Articles | Volume 9, issue 12
https://doi.org/10.5194/gmd-9-4339-2016
https://doi.org/10.5194/gmd-9-4339-2016
Model evaluation paper
 | 
05 Dec 2016
Model evaluation paper |  | 05 Dec 2016

Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data

Friderike Kuik, Axel Lauer, Galina Churkina, Hugo A. C. Denier van der Gon, Daniel Fenner, Kathleen A. Mar, and Tim M. Butler

Related authors

Top–down quantification of NOx emissions from traffic in an urban area using a high-resolution regional atmospheric chemistry model
Friderike Kuik, Andreas Kerschbaumer, Axel Lauer, Aurelia Lupascu, Erika von Schneidemesser, and Tim M. Butler
Atmos. Chem. Phys., 18, 8203–8225, https://doi.org/10.5194/acp-18-8203-2018,https://doi.org/10.5194/acp-18-8203-2018, 2018
Short summary
WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley
Andrea Mues, Axel Lauer, Aurelia Lupascu, Maheswar Rupakheti, Friderike Kuik, and Mark G. Lawrence
Geosci. Model Dev., 11, 2067–2091, https://doi.org/10.5194/gmd-11-2067-2018,https://doi.org/10.5194/gmd-11-2067-2018, 2018
The anthropogenic contribution to atmospheric black carbon concentrations in southern Africa: a WRF-Chem modeling study
F. Kuik, A. Lauer, J. P. Beukes, P. G. Van Zyl, M. Josipovic, V. Vakkari, L. Laakso, and G. T. Feig
Atmos. Chem. Phys., 15, 8809–8830, https://doi.org/10.5194/acp-15-8809-2015,https://doi.org/10.5194/acp-15-8809-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025,https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary

Cited articles

Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., de Gouw, J. A., Meagher, J., Hsie, E.-Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos., 117, D06301, https://doi.org/10.1029/2011JD016831, 2012.
Alvarez, R., Weilenmann, M., and Favez, J.-Y.: Evidence of increased mass fraction of NO2 within real-world NOx emissions of modern light vehicles – derived from a reliable online measuring method, Atmos. Environ., 42, 4699–4707, https://doi.org/10.1016/j.atmosenv.2008.01.046, 2008.
Beekmann, M., Kerschbaumer, A., Reimer, E., Stern, R., and Möller, D.: PM measurement campaign HOVERT in the Greater Berlin area: model evaluation with chemically specified particulate matter observations for a one year period, Atmos. Chem. Phys., 7, 55–68, https://doi.org/10.5194/acp-7-55-2007, 2007.
Berlin Senate Department for Urban Development and the Environment: Environment Atlas Berlin/Population Density 2014, available at: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edua_index.shtml (last access: December 2015), 2011a.
Berlin Senate Department for Urban Development and the Environment: Environment Atlas Berlin/Traffic Volumes 2009, available at: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edua_index.shtml (last access: December 2015), 2011b.
Download
Short summary
The study evaluates the performance of a setup of the Weather Research and Forecasting model with chemistry and aerosols (WRF–Chem) for the Berlin–Brandenburg region of Germany. Its sensitivity to updating urban input parameters based on structural data for Berlin is tested, specifying land use classes on a sub-grid scale, downscaling the original emissions to a resolution of ca. 1 km by 1 km for Berlin based on proxy data and model resolution.
Share