 January 2009, 31 October to 22 November 2009, and
24 March to 16 April 2010, respectively.

3 Experimental design

In this study, we performed a offline coupling between
CLASS-CTEM and GEM-MACH-GHG. We first run GEM-
MACH-GHG to produce the necessary meteorological vari-
ables required to drive CLASS-CTEM. Then, the simulated
fluxes from CLASS-CTEM are used in GEM-MACH-GHG
to simulate the CO2 concentrations. Given the complexity of
online coupling (which is harder to implement), the offline
simulations provide an affordable means to better isolate and
assess the sensitivity of the model to different climate forc-
ings. Offline coupling is also a step toward online coupling.

When coupling CLASS-CTEM to GEM-MACH-GHG,
we first identify a necessarily imperfect spin-up procedure
that transitions from climate data forcing from a standard
dataset such as CRU-NCEP to a short sequence of opera-
tional meteorological analyses (Sect. 3.1). Once fluxes are
available from CLASS-CTEM for CRU-NCEP meteorology

with the standard spin-up procedure and from GEM-MACH-
GHG with the modified spin-up procedure, the simulations
of CO2 that are performed with GEM-MACH-GHG are de-
scribed in Sect. 3.2. Finally, the a priori fluxes from CLASS-
CTEM are tested in a flux inversion experiment which is de-
scribed in Sect. 3.3.

These different simulations will assess whether the defi-
ciencies of CTEM-GEM prior fluxes would be evident in the
context of flux inversion when observations can correct for
prior flux errors, and how the deficiencies in CTEM-GEM
prior fluxes compare to other prior fluxes. If they are consis-
tent or not worse than other sources of prior fluxes, then they
are a potential starting point for our flux estimation system.

3.1 CLASS-CTEM runs

To test the sensitivity of the simulated carbon fluxes to
the meteorological forcing, we performed a series of ex-
periments with CLASS-CTEM using two different mete-
orological inputs from (1) CRU-NCEP (hereafter called
CTEM-CRUNCEP), which has been used to drive CLASS-
CTEM simulations in previous studies (Melton and Arora,
2014; Melton et al., 2015; Badawy et al., 2016) and
(2) GEM-MACH-GHG (hereafter called CTEM-GEM). For
the CTEM-CRUNCEP run, the model was first initialized (to
represent the pre-industrial period 1861–1900) by running it
to equilibrium using repeated 1901–1940 CRU-NCEP cli-
mate, a constant globally uniform CO2 of 286.37 ppm, and
a fixed vegetation fractional coverage corresponding to the
year 1861 until carbon pools and fluxes were in steady state
(zero mean annual net ecosystem exchange – NEE). The
model was then run from 1901 to 2010 using varying CO2
concentrations and CRU-NCEP meteorology.

For the CTEM-GEM run, the meteorological inputs from
GEM-MACH-GHG were only available for 2009–2010 at
the time of this study, and hence no global climate data
were available for the pre-industrial run. In general, reanal-
ysis output begins around 1949 (e.g., NCEP-NCAR reanaly-
ses) when the observing system had sufficient coverage, and
as noted earlier, analyses from operational systems are re-
stricted to much shorter and recent periods because of the
constant change in model, observations, and assimilation
schemes. Therefore, the spin-up simulation was performed
with a constant uniform CO2 concentration of 387.4 ppm
(corresponding to 2009) and a fixed vegetation fractional
coverage corresponding to the same year. The spin-up sim-
ulations were driven with repeated meteorological data for
the 2009–2010 period until model pools reached equilibrium.
The transient simulation for the 2009–2010 period was then
initialized from the spin-up simulations using varying CO2
concentrations and GEM meteorology.

To assess the impact of using present climate to spin up
the model on the simulated carbon pools and fluxes, we also
performed a special run that used repeated meteorological
data for 2009–2010 from CRU-NCEP, and constant uniform
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Table 1. Locations of selected stations measuring atmospheric CO2 concentrations used for comparison in the forward simulations.

Code Site name Country Longitude Latitude Elevation (m)

ALT Alert Canada −62.5 82.45 210.0
BRW Barrow USA −156.6 71.32 11.0
EGB Egbert Canada −79.8 44.23 253.0
IZO Tenerife Spain −16.5 28.30 2367.0
MLO Mauna Loa USA −155.6 19.54 3397.0
PAL Pallas–Sammaltunturi Finland 24.1 67.97 560.0
YON Yonaguni-jima Japan 123.0 24.47 30.0
ZEP Zeppelinfjellet Norway 11.9 78.90 475.0
ZSF Zugspitze Germany 11.0 47.42 2656.0

CO2 of 387.4 ppm, and a fixed vegetation fractional coverage
corresponding to the year 2009 until the model pools reached
equilibrium (hereafter CTEM-CRUNCEP2yr).

Note that fire and land use change are not taken into ac-
count in the current model’s simulations due to the large
uncertainty in the global land use history (Houghton et al.,
2012) that may yield significant biases in the simulated
CO2 fluxes. Also, the standard model parameters were not
changed or tuned to improve model performance when us-
ing alternative meteorological inputs. Hence, the main dif-
ferences between the CLASS-CTEM runs are the meteoro-
logical inputs and the setup of the spin-up simulations.

3.2 Forward simulation using GEM-MACH-GHG
model

Forward simulations are performed using the GEM-MACH-
GHG model to evaluate how well CLASS-CTEM, using me-
teorological inputs from GEM-MACH-GHG, is able to re-
produce temporal variations in atmospheric CO2 at moni-
toring stations. The estimated NEE from CTEM-CRUNCEP
and CTEM-GEM was used as a surface boundary condi-
tion in GEM-MACH-GHG, which transports the signal from
the surface fluxes throughout the atmosphere, to validate
the resulting modeled concentrations against observations
of atmospheric CO2. The other fluxes are kept the same as
in Polavarapu et al. (2016). Specifically, the anthropogenic
emissions from fossil fuel burning and cement manufactur-
ing, biomass burning, ocean–atmosphere carbon exchange,
and initial atmospheric concentration (1 January 2009) are
based on CT2013B (Peters et al., 2007).

3.3 Inversion analysis configuration in the
GEOS-Chem model

Because flux inversions have been performed for over a
decade with the in situ measurements, there is a considerable
body of literature of such inversion results (e.g., Rödenbeck
et al., 2003; Peters et al., 2007; Peylin et al., 2013). Con-
sequently, for our experiments, we use this observing net-
work as opposed to a combined one that includes the more

recent satellite missions. Thus, the GEOS-Chem flux inver-
sions use the flask observations of atmospheric CO2 col-
lected by NOAA ESRL Carbon Cycle Cooperative Global
Air Sampling Network sites (Dlugokencky et al., 2015) and
ECCC sampling sites (Worthy et al., 2009). We use the same
set of observation sites as described in Deng et al. (2014) (see
their Sect. 2.1.2).

In this study, we use the similar a priori CO2 fluxes of the
anthropogenic emissions from fossil fuel burning and cement
manufacturing, biomass burning, and ocean–atmosphere car-
bon exchange described in Deng et al. (2014) in order to
maximize comparability with the those results. However, for
the biospheric flux of CO2, we conducted three runs us-
ing three different NEE priors from CTEM-GEM, CTEM-
CRUNCEP, and BEPS. The optimized 3-D CO2 mixing ratio
field from CarbonTracker was used as the initial CO2 field in
the inversion runs.This choice was made because the Carbon-
Tracker initial state produced a smaller global mean bias than
the GEOS-Chem initial state. This may indicate that the in-
terhemispheric gradient in TM5 is better than that in GEOS-
Chem. When assimilating the flask data, we use a threshold
of 8 ppm for rejecting observations in the GEOS-Chem as-
similations, and this means when the difference of observed
and the modeled mixing ratio is larger than 8 ppm, the ob-
servation is not ingested in the model and does not provide
any information on the fluxes. We assimilated 5365, 5393,
and 5601 observations into our model in inversions using
CTEM-CRUNCEP, CTEM-GEM, and BEPS prior fluxes, re-
spectively.

