Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2465-2015
https://doi.org/10.5194/gmd-8-2465-2015
Model description paper
 | 
13 Aug 2015
Model description paper |  | 13 Aug 2015

PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies

O. Aumont, C. Ethé, A. Tagliabue, L. Bopp, and M. Gehlen

Related authors

Inadequacies in the representation of sub-seasonal phytoplankton dynamics in Earth system models
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
Biogeosciences, 22, 2163–2180, https://doi.org/10.5194/bg-22-2163-2025,https://doi.org/10.5194/bg-22-2163-2025, 2025
Short summary
Including different mesozooplankton feeding strategies in a biogeochemical ocean model impacts global ocean biomass and carbon cycle
Lisa Di Matteo, Fabio Benedetti, Sakina-Dorothée Ayata, and Olivier Aumont
EGUsphere, https://doi.org/10.5194/egusphere-2025-1465,https://doi.org/10.5194/egusphere-2025-1465, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023,https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023,https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022,https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary

Related subject area

Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary

Cited articles

Albert, A., Echevin, V., Lévy, M., and Aumont, O.: Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system, J. Geophys. Res., 115, C12033, https://doi.org/10.1029/2010JC006569, 2010.
Allen, J. I., Somerfield, P. J., and Gilbert, F. J.: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models, J. Marine Syst., 64, 3–14, 2007.
Alvain, S., Moulin, C., Dandonneau, Y., and Bréon, F.-M.: Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep-Sea Res. Pt. I, 52, 1989–2004, 2005.
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, 2005.
Anderson, T. R.: Progress in marine ecosystem modelling and the "unreasonable effectiveness of mathematics", J. Marine Syst., 81, 4–11, 2010.
Download
Share