Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-4155-2016
https://doi.org/10.5194/gmd-9-4155-2016
Model evaluation paper
 | 
21 Nov 2016
Model evaluation paper |  | 21 Nov 2016

A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1) – Part 2: Model validation

Yuji Masutomi, Keisuke Ono, Takahiro Takimoto, Masayoshi Mano, Atsushi Maruyama, and Akira Miyata

Related authors

A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1) – Part 1: Model description
Yuji Masutomi, Keisuke Ono, Masayoshi Mano, Atsushi Maruyama, and Akira Miyata
Geosci. Model Dev., 9, 4133–4154, https://doi.org/10.5194/gmd-9-4133-2016,https://doi.org/10.5194/gmd-9-4133-2016, 2016
Short summary

Related subject area

Biogeosciences
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025,https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Including the phosphorus cycle into the LPJ-GUESS dynamic global vegetation model (v4.1, r10994) – global patterns and temporal trends of N and P primary production limitation
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025,https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025,https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Sources of uncertainty in the SPITFIRE global fire model: development of LPJmL-SPITFIRE1.9 and directions for future improvements
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025,https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
The unicellular NUM v.0.91: a trait-based plankton model evaluated in two contrasting biogeographic provinces
Trine Frisbæk Hansen, Donald Eugene Canfield, Ken Haste Andersen, and Christian Jannik Bjerrum
Geosci. Model Dev., 18, 1895–1916, https://doi.org/10.5194/gmd-18-1895-2025,https://doi.org/10.5194/gmd-18-1895-2025, 2025
Short summary

Cited articles

AsiaFlux: MSE: Mase paddy flux site, available at: http://asiaflux.net/index.php?page_id=83, last access: 5 February 2016.
Betts, R. A.: Integrated approaches to climate-crop modelling: needs and challenges, Philos. T. Roy. Soc. B, 360, 2049–2065, 2005.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, 2007.
Borjigidai, A., Hikosaka, K., Hirose, T., Hasegawa, T., Okada, M., and Kobayashi, K.: Seasonal changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 enrichment, Ann. Bot., 97, 549–557, 2006.
Short summary
We conducted two types of validation for the simulations by MATCRO-Rice developed by Masutomi et al. (2016). The results of the validation indicate that MATCRO-Rice has a high ability to accurately and consistently simulate latent heat flux, sensible heat flux, net carbon uptake by crops, and crop yield.
Share