4 Results and discussion

For the meteorological data, we compare temperature, short-
wave radiation, and precipitation, which are considered to be
the most important variables controlling land carbon dynam-
ics (Piao et al., 2013). We also compare the component fluxes
of GPP, Reco, and net ecosystem exchange (NEE= Reco –
GPP) in order to identify the potential drivers of differences
between model simulations. To examine regional differences,
data and model output are also spatially aggregated to the 11

www.geosci-model-dev.net/11/631/2018/ Geosci. Model Dev., 11, 631–663, 2018



638 B. Badawy et al.: Coupling CTEM to ECCC’s GHG forecast model

land regions of the TransCom inverse model intercomparison
project (Gurney et al., 2003).

4.1 Differences in meteorological forcing

Here, we evaluate the meteorological data from GEM by
comparing them against the CRU-NCEP, CRU, and ERAI
datasets where possible. Figure 1 shows the spatial patterns
of the differences in mean annual temperature (averaged
over the period 2009–2010) between GEM, CRU-NCEP,
and CRU. The differences between CRU-NCEP and CRU
show cold biases in middle and high northern latitudes and
warm biases in Africa and South America. CRU-NCEP re-
tains the monthly climatology of CRU but adds the daily
and diurnal variations of NCEP reanalyses (Wei et al., 2014).
Thus, differences in annual mean temperature of CRU and
CRU-NCEP should be small by design. In contrast, GEM
is warmer than CRU over the northern high latitudes and
generally cooler elsewhere. The comparison also shows that
CRU-NCEP is cooler than GEM in northeastern North Amer-
ica, eastern Europe, and eastern Asia, and warmer in Africa,
southwestern Asia, South America, and the west coastline
of North America. The differences in Fig. 1c are much
larger than those seen in Fig. 1a because GEM analyses
are completely independent of CRU. NCEP reanalyses are
constrained by the global meteorological observing system
and the datasets used in 2009–2010 are likely broadly sim-
ilar to those used by operational centers such as ECCC. In-
deed, Zhao et al. (2006) compared meteorological fields from
NCEP, the Data Assimilation Office (DAO) (currently called
the GMAO), and ECMWF for the 2000–2003 period and
found that the NCEP fields had a cold bias at all latitudes
and that the bias was largest in the tropics, which is similar
to the bias in the GEM fields. Zhao et al. (2006) also found
that the ECMWF ERA-40 (the precursor to ERAI) and DAO
fields had smaller zonal mean biases compared to NCEP, but
the ERA-40 fields were similar to those from GEM in that
they had a high bias at high latitudes.

To better illustrate the differences between the datasets,
we have plotted in Fig. 2 the monthly mean temperature av-
eraged for the 11 TransCom land regions. All the data show
the same seasonal variations, with opposite phases of tem-
perature between hemispheres. The largest differences are
found in the tropics and the Southern Hemisphere. GEM
tends to be biased low compared to the other data in north-
ern Africa, southern Africa, and temperate South America.
In these regions, ERAI is closer to CRU observations, but in
tropical South America, GEM is closer to observations. Since
ERAI is a reanalysis product, it is expected to be much bet-
ter than an operational analysis. Our GEM analyses are also
further degraded (in terms of resolution) from ECCC opera-
tional analyses, so any reasonable comparability to ERAI re-
sults is considered promising. CRU-NCEP overall is in better
agreement with the observations (CRU). This is not surpris-

ing given that CRU-NCEP was produced by combining CRU
and NCEP/NCAR reanalysis products.

Figure 3 shows the spatial distribution of the differences
of mean annual shortwave radiation (averaged over the pe-
riod 2009–2010) between the GEM and CRU-NCEP, and
ERAI datasets. Shortwave radiation estimates are not avail-
able in the CRU dataset. The comparison indicates that CRU-
NCEP is approximately 15–70 W m−2 higher (sunny bias)
than ERAI in the high latitudes and in the tropical land
regions. In arid areas (i.e., Australia, the Sahara, south-
ern Africa, southern North America, the Tibetan Plateau,
and west Asia), CRU-NCEP is approximately 15–50 W m−2

lower than ERAI. In contrast, GEM is approximately 10–
60 W m−2 higher than ERAI over all land regions, with the
highest values (40–60 W m−2) over tropical lands. The short-
wave radiation estimates from GEM is approximately 10–
80 W m−2 higher than those from CRU-NCEP over nearly
all land regions, with the exception of Europe, eastern North
America, and in a few grid cells in the tropical regions, where
CRU-NCEP is higher (10–80 W m−2).

Figure 4 shows the monthly mean shortwave radiation av-
eraged for the TransCom land regions. GEM and ERAI have
more similar seasonal variability compared to CRU-NCEP in
most of the land regions, especially in the tropics. However,
ERAI shows slightly lower monthly mean values in Eurasia
regions and in tropical South America. Zhao et al. (2006) also
found that ERA-40 (the precursor to ERAI) underestimated
shortwave radiation in the tropics. Differences between the
datasets in the tropics may be due to cloudiness biases over
the Intertropical Convergence Zone (ITCZ), which have a
large impact on radiative forcing (Dee et al., 2011).

The comparisons of the differences in annual total precipi-
tation between the GEM, CRU-NCEP, and CRU datasets are
shown in Fig. 5. The smallest differences are between CRU-
NCEP and CRU. The largest differences in magnitude be-
tween CRU-NCEP and CRU are mainly in the tropics, partic-
ularly tropical Asia, and along the west coast of South Amer-
ica. Also, the largest differences between GEM and CRU
are in the tropics. The comparison also indicates that CRU-
NCEP is wetter than GEM in the tropics and subtropics, and
in the temperate regions, but is drier than GEM in some ar-
eas of the boreal regions, and over a few grid cells in central
Africa, and China. In general, the tropics exhibit the largest
differences between the GEM and CRU-NCEP datasets.

The comparisons between the monthly total precipitation
integrated over the TransCom land regions are shown in
Fig. 6. Unlike temperature and shortwave radiation (well rep-
resented by global models), there is a very clear difference in
monthly total precipitation among the datasets, except be-
tween CRU-NCEP and CRU, which agree very well with
some differences in the tropics. It is clear that the largest dif-
ferences occur mainly during summer in each hemisphere,
which is associated with high precipitation. GEM tends to
be drier mainly during summer. Despite the differences in
the seasonal amplitude, GEM shows a quite similar seasonal
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Figure 1. Comparison of spatial distribution patterns of annual mean temperature (◦C) (averaged over the period 2009–2010): (a) CRU-
NCEP minus CRU, (b) CRU minus GEM, and (c) CRU-NCEP minus GEM.

variability compared to other datasets. We should keep in
mind that precipitation estimates from the reanalysis/forecast
systems are normally associated with large errors (Harris
et al., 2014), particularly over land. These errors are due to

problems with the convective parameterization in the mod-
els, and the fact that ground-based precipitation observations
are not yet used in the data assimilation systems. Also, CRU
monthly precipitation suffers large biases in areas where ob-
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Figure 2. Monthly mean temperature (◦C) averaged for the TransCom land regions.

servations are sparse (i.e., the tropics and Southern Hemi-
sphere) (Harris et al., 2014). In fact, the observation-based
datasets are not based only on measurements but are also
sometimes model dependent (filling gaps, interpolation, etc.)
(Harris et al., 2014). These deficiencies as well as the dif-
ferent spatial/temporal resolutions among models and ob-
servations can explain some of the differences between the
datasets. Deficiencies in ERAI and CRU have been inves-
tigated in previous studies (Simmons et al., 2010; Balsamo
et al., 2010; Szczypta et al., 2011).

