Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-4155-2016
https://doi.org/10.5194/gmd-9-4155-2016
Model evaluation paper
 | 
21 Nov 2016
Model evaluation paper |  | 21 Nov 2016

A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1) – Part 2: Model validation

Yuji Masutomi, Keisuke Ono, Takahiro Takimoto, Masayoshi Mano, Atsushi Maruyama, and Akira Miyata

Related authors

A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1) – Part 1: Model description
Yuji Masutomi, Keisuke Ono, Masayoshi Mano, Atsushi Maruyama, and Akira Miyata
Geosci. Model Dev., 9, 4133–4154, https://doi.org/10.5194/gmd-9-4133-2016,https://doi.org/10.5194/gmd-9-4133-2016, 2016
Short summary

Related subject area

Biogeosciences
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
China Wildfire Emission Dataset (ChinaWED v1) for the period 2012–2022
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev., 18, 2509–2520, https://doi.org/10.5194/gmd-18-2509-2025,https://doi.org/10.5194/gmd-18-2509-2025, 2025
Short summary
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025,https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary

Cited articles

AsiaFlux: MSE: Mase paddy flux site, available at: http://asiaflux.net/index.php?page_id=83, last access: 5 February 2016.
Betts, R. A.: Integrated approaches to climate-crop modelling: needs and challenges, Philos. T. Roy. Soc. B, 360, 2049–2065, 2005.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, 2007.
Borjigidai, A., Hikosaka, K., Hirose, T., Hasegawa, T., Okada, M., and Kobayashi, K.: Seasonal changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 enrichment, Ann. Bot., 97, 549–557, 2006.
Short summary
We conducted two types of validation for the simulations by MATCRO-Rice developed by Masutomi et al. (2016). The results of the validation indicate that MATCRO-Rice has a high ability to accurately and consistently simulate latent heat flux, sensible heat flux, net carbon uptake by crops, and crop yield.
Share