Articles | Volume 9, issue 12
Geosci. Model Dev., 9, 4339–4363, 2016
https://doi.org/10.5194/gmd-9-4339-2016

Special issue: The community version of the Weather Research and Forecasting...

Geosci. Model Dev., 9, 4339–4363, 2016
https://doi.org/10.5194/gmd-9-4339-2016
Model evaluation paper
05 Dec 2016
Model evaluation paper | 05 Dec 2016

Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data

Friderike Kuik et al.

Related authors

Top–down quantification of NOx emissions from traffic in an urban area using a high-resolution regional atmospheric chemistry model
Friderike Kuik, Andreas Kerschbaumer, Axel Lauer, Aurelia Lupascu, Erika von Schneidemesser, and Tim M. Butler
Atmos. Chem. Phys., 18, 8203–8225, https://doi.org/10.5194/acp-18-8203-2018,https://doi.org/10.5194/acp-18-8203-2018, 2018
Short summary
WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley
Andrea Mues, Axel Lauer, Aurelia Lupascu, Maheswar Rupakheti, Friderike Kuik, and Mark G. Lawrence
Geosci. Model Dev., 11, 2067–2091, https://doi.org/10.5194/gmd-11-2067-2018,https://doi.org/10.5194/gmd-11-2067-2018, 2018
The anthropogenic contribution to atmospheric black carbon concentrations in southern Africa: a WRF-Chem modeling study
F. Kuik, A. Lauer, J. P. Beukes, P. G. Van Zyl, M. Josipovic, V. Vakkari, L. Laakso, and G. T. Feig
Atmos. Chem. Phys., 15, 8809–8830, https://doi.org/10.5194/acp-15-8809-2015,https://doi.org/10.5194/acp-15-8809-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Simulations of aerosol pH in China using WRF-Chem (v4.0): sensitivities of aerosol pH and its temporal variations during haze episodes
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022,https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
A daily highest air temperature estimation method and spatial–temporal changes analysis of high temperature in China from 1979 to 2018
Ping Wang, Kebiao Mao, Fei Meng, Zhihao Qin, Shu Fang, and Sayed M. Bateni
Geosci. Model Dev., 15, 6059–6083, https://doi.org/10.5194/gmd-15-6059-2022,https://doi.org/10.5194/gmd-15-6059-2022, 2022
Short summary
TransClim (v1.0): a chemistry–climate response model for assessing the effect of mitigation strategies for road traffic on ozone
Vanessa Simone Rieger and Volker Grewe
Geosci. Model Dev., 15, 5883–5903, https://doi.org/10.5194/gmd-15-5883-2022,https://doi.org/10.5194/gmd-15-5883-2022, 2022
Short summary
A description of the first open-source community release of MISTRA-v9.0: a 0D/1D atmospheric boundary layer chemistry model
Josué Bock, Jan Kaiser, Max Thomas, Andreas Bott, and Roland von Glasow
Geosci. Model Dev., 15, 5807–5828, https://doi.org/10.5194/gmd-15-5807-2022,https://doi.org/10.5194/gmd-15-5807-2022, 2022
Short summary
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations
Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles
Geosci. Model Dev., 15, 5787–5805, https://doi.org/10.5194/gmd-15-5787-2022,https://doi.org/10.5194/gmd-15-5787-2022, 2022
Short summary

Cited articles

Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., de Gouw, J. A., Meagher, J., Hsie, E.-Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos., 117, D06301, https://doi.org/10.1029/2011JD016831, 2012.
Alvarez, R., Weilenmann, M., and Favez, J.-Y.: Evidence of increased mass fraction of NO2 within real-world NOx emissions of modern light vehicles – derived from a reliable online measuring method, Atmos. Environ., 42, 4699–4707, https://doi.org/10.1016/j.atmosenv.2008.01.046, 2008.
Beekmann, M., Kerschbaumer, A., Reimer, E., Stern, R., and Möller, D.: PM measurement campaign HOVERT in the Greater Berlin area: model evaluation with chemically specified particulate matter observations for a one year period, Atmos. Chem. Phys., 7, 55–68, https://doi.org/10.5194/acp-7-55-2007, 2007.
Berlin Senate Department for Urban Development and the Environment: Environment Atlas Berlin/Population Density 2014, available at: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edua_index.shtml (last access: December 2015), 2011a.
Berlin Senate Department for Urban Development and the Environment: Environment Atlas Berlin/Traffic Volumes 2009, available at: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edua_index.shtml (last access: December 2015), 2011b.
Download
Short summary
The study evaluates the performance of a setup of the Weather Research and Forecasting model with chemistry and aerosols (WRF–Chem) for the Berlin–Brandenburg region of Germany. Its sensitivity to updating urban input parameters based on structural data for Berlin is tested, specifying land use classes on a sub-grid scale, downscaling the original emissions to a resolution of ca. 1 km by 1 km for Berlin based on proxy data and model resolution.