In summary, the meteorological fields from GEM are
similar in quality to those from reanalyses (ERAI) and
observation-based (CRU and CRU-NCEP) datasets. How-
ever, there are some notable discrepancies in seasonal vari-
ations and spatial distribution patterns between GEM and
CRU-NCEP, particularly in precipitation estimates in the
tropics, which will be reflected in the estimated carbon
fluxes. Biases in precipitation may indicate that the con-
vective scheme used in the GEM system needs to be im-

proved, in particular, over the tropics. CLASS-CTEM driven
by GEM precipitation will be impacted by these biases.

4.2 Impact of meteorological forcing on carbon fluxes

Here, we assess the impact of changing meteorological in-
puts on the simulated carbon fluxes to determine whether bi-
ases in fluxes can be attributed to biases in the meteorological
variables.

4.2.1 Differences in simulated carbon fluxes

To evaluate the spin-up procedure, the simulated global val-
ues of primary carbon pools and fluxes are summarized in
Table 3 for the spin-up simulations from CTEM-CRUNCEP
(which used the 1901–1940 climate data for the spin-up) and
CTEM-GEM (which used the 2009–2010 climate data for
the spin-up). CTEM-GEM produces smaller values of car-
bon pools and fluxes compared to CTEM-CRUNCEP. One
possible explanation for this is the use of the present cli-
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Figure 3. Comparison of spatial distribution patterns of annual mean shortwave radiation (W m−2) (averaged over the period 2009–2010):
(a) CRU-NCEP minus ERAI, (b) GEM minus ERAI, and (c) CRU-NCEP minus GEM.

mate to spin up the model in the case of CTEM-GEM. Ta-
ble 3 shows also the global values of carbon pools and fluxes
simulated by the CTEM-CRUNCEP2yr experiment, which
also uses just the 2009–2010 climate to spin up the model.

Rather than reducing the size of carbon pools, CTEM-
CRUNCEP2yr produces much higher values compared to
both CTEM-CRUNCEP and CTEM-GEM. Table 3 also com-
pares the mean areal land precipitation globally as well as for
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Figure 4. Monthly mean shortwave radiation (W m−2) averaged for the 11 TransCom land regions.

Table 2. TCCON sites used in this study.

Site name Lat Long Reference

Eureka, Canada 80.05◦ N 86.42◦W Strong et al. (2014)
Sodankylä, Finland 67.37◦ N 26.63◦ E Kivi et al. (2014)
Białystok, Poland 53.23◦ N 23.03◦ E Deutscher et al. (2014)
Bremen, Germany 53.10◦ N 8.85◦ E Notholt et al. (2014)
Karlsruhe, Germany 49.10◦ N 8.44◦ E Hase et al. (2014)
Orléans, France 47.97◦ N 2.11◦ E Warneke et al. (2014)
Garmisch-Partenkirchen, Germany 47.48◦ N 11.06◦ E Sussmann and Rettinger (2014)
Park Falls, USA 45.95◦ N 90.27◦W Wennberg et al. (2014a)
Lamont, USA 36.60◦ N 97.49◦W Wennberg et al. (2014b)
Izaña, Tenerife, Spain 28.3◦ N 16.5◦W Blumenstock et al. (2014)
Darwin, Australia 12.42◦ S 130.90◦ E Griffith et al. (2014a)
Wollongong, Australia 34.41◦ S 150.88◦ E Griffith et al. (2014b)
Lauder, New Zealand 45.04◦ S 169.68◦ E Sherlock et al. (2014)
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Figure 5. Comparison of spatial distribution patterns of annual total precipitation (mm yr−1) (averaged over the period 2009–2010): (a) CRU-
NCEP minus CRU, (b) CRU minus GEM, and (c) CRU-NCEP minus GEM.

the tropical land band (30◦ N–30◦ S) averaged over 1901–
1940 (for CTEM-CRUNCEP) and 2009–2010 (for CTEM-
CRUNCEP2yr and CTEM-GEM). For the CRU-NCEP runs,
2009–2010 is wetter than the 1901–1940 period at global

and tropical scales, which can explain the higher productivity
in CTEM-CRUNCEP2yr compared to CTEM-CRUNCEP.
GEM precipitation (2009–2010) is slightly higher than CRU-
NCEP (1901–1940) at the global scale but lower over the
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Figure 6. Monthly total precipitation (mm month−1) for the 11 TransCom land regions.

tropical band for the same periods. The drier tropical band
is reflected in the estimated tropical GPP from CTEM-GEM
(Table 3), which dominates the global total GPP (Beer et al.,
2010; Anav et al., 2015, and many others). This may explain
the low carbon pools simulated by CTEM-GEM. This com-
parison suggests that precipitation plays a significant role in
plant productivity in the tropics, and thus accurate precipita-
tion patterns are necessary to establish realistic initial values
for carbon pools and fluxes during the spin-up runs. Despite
the differences in model inputs and spin-up configuration,
the initial global carbon pools and fluxes from CTEM-GEM,
however, are still within the range of the pre-industrial val-
ues from other modeling studies listed in Melton and Arora
(2014, Table 2).

The low GPP values from CTEM-GEM warrant further
discussion given that the initial estimates of carbon pools and
fluxes are critical to obtain an accurate estimate of historical
CO2 fluxes (Exbrayat et al., 2014; Tian et al., 2015). Car-
bon stocks are often not well modeled in TEMs (Houghton

et al., 2012; Tian et al., 2015). The modeled pool sizes can
be adjusted by tuning the model parameters in order to match
observation-based estimates of carbon stocks. For example,
Carvalhais et al. (2008, 2010) have reported the limitation
of the carbon cycle steady state assumption in TEMs. Car-
valhais et al. (2010), therefore, introduced a new parameter
in the CASA model that forced the adjustment of both veg-
etation and soil carbon pools from equilibrium (after spin-
up), allowing for model runs to be initialized either as net
sinks or sources. They found that including this new param-
eter yielded better model performance in simulating carbon
fluxes in comparison to observations. Moreover, their mod-
eled soil carbon stocks became closer to observations. How-
ever, large uncertainties and errors in measurements can pro-
duce biased parameters and hence poor model performance.
Thus, forcing agreement to a given global mean value of GPP
(e.g., 120 PgC yr−1) by tuning model parameters may lead
to worse model performance and is not justifiable given the
observational uncertainty in this value. Given that CLASS-
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Table 3. Simulated global values of primary carbon pools and fluxes for the spin-up simulations using CTEM-CRUNCEP, CTEM-GEM
and CTEM-CRUNCEP2yr. Values are a 20-year average at the end of model simulations. Mean areal precipitation (global land and for the
30◦ N–30◦ S land band) averaged for the 1901–1940 period is used to spin up CTEM-CRUNCEP, and for the 2009–2010 period used to spin
up CTEM-GEM and CTEM-CRUNCEP2yr, and the correspondence GPP estimates.

Variable CTEM-CRUNCEP CTEM-GEM CTEM-CRUNCEP2yr

Gross primary productivity (Pg C yr−1) 118.0 97.0 139.8
Net primary productivity (Pg C yr−1) 58.0 47.0 70.0
Autotrophic respiration (Pg C yr−1) 60.5 49.6 69.8
Heterotrophic respiration (Pg C yr−1) 57.5 47.4 70.0
Litter carbon respiration (Pg C yr−1) 40.8 33.4 49.4
Soil carbon respiration (Pg C yr−1) 16.7 13.7 20.5
Vegetation biomass (Pg C) 674.0 544.0 829.2
Litter mass (Pg C) 97.0 79.0 108.9
Soil carbon mass (Pg C) 1410.0 1162.0 1843.0

Mean areal precipitation (mm yr−1) (global) 760.0 762.0 828.0
Mean areal precipitation (mm yr−1) (30◦ N–30◦ S) 1047.0 984.0 1139.0
Gross primary productivity (Pg C yr−1) (30◦ N–30◦ S) 80.7 60.9 95.5

CTEM will provide only a prior estimate of NEE (not GPP
and Reco separately, at least in the first stage) for flux in-
versions in EC-CAS, adjusting the initial carbon pools mod-
eled by CLASS-CTEM is not necessary and would not likely
change the major conclusions derived here. Moreover, tuning
of CLASS-CTEM specifically for the far-from-ideal spin-up
process that we employed for the GEM fields would be du-
bious and would make comparison with CTEM-CRUNCEP
results difficult. Beyond the global budget, which is well con-
strained by atmospheric data (Peylin et al., 2013), the main
focus is to assess the ability of the model to simulate the spa-
tial and temporal flux variations (mainly the NEE that is used
in flux inversions) in response to changes in environmental
conditions and its ability to match the atmospheric signal.

For transient simulations, the simulated terrestrial car-
bon fluxes from the two simulations (CTEM-CRUNCEP
and CTEM-GEM) are compared to each other as well as
to observation-based estimates (where possible) or indepen-
dent model results. Figure 7 shows the annual spatial dif-
ference of GPP simulated by CLASS-CTEM (averaged over
the period 2009–2010) and the observation-based GPP es-
timates from FLUXCOM. The figure also shows the spatial
difference between the modeled GPP from BEPS and FLUX-
COM and the zonal distribution of GPP from all datasets.
There are significant differences in the annual GPP between
the two simulations (CTEM-CRUNCEP and CTEM-GEM)
and the evaluation data, particularly in the most highly veg-
etated areas (i.e., the tropics, and the boreal and temperate
regions). CTEM-CRUNCEP and CTEM-GEM have simi-
lar spatial differences over western Europe and boreal Asia,
and to a lesser extent over North America, but they show
poor agreement in the tropics. Tropical GPP from CTEM-
CRUNCEP is overestimated compared to FLUXCOM (see
also Fig. 7b). In contrast, it is underestimated in the Amazo-

nian region, western Africa, and tropical Asia with CTEM-
GEM. In comparison to other model results, the spatial dis-
tribution of the difference between BEPS and FLUXCOM
(Fig. 7a) reveals relatively smaller different patterns com-
pared to CTEM. The zonally averaged GPP in Fig. 7b in-
dicates that CTEM-CRUNCEP and BEPS agree very well
with FLUXCOM compared to CTEM-GEM, which underes-
timates GPP in the tropics.

Since the formulation of most models, including CLASS-
CTEM and BEPS, links respiration to photosynthesis
(Melton and Arora, 2016), Reco estimates from both simu-
lations and BEPS show a similar pattern to GPP (spatially
and zonally), with significant differences in the most pro-
ductive ecosystems (not shown here). The large discrepan-
cies in seasonal variations and spatial distribution patterns
between GEM and CRU-NCEP are due to the precipitation
differences (temperature and shortwave radiation have much
better agreement), particularly in the tropics. Figures 5 and 7
suggest that the differences in the spatial pattern of GPP are
more closely associated with precipitation than temperature
or shortwave radiation differences over the tropics. This is
consistent with previous findings (Nemani et al., 2003; Jung
et al., 2007; Beer et al., 2010; Piao et al., 2013; Anav et al.,
2015) that interannual variation of productivity is primarily
correlated with the precipitation over the tropics.

To examine regional differences, the seasonal variation
and the annual mean of GPP from both simulations and
BEPS are also spatially aggregated to the 11 TransCom land
regions and compared to FLUXCOM in Fig. 8. For Reco
(not shown here), the same conclusions can be drawn as
from the GPP figures. Figure 8 shows that the seasonal varia-
tions of GPP from CTEM-CRUNCEP are consistently higher
than those from CTEM-GEM. In the Northern Hemisphere
regions, flux estimates have large seasonal variations, i.e.,
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Figure 7. The annual spatial difference of GPP (gC m−2 yr−1) for CTEM-GEM, CTEM-CRUNCEP, and BEPS against the observation-
based GPP estimates from FLUXCOM (averaged over the period 2009–2010). The zonal distributions of GPP from all datasets are shown in
panel (b).

small values in winter and high values in summer, reflect-
ing the seasonal change in carbon uptake by the land veg-
etation. The largest differences between CTEM-CRUNCEP
and CTEM-GEM, in terms of the amplitude of the seasonal
cycle, are found in the tropics, with CTEM-GEM having
smaller amplitudes. However, in tropical Asia, the seasonal
cycle from CTEM-GEM agrees well with BEPS and FLUX-
COM compared to CTEM-CRUNCEP, which has larger an-
nual GPP and Reco (not shown here). Also, CTEM-GEM
agrees very well with FLUXCOM in European and North
American boreal regions compared to CTEM-CRUNCEP,
especially during the growing season. In general, CTEM-
GEM has some differences compared to CTEM-CRUNCEP
over all regions mainly in terms of the amplitude, and to a
lesser extent in the phase of the seasonal cycle. This is con-
sistent with the findings of Dalmonech et al. (2015) who
tested the impact of coupled and uncoupled configurations
of JSBACH land surface component of the Max Planck Insti-
tute Earth System Model (MPI-ESM) on the simulated land
carbon fluxes. They found that biases in the meteorological
forcing to a large extent control the magnitude of GPP rather
than the phenology and seasonal cycle of productivity, which
could be more related to the model formulations (i.e., the tim-
ing and length of the growing season). In summary, these re-
sults indicate that the simulated fluxes from CLASS-CTEM
are sensitive to the meteorological forcings over all land re-

gions, which is consistent with the finding of Garnaud et al.
(2014).

The annual GPP,Reco, and the net flux are given in Table 4.
Annual GPP values from CTEM-GEM for 2009 and 2010
are smaller than the multi-year average of GPP from BEPS
(119.5 PgC) (Deng et al., 2014) and from Beer et al. (2010)
(123± 8 PgC). Annual GPP values from CTEM-CRUNCEP
for 2009 and 2010 are higher than those from BEPS and the
calculated GPP from FLUXCOM (119.83 and 120 PgC for
2009 and 2010, respectively). This leads to a stronger land
carbon sink from CTEM-CRUNCEP compared to CTEM-
GEM (Table 4). The weaker sink in CTEM-GEM is due to
the lower precipitation estimates in the tropics (the region
that mainly controls interannual variability in the carbon cy-
cle) and hence lower global GPP (Piao et al., 2013; Beer
et al., 2010). Previous studies have reported a wide range
of the global terrestrial GPP. For example, Piao et al. (2013)
showed that GPP averaged across 10 land models is 133± 15
(ranging from 111± 4 to 151± 4 PgC). Other studies that
are based on carbon cycle data assimilation suggest a GPP
around 150 PgC (Koffi et al., 2012; Peylin et al., 2016), sim-
ilar to Welp et al. (2011).

To assess the impact of the differences in GPP and Reco
from CTEM-CRUNCEP and CTEM-GEM on the seasonal
cycle of NEE (the difference between GPP and Reco), Fig. 9
compares the NEE seasonal cycle from both simulations with
the simulated prior NEE from BEPS (multi-year average)
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Figure 8. The seasonal cycle of GPP from CTEM-GEM, CTEM-CRUNCEP, BEPS, and FLUXCOM integrated over the 11 TransCom land
regions.

and the optimized NEE from CT2013B for 2009 and 2010
over the TransCom land regions. BEPS produces the small-
est amplitude of the seasonal cycle of NEE while CTEM-
CRUNCEP has the largest amplitude in northern land re-
gions, except boreal Eurasia where the optimized NEE from
CT2013B exhibits the largest amplitude (Fig. 9). For the
South American tropical region, all models show consider-
able disagreement in the seasonal cycle, sometimes with op-
posite phases. In the Northern Hemisphere, CTEM-GEM and
CTEM-CRUNCEP have better agreement with each other
during winter than in summer. CTEM-GEM also tends to
have the peak of the growing season 1 month earlier than
CTEM-CRUNCEP (i.e., Eurasian boreal and North Amer-
ica temperate) due to the differences in GPP seasonal cy-
cle (see Fig. 8). Even though there is large difference in the
amplitude of the seasonal cycle of GPP (the same for Reco
– not shown here) from CTEM-GEM compared to CTEM-
CRUNCEP (Fig. 8), the difference is much smaller in NEE.

This is due to the fact that NEE is the difference between
two large terms (GPP and Reco). That means, even though
GPP and Reco have large biases compared to observation-
based estimates over the tropics, the biases in NEE are much
smaller (Table 4).

A recent study by Byrne et al. (JGR, under review, per-
sonal communication) evaluated the fluxes from CTEM-
GEM and CTEM-CRUNCEP (the same fluxes used in the
current study) in northern midlatitude ecosystems by com-
paring GPP against Global Ozone Monitoring Experiment-
2 (GOME-2) solar-induced fluorescence (SIF) (Joiner et al.,
2013; Köhler et al., 2015) and NEE against total col-
umn CO2 (XCO2) from TCCON (Wunch et al., 2011).
They found that while GPP from CTEM-CRUNCEP showed
closer agreement with SIF than CTEM-GEM, CTEM-GEM
showed closer agreement with TCCON XCO2 than CTEM-
CRUNCEP. This implies that the biases in GPP might be
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Figure 9. The seasonal cycle of NEE from CTEM-GEM, CTEM-CRUNCEP, and BEPS in comparison to the optimized NEE from CT2013B
integrated over the 11 TransCom land regions.

compensated by biases in Reco, which result in improved
NEE fluxes from CTEM-GEM.

The NEE values in Table 4 show that CTEM-CRUNCEP
tends to have a higher carbon sink compared to CTEM-
GEM. CTEM-GEM simulates a land carbon sink of −1.2
and −2.2 PgC yr−1 for 2009 and 2010, respectively, which
is close to the optimized land sink from the CCDAS study
of Peylin et al. (2016) (around 2.2 PgC yr−1 for the 2000–
2009 period). NEE from CTEM-GEM is also more compat-
ible with the global carbon budget (GCP) (Le Quéré et al.,
2015) (2.4± 0.8 PgC yr−1 for the 2000–2009 period).

In summary, CTEM-GEM has some issue in the tropics
but that is where all prior (and posterior) flux estimates dis-
agree and where observations are also inconsistent. However,
Figs. 8 and 9 show that the Northern Hemisphere (where
CTEM-GEM is fairly consistent with the other estimates)
dominates the global seasonal cycle of carbon fluxes because
it has the largest land areas that are mainly dominated by for-

est ecosystems. At the same time, the net contribution from
the tropical and the Southern Hemisphere regions is close to
zero due to their opposite (and relatively small) seasonal cy-
cles. Accordingly, the prior NEE information from CTEM-
GEM is considered to be suitable for testing in the data
assimilation context. However, flux estimates in the tropics
from CTEM-GEM should be treated with caution.

4.2.2 Modeled CO2 Concentration

To assess the quality of the CO2 fluxes from CLASS-
CTEM simulations, terrestrial NEE fluxes from CTEM-
CRUNCEP and CTEM-GEM are used as a priori land fluxes
in the GEM-MACH-GHG global atmospheric CO2 transport
model. For comparisons, GEM-MACH-GHG was also run
using the posterior NEE fluxes from CT2013B as described
in Polavarapu et al. (2016). In these forward simulations, the
anthropogenic emissions from fossil fuel burning and cement
manufacturing, biomass burning, and ocean–atmosphere car-
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Table 4. Annual GPP, Reco, and NEE (PgC yr−1) from CTEM-CRUNCEP and CTEM-GEM for the transient simulations. The transient
simulation was initialized from the spin-up simulations using varying CO2 concentrations and meteorology.

CTEM-CRUNCEP CTEM-GEM Other estimates

2009 2010 2009 2010 Multi-year average

GPP 133.6 137.4 99.3 100.9 119.5 (Deng et al., 2014)
123± 8 (Beer et al., 2010)

Reco 130.4 132.2 98.1 98.7
NEE −3.2 −5.2 −1.2 −2.2

bon exchange are based on CT2013B (Peters et al., 2007), so
that the only difference between the three runs is the terres-
trial NEE fluxes.

Figure 10 compares the monthly times series of the mod-
eled CO2 from the two CLASS-CTEM simulations with that
based on the CT2013B posterior fluxes, and observed CO2 at
selected sites that is representative of various global regions
(listed in Table 1) for continuous CO2 measurements (Wor-
thy et al., 2009; Dlugokencky et al., 2015). At all observation
sites, the simulations forced with CTEM-CRUNCEP and
CTEM-GEM NEE fluxes (green and blue curves) have a sim-
ilar overestimation of the observed atmospheric CO2 from
December to May, but the simulation forced with CT2013B
fluxes (red curves) has a much better match to observations.
This makes sense because CT2013B fluxes have been in-
formed by atmospheric observations, whereas the other two
fluxes have not. Nevertheless, the overestimation of the CO2
concentrations can be attributed to the smaller net uptake
simulated by CLASS-CTEM in the Northern Hemisphere
(NH) regions during the winter season (see Fig. 9). At ALT
and BRW, the two CLASS-CTEM simulations, in particular
CTEM-CRUNCEP, show a 1-month shift of the peak of the
growing season compared to the observations. These differ-
ences in the seasonal cycle might indicate some limitations
in the phenology of CLASS-CTEM (i.e., the larger source
of carbon fluxes in wintertime and the seasonal cycle shift)
and should be further investigated in future studies. Interest-
ingly, at ALT, BRW, IZO, MLO, and ZEP, during the NH
growing season, in particularly in 2009, CTEM-GEM has a
better match to the observation than CT2013B and CTEM-
CRUNCEP. This is promising, as it indicates that the CTEM-
GEM fluxes may be suitable to be used in the global inversion
system (EC-CAS).

The large differences in the modeled CO2 concentrations
from the two CLASS-CTEM simulations highlight the sen-
sitivity of the transport model to land fluxes. This might
contradict the finding of Ott et al. (2015) that large differ-
ences in prior flux estimates result in only small differences
in CO2 concentrations. The autumn underestimation with
CT2013B fluxes (e.g., at ALT, BRW, and IZO) is likely due
to a mismatch in seasonal-scale meridional transport between
GEM-MACH-GHG and TM5 (the model used to produce
CT2013B) (Polavarapu et al., 2016). We should also keep

in mind that the performance of the forward simulations also
depends on the site-specific conditions (topographic features,
local sources of emissions, its location from urban areas, ac-
curacy of the measurements, etc.) (Peters et al., 2005; Niwa
et al., 2012; Shirai et al., 2017) and also on the performance
of the transport model (Gurney et al., 2003, 2004).

To better assess the quality of the modeled CO2 concen-
trations obtained with the two CLASS-CTEM simulations,
Fig. 11 shows the Taylor diagram (Taylor, 2001) that com-
pares the modeled CO2 from CTEM-CRUNCEP, CTEM-
GEM, and CT2013B with the observed CO2 at the selected
sites (listed in Table 1). The position of each dot appearing
on the plot quantifies how closely the modeled concentra-
tions match the observations. The centered root mean square
(rms) difference between the simulated and observed pat-
terns is proportional to the distance to the point on the x axis
identified as “1.0”, which is the observations. The normal-
ized standard deviation (dividing the standard deviation of
simulated by the standard deviation of the observed) of the
simulated pattern is proportional to the radial distance from
the origin and it represents the agreement in the amplitude
of the variability between the modeled and observed concen-
trations. As mentioned before, the simulation forced with the
optimized fluxes from CT2013B has a much better match to
observations. Also, Fig. 11 shows that CTEM-GEM agrees
better with the observations at all selected sites compared
to CTEM-CRUNCEP in terms of correlations and the am-
plitude of the variability, which indicates an overall reason-
able performance of the CTEM-GEM, especially during the
growing season as mentioned before (see Fig. 10).

4.3 Inversion analyses

The results in the previous two sections revealed that the
GEM-MACH-GHG simulation of atmospheric CO2 using
CTEM-GEM fluxes is able to reproduce temporal variations
in atmospheric CO2 at the selected sites. Since CTEM-GEM
will be used as the land component of EC-CAS, which is
presently under development and thus not yet available, here
we use the GEOS-Chem data assimilation system to examine
the impact on regional flux estimates of using CTEM-GEM
and CTEM-CRUNCEP as prior fluxes in the context of an
atmospheric CO2 inversion analysis. To determine how the

www.geosci-model-dev.net/11/631/2018/ Geosci. Model Dev., 11, 631–663, 2018



650 B. Badawy et al.: Coupling CTEM to ECCC’s GHG forecast model

375

380

385

390

395

400
C

O
2 (

pp
m

)

ALT − Canada

380

390

400

C
O

2 (
pp

m
)

BRW − USA

370

380

390

400

C
O

2 (
pp

m
)

EGB − Canada

380

385

390

395

C
O

2 (
pp

m
)

IZO − Spain

382

386

390

394

C
O

2 (
pp

m
)

MLO − USA

370

380

390

400

410

C
O

2 (
pp

m
)

PAL − Finland

385

390

395

400

C
O

2 (
pp

m
)

YON − Japan

380

390

400

C
O

2 (
pp

m
)

ZEP − Norway and Sweden

380

385

390

395

400
C

O
2 (

pp
m

)

ZSF − Germany

OBS CTEM-CRUNCEP CTEM-GEM CT2013B

Jan 2009 Jul 2009 Jan 2010 Jul 2010Jan 2009 Jul 2009 Jan 2010 Jul 2010 Jan 2009 Jul 2009 Jan 2010 Jul 2010

Jan 2009 Jul 2009 Jan 2010 Jul 2010Jan 2009 Jul 2009 Jan 2010 Jul 2010 Jan 2009 Jul 2009 Jan 2010 Jul 2010

Jan 2009 Jul 2009 Jan 2010 Jul 2010Jan 2009 Jul 2009 Jan 2010 Jul 2010 Jan 2009 Jul 2009 Jan 2010 Jul 2010

Figure 10. Comparison of the monthly time series of modeled CO2 concentrations using land prior fluxes from CTEM-CRUNCEP (green)
and CTEM-GEM (blue) with surface observations (black) at selected sites (listed in Table 1), and modeled CO2 using posterior fluxes from
CT2013B (red). The modeled CO2 was produced by a forward run of GEM-MACH-GHG.

retrieved fluxes obtained with the two CTEM-based priors
compare to other documented inverse modeling results, we
also perform an inversion analysis using BEPS prior fluxes,
which is the ecosystem model used in the GEOS-Chem in-
versions of Deng et al. (2014, 2016), and we compare our
results to the retrieved fluxes from CT2013.

4.3.1 Seasonal cycle of the flux estimates

Figure 12 shows the seasonal cycle of the a posteriori
NEE from the GEOS-Chem inversion analyses using the
three different a priori estimates of NEE (CTEM-GEM,

CTEM-CRUNCEP, and BEPS), together with the optimized
NEE from CT2013B. The a priori NEE from CTEM-GEM,
CTEM-CRUNCEP, and BEPS are also shown. For northern
land, there are some differences between the optimized NEE
in terms of the amplitude and the growing season, especially
in temperate regions and in boreal Eurasia where the peak
carbon uptake is greatest for CT2013B. However, the spread
in the posterior estimates for most northern land regions is
smaller (compared to the tropical regions) because the sur-
face observation network can reasonably constrain the north-
ern extratropical latitudes (Peylin et al., 2013). The spread
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between the fluxes is larger in the tropical regions, where
NEE seasonal cycles show less agreement in both phase and
magnitude. There are large differences in the seasonal cy-
cle between the CTEM-based fluxes (CTEM-CRUNCEP and
CTEM-GEM) and the BEPS-based fluxes in northern Africa
and tropical South America that are present in both the prior
and posterior fluxes. As a result of the limited observational
coverage in the tropics, the posterior fluxes are strongly in-
fluenced by the prior fluxes. Consequently, the differences in
the prior fluxes across the inversions are reflected in the pos-
terior fluxes. Similarly, in the southern extratropics, the pos-
terior fluxes primarily reflect the prior flux distributions due
to the sparsity of observations. This result is consistent with
that of Peylin et al. (2013) who also found more disagree-
ment of various inversion results in the tropics and Southern
Hemisphere.

The amplitude of seasonal cycle of the optimized NEE
from CTEM-CRUNCEP is significantly reduced compared
to the a priori seasonal cycle in almost all land regions. The
changes in the amplitude of the seasonal cycle for CTEM-
GEM are smaller than those for CTEM-CRUNCEP. Figure 9
shows that CTEM-CRUNCEP tends to have a larger ampli-
tude of NEE compared to CTEM-GEM and the evaluation
data in all regions. Also, the comparison in Figs. 10 and
11 revealed that modeled CO2 concentrations from CTEM-
GEM have a much better match to observations compared
to CTEM-CRUNCEP, especially during the growing sea-
son. This might explain the significant shift in the opti-
mized NEE from CTEM-CRUNCEP compared to CTEM-

GEM. This also might indicate that the simulated fluxes
from CTEM-GEM are more consistent with the atmospheric
CO2 signal than CTEM-CRUNCEP. As noted above, the
recent study by Byrne et al. (JGR, under review, personal
communication) evaluated the a priori fluxes from CTEM-
GEM and CTEM-CRUNCEP and found that, compared to
TCCON data, CTEM-GEM NEE provided a better simula-
tion of the atmospheric CO2 seasonal cycle. They found that
CTEM-CRUNCEP NEE produced a seasonal cycle in atmo-
spheric CO2 with a larger amplitude and with the onset of the
springtime drawdown delayed by 10 days relative to CTEM-
GEM NEE. However, both CLASS-CTEM simulations tend
to have a large carbon source in wintertime, which is subse-
quently reduced in the optimized NEE (Fig. 12), especially
in Europe and NH temperate regions. This demonstrates the
capacity of inversion systems to constrain the phenological
cycle in CLASS-CTEM, and ultimately can be used to opti-
mize model parameters.

4.3.2 Annual mean flux estimates

The total annual a priori and a posteriori NEE from the
GEOS-Chem inversion analyses for 2009–2010 is shown in
Fig. 13 for the 11 TransCom land regions, along with the op-
timized values from CT2013B. Note that the tropical Asia
panel has a different scale. All models estimate a sink (both
for the a priori and the a posteriori) for the North American
temperate, South American tropical, and Eurasian regions
(except for temperate Eurasia, which has a source for CTEM-
GEM prior). The largest difference between the a priori and
a posteriori NEE in terms of the sign and magnitude were
obtained for the South American temperate and northern and
southern African regions. This is due to the fact that the trop-
ics and Southern Hemisphere are poorly constrained by the
current CO2 network. Although the CT2013B fluxes tend to
have stronger uptake in boreal Eurasia and the two African
regions, BEPS has the largest uptake in the extra-tropical re-
gions (North American temperate, Europe, Eurasian temper-
ate) and tropical Asia. The two CLASS-CTEM simulations
show large differences, from each other, in the optimized
NEE in all land regions. Some of the difference between
CT2013B and all of the GEOS-Chem estimates can be at-
tributed to different transport models and configurations of
data assimilation (Peylin et al., 2013) used in GEOS-Chem
and CT2013B (which uses the Tracer Transport Model – ver-
sion 5 (TM5); Peters et al., 2007). Figure 13 also indicates
that, for 2009, GEOS-Chem allocates the strongest sink in
tropical Asia for CTEM-CRUNCEP (2 PgC yr−1). Given that
the inversion with CTEM-CRUNCEP fluxes suggests much
weaker sinks (or larger sources) for the South American
tropical and northern African regions compared to CTEM-
GEM and BEPS, we suspect that stronger uptake in tropical
Asia could reflect the inversion compensating for the larger
sources in tropical South America and northern Africa. The
hypothesis is that CTEM-CRUNCEP starts with a larger a
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Figure 12. The seasonal cycle of the optimized NEE from GEOS-Chem using three different prior estimates of NEE from CTEM-GEM,
CTEM-CRUNCEP, and BEPS (indicated as well) in comparison to the optimized NEE from CT2013B integrated over the 11 TransCom land
regions.

Table 5. The mean differences and root mean square errors (RMSEs) (in ppm) of the a posteriori CO2 fields, based on CTEM-CRUNCEP,
CTEM-GEM, and BEPS fluxes, with respect to TCCON data for July 2009 to June 2010. Station-to-station error is also shown.

CTEM-CRUNCEP CTEM-GEM BEPS

Mean (mod − obs) 0.53 0.64 0.49
RMSE (mod − obs) 1.36 1.36 1.23

Inter-station bias 0.61 0.53 0.49

priori sink in tropical Asia and it gets enhanced in the inver-
sion to compensate for the other tropical regional biases.

Figure 14 shows the global annual totals of NEE (a priori
and a posteriori) for 2009–2010, as well as annual totals, ag-
gregated into three latitudinal bands: Southern Hemisphere
(SH): 90–30◦ S, tropics (TR): 30◦ S–30◦ N, and Northern
Hemisphere (NH): 30–90◦ N. At the global scale, there is
a good agreement between the optimized NEE in terms of

magnitude. This indicates that the observations sufficiently
constrain the global carbon budget so that the choice of prior
fluxes is not critical. This is in agreement with Bruhwiler
et al. (2011) who examine the impact of changing observa-
tion networks on flux estimates. However, optimized NEE for
the three latitudinal bands shows some differences, mainly
in the tropics, where the observational coverage is poor.
These results are consistent with previous findings (e.g., Pe-
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Figure 13. The annual total of the optimized NEE from GEOS-Chem using three different prior flux estimates of NEE from CTEM-GEM,
CTEM-CRUNCEP, and BEPS (indicated as well) in comparison to the optimized NEE from CT2013B integrated over the 11 TransCom land
regions.

Table 6. The mean differences and RMSEs (in ppm) of the a posteriori CO2 fields, based on CTEM-CRUNCEP, CTEM-GEM, and BEPS
fluxes, with respect to aircraft data from the HIPPO-1, HIPPO-2, and HIPPO-3 campaigns.

Mean (mod − obs) RMSE (mod − obs)

Altitude Latitude CTEM-CRUNCEP CTEM-GEM BEPS CTEM-CRUNCEP CTEM-GEM BEPS

0–5 km 60–30◦S 0.07 0.00 0.02 0.70 0.70 0.74
30◦ S–0◦ -0.61 −0.58 −0.33 0.87 0.83 0.52
0–30◦ N −0.54 −0.35 −0.26 1.03 0.95 0.75
30–60◦ N −0.48 −0.34 −0.68 1.72 1.72 1.58

5–10 km 60–30◦ S −0.45 −0.46 −0.39 0.78 0.80 0.78
30◦ S–0◦ −0.56 −0.44 −0.16 0.80 0.75 0.69
0–30◦ N −0.91 −0.67 −0.34 1.12 0.95 0.74
30–60◦ N −0.86 −0.56 −0.49 1.46 1.30 1.20

0–10 km 60◦ S–60◦ N −0.56 −0.43 −0.36 1.17 1.10 0.99
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Figure 14. The monthly (left) and annual total (right) of the optimized NEE from GEOS-Chem using three different prior flux estimates of
NEE from CTEM-GEM, CTEM-CRUNCEP, and BEPS (indicated as well) in comparison to the optimized NEE from CT2013B integrated
over three latitudinal bands.

ters et al., 2007; Miller et al., 2015), which showed that op-
timized CO2 fluxes in inversion analyses are heavily influ-
enced by the spatial patterns in the a priori CO2 fluxes, par-
ticularly in regions where observations are sparse (i.e., the
tropics and Southern Hemisphere).

4.3.3 Evaluation of the inversions

As described in Sect. 3.3, we assimilated 5365, 5393, and
5601 observations into the inversion analysis using CTEM-
CRUNCEP, CTEM-GEM, and BEPS prior fluxes. Based on
these varied numbers of assimilated observations, we ob-
tained χ2 (chi-squared, which is a measure of the consis-
tency of actual model–data mismatch with prescribed error
covariances of model–data mismatch and where values close
to 1.0 indicate consistency) for the three inversions of 0.91,
0.89, and 0.76, and the correlation coefficients between ob-
servations and modeled rms of 0.8398, 0.8436, and 0.8529,
respectively, for CRUNCEP, CTEM-GEM, and BEPS prior

fluxes, respectively. The χ2 and the correlation coefficient
values suggest that the performance of CTEM-GEM and
CTEM-CRUNCEP is quite similar and reliable in terms of
fitting the assimilated observations. Figure 15 shows the his-
togram of the residuals between modeled (using CTEM-
CRUNCEP, CTEM-GEM, and BEPS prior fluxes) and ob-
served CO2 concentrations. It is clear that there are no signif-
icant differences in the shape or width of the frequency distri-
butions. Also, the standard deviations (σ ) are similar and the
biases (µ) are all small relative to the standard deviation bi-
ases for all simulations, indicating that all three experiments
fit the assimilated data about equally well.

The flask observations from surface stations, which were
assimilated by GEOS-Chem in the inversion, only provide
a check on the consistency or setup of the assimilation sys-
tem. We still need to compare to independent observations
that were not assimilated for validation. To more effectively
evaluate the assimilation results, we compare the a posteriori
CO2 fields with independent data that were not ingested in
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(a) CTEM-CRUNCEP (b) CTEM-GEM (c) BEPS

Figure 15. Frequency distributions of the residuals between modeled, using (a) CTEM-CRUNCEP, (b) CTEM-GEM, and (c) BEPS prior
fluxes, respectively, and observed CO2 concentrations, where n is the number of the assimilated observations, µ is the mean bias, and σ is
the mean standard deviation.

the assimilation. Listed in Table 5 are the mean differences
and root mean square errors (RMSEs) of the a posteriori CO2
relative to TCCON data between July 2009 and June 2010.
The middle of the 2-year study period was chosen to avoid
error due to spin-up and spin-down effects. All three fluxes
reproduce the TCCON data well, but the BEPS-based CO2
fields have the smallest mean difference, RMSE, and inter-
station bias of 0.49, 1.23, and 0.49 ppm, respectively. We find
that the RMSE for the CO2 fields based on the CTEM-GEM
and CTEM-CRUNCEP fluxes is identical. We also find that
the fields based on CTEM-GEM have a smaller inter-station
bias of 0.53 ppm, whereas those based on CTEM-CRUNCEP
have a smaller mean difference of 0.53 ppm.

We also compare the a posteriori CO2 fields with HIPPO
aircraft data (see Table 6). As with the comparison to TC-
CON data, we find that the a posteriori fields based on BEPS
fluxes produce the smallest mean difference and RMSE rel-
ative to all of the aircraft data (between 0–10 km and 60◦ S–
60◦ N), with the fields from CTEM-GEM fluxes produc-
ing smaller RMSEs than those obtained from the CTEM-
CRUNCEP fluxes. However, the differences in the RMSE
between CTEM-CRUNCEP and CTEM-GEM are not statis-
tically significant. Overall, the comparisons of the a posteri-
ori results to the independent data indicate that CTEM-GEM
can provide useful a priori fluxes for CO2 inversion analyses.

5 Conclusions

CLASS-CTEM will be used to provide first-guess (a priori)
terrestrial fluxes for the EC-CAS (Polavarapu et al., 2016).
The transport model of EC-CAS that relates surface fluxes
to atmospheric CO2 concentrations is based on the GEM-
MACH-GHG model (Polavarapu et al., 2016). To ensure
consistency between the land and transport model, CLASS-
CTEM will be driven by the standard meteorological forcing
simulated (24 h forecast) by GEM-MACH-GHG. Therefore,
the main focus of this study was to assess the impact of using
the meteorological inputs from GEM-MACH-GHG in sim-

ulating both regional and global carbon fluxes by CLASS-
CTEM.

We first evaluated the quality of the meteorological inputs
from GEM-MACH-GHG against the standard meteorologi-
cal forcing (CRU-NCEP) that is used to drive the latest ver-
sions of CLASS-CTEM, as well as against observation-based
or reanalysis datasets. The comparison shows that radiation
and temperature data from GEM-MACH-GHG and CRU-
NCEP are in good agreement. However, there are some no-
table discrepancies between GEM and CRU-NCEP in terms
of seasonal variations and spatial patterns of precipitation
estimates, especially in the tropics, with GEM being drier
than CRU-NCEP, ERA-Interim, and CRU. That might indi-
cate that the convective scheme used in GEM-MACH-GHG
system needs to be improved in particular over the tropics.

Fluxes produced with GEM meteorology were obtained
using a modified spin-up procedure based on current climate
only. While it is clearly unsatisfactory to use a short clima-
tology to spin up carbon pools, it is an inevitable problem
when coupling a TEM to an assimilation system since the
latter focuses on only a few years at a time. Moreover, opera-
tional weather assimilation systems are constantly changing,
so long datasets of analyses are simply not possible to obtain,
unless reanalysis datasets are used. The differences in the
precipitation fields between GEM-MACH-GHG and CRU-
NCEP was reflected in the estimated carbon fluxes (GPP
and Reco). The amplitude and, to a lesser extent, the phase
of the seasonal cycle are different between the two simula-
tions, especially in the tropics. This is consistent with the
findings of Dalmonech et al. (2015), who found that mete-
orological biases significantly control the magnitude of the
productivity rather than the phenology and the seasonal cy-
cle of carbon fluxes. Overall, the differences in the simu-
lated fluxes between the two CLASS-CTEM simulations in-
dicate that the model is sensitive to the meteorological forc-
ings over all land regions, and agree with the finding of Gar-
naud et al. (2014). Despite the deficiencies in the spin-up pro-
cedure, CTEM-GEM simulates a land carbon sink of −1.2
and −2.2 PgC yr−1 for 2009 and 2010, respectively, which
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is close to the optimized land sink from the CCDAS study
of Peylin et al. (2016) (around 2.2 PgC yr−1 for the 2000–
2009 period) and also compatible with the GCP (Le Quéré
et al., 2015) (2.4± 0.8 PgC yr−1 for the 2000–2009 period).
However, flux estimates over the tropics from CTEM-GEM
should be treated with caution due to the negative biases in
the precipitation fields compared to all other datasets (i.e.,
ERA-Interim, CRU, and CRU-NCEP).

To assess their ability to model CO2 at monitoring stations,
NEE fluxes from CTEM-CRUNCEP and CTEM-GEM were
used as a priori land fluxes in the GEM-MACH-GHG global
atmospheric CO2 transport model. The comparison shows
that the modeled CO2 concentrations forced with CTEM-
GEM have a better match to the observations of CO2 concen-
tration during the NH growing season compared to CTEM-
CRUNCEP. The differences in the modeled CO2 concen-
trations from the two CLASS-CTEM simulations highlight
the sensitivity of the transport model to land fluxes. The re-
sults also provided insights into the deficiencies in CLASS-
CTEM. For example, the comparison indicated that CTEM-
CRUNCEP and CTEM-GEM NEE are overestimated com-
pared to observations at all the selected sites during the NH
winter season. The overestimation of the CO2 concentrations
can be attributed to the larger carbon source simulated by
CLASS-CTEM in the NH regions in wintertime. The re-
sults also show that the two CLASS-CTEM simulations have
some difficulties in capturing the phase of seasonal cycle of
the observations, which indicates deficiencies in the phenol-
ogy scheme of CLASS-CTEM and this should be further in-
vestigated in future studies. The deficiencies in simulating
the seasonal cycle were also noticed in the study by Arora
et al. (2009), who compared simulated monthly CO2 from
CanESM1 (CTEM was used as the land component of that
model) against observations at selected sites and found that
there was a shift in the seasonal cycle (about a month later)
at Barrow, Niwot Ridge, and Mauna Loa (see their Fig. 11).
The study by Anav et al. (2013), which compared 18 Earth
system models, also showed that CanESM2 has some limita-
tions reproducing the net uptake of carbon during spring and
summer months.

To examine the impact of using fluxes from CTEM-GEM
and CTEM-CRUNCEP as a priori flux estimates in atmo-
spheric inversion analyses, we used the GEOS-Chem data as-
similation system since EC-CAS is still under development.
We assimilated in situ atmospheric CO2 observations from
the surface network to estimate optimized monthly mean
NEE fluxes for 2009–2010. The time series of the estimated
fluxes, integrated over different land regions, revealed that
the optimized NEE is shifted from its a priori pattern in order
to fit the data. For comparison with the CTEM-based fluxes
we also used BEPS fluxes (Deng et al., 2014) a priori in
the inversion analyses. We found that the CTEM-based opti-
mized fluxes produced atmospheric CO2 concentrations that
were consistent with those based on BEPS and they fit the as-
similated data about equally well. The results are promising

for the EC-CAS project as they demonstrate that the CTEM-
GEM fluxes can provide useful a priori fluxes for the global
inversion system.

By coupling CLASS-CTEM into EC-CAS, this study
helps to pave the way for the coupled meteorological and
ecosystem model within the EnKF (e.g., see conclusions of
Miller et al., 2015) and is considered an important step to-
ward understanding how meteorological uncertainties affect
both CO2 flux estimates and modeled atmospheric transport.
Ultimately, such an approach will provide more direct feed-
back to the CLASS-CTEM developers and thus help to im-
prove the performance of CLASS-CTEM by identifying the
model limitations based on atmospheric constraints. This can
also lead to improvements in the CanESM which is used to
address the question of the feedback between climate change
and the carbon cycle.

Code and data availability. Fortran code for CLASS-CTEM mod-
eling framework is available on request and upon agreeing to
ECCC’s licensing agreement available at http://collaboration.cmc.
ec.gc.ca/science/rpn.comm. Please contact the coauthor, Joe Melton
(joe.melton@canada.ca), to obtain model code. The GEM and
GEM-MACH source codes are integrated into the unique opera-
tional computing environments of ECCC. These source codes are
copyrighted but are available upon request subject to the GNU
Lesser General Public License (LGPL v2.1) agreement (contact the
coauthor, Michael Neish, at Michael.Neish@canada.ca). Some doc-
umentation on GEM is available at http://collaboration.cmc.ec.gc.
ca/science/rpn/gem/gemdm/gemdm.html and http://collaboration.
cmc.ec.gc.ca/science/rpn/gef_html_public/. ECCC’s model output
data are available at https://weather.gc.ca/grib/index_e.html. The
GEOS-Chem model, including the adjoint code, is freely available
to the public and is distributed through GitLab. Instructions for ob-
taining and running the model are available on the GEOS-Chem
wiki: (http://wiki.seas.harvard.edu/geos-chem/). All data generated
by CLASS-CTEM are available from ECCC upon completion of a
licensing agreement.
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