Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HOTSSea v1: a NEMO-based physical Hindcast of the Salish Sea (1980–2018) supporting ecosystem model development
Greig Oldford
CORRESPONDING AUTHOR
Institute for Oceans and Fisheries, University of British Columbia, Vancouver, V6T 1Z4, Canada
Ecosystem Sciences Division, Fisheries and Oceans Canada, Nanaimo, V9T 6N7, Canada
Tereza Jarníková
Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK
Villy Christensen
Institute for Oceans and Fisheries, University of British Columbia, Vancouver, V6T 1Z4, Canada
Michael Dunphy
Ocean Sciences Division, Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, V8L 5T5, Canada
Related authors
No articles found.
Tereza Jarníková, Colin Jones, Steven Rumbold, and Corinne Le Quéré
EGUsphere, https://doi.org/10.5194/egusphere-2025-3374, https://doi.org/10.5194/egusphere-2025-3374, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Southern Ocean winds drive global climate and have strengthened since 1980 due to Antarctic ozone depletion. We assessed which climate reconstructions best capture these changes using sea level pressure observations. We then used an Earth system model to attribute these changes between ozone and greenhouse gas emissions. Ozone depletion dominated past wind acceleration, but greenhouse gases will drive future changes after 2050.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jean-Philippe Paquin, François Roy, Gregory C. Smith, Sarah MacDermid, Ji Lei, Frédéric Dupont, Youyu Lu, Stephanne Taylor, Simon St-Onge-Drouin, Hauke Blanken, Michael Dunphy, and Nancy Soontiens
EGUsphere, https://doi.org/10.5194/egusphere-2023-42, https://doi.org/10.5194/egusphere-2023-42, 2023
Preprint withdrawn
Short summary
Short summary
This paper present the Coastal Ice-Ocean Prediction System implemented operationally at Environment and climate change Canada. The objective is to enhance the numerical guidance in coastal areas to support electronic navigation and response to environmental emergencies in the aquatic environment. Model evaluation against observations shows improvements for most surface ocean variables in the coastal system compared to current coarser-resolution operational systems.
Tereza Jarníková, Elise M. Olson, Susan E. Allen, Debby Ianson, and Karyn D. Suchy
Ocean Sci., 18, 1451–1475, https://doi.org/10.5194/os-18-1451-2022, https://doi.org/10.5194/os-18-1451-2022, 2022
Short summary
Short summary
Understanding drivers of phytoplankton biomass in dynamic coastal regions is key to predicting present and future ecosystem functioning. Using a clustering-based method, we objectively determined biophysical provinces in a complex estuarine sea. The Salish Sea contains three major distinct provinces where phytoplankton dynamics are controlled by diverse stratification regimes. Our method is simple to implement and broadly applicable for identifying structure in large model-derived datasets.
Cited articles
Adachi, S. A. and Tomita, H.: Methodology of the Constraint Condition in Dynamical Downscaling for Regional Climate Evaluation: A Review, J. Geophys. Res.-Atmos., 125, e2019JD032166, https://doi.org/10.1029/2019JD032166, 2020.
Allen, S. E. and Wolfe, M. A.: Hindcast of the timing of the spring phytoplankton bloom in the strait of Georgia, 1968–2010, Prog. Oceanogr., 115, 6–13, https://doi.org/10.1016/j.pocean.2013.05.026, 2013.
Amos, C. L., Martino, S., Sutherland, T. F., and Al Rashidi, T.: Sea Surface Temperature Trends in the Coastal Zone of British Columbia, Canada, J. Coast. Res., 300, 434–446, https://doi.org/10.2112/JCOASTRES-D-14-00114.1, 2015.
Araujo, H. A., Holt, C., Curtis, J. M. R., Perry, R. I., Irvine, J. R., and Michielsens, C. G. J.: Building an ecosystem model using mismatched and fragmented data: a probabilistic network of early marine survival for coho salmon Oncorhynchus kisutch in the Strait of Georgia, Prog. Oceanogr., 115, 41–52, https://doi.org/10.1016/j.pocean.2013.05.022, 2013.
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Gen. Circ. Models Atmosphere, 17, 173–265, 1977.
Beamish, R. J.: Climate and Exceptional Fish Production off the West Coast of North America, Can. J. Fish. Aquat. Sci., 50, 2270–2291, https://doi.org/10.1139/f93-252, 1993.
Beamish, R. J. (Ed.): Climate Change and Northern Fish Populations, National Research Council of Canada, ISBN: 0-660-15780-2, Ottawa, ON, Canada, 739 pp., 1995.
Beamish, R. J., Noakes, D. J., McFarlane, G. A., Klyashtorin, L., Ivanov, V. V., and Kurashov, V.: The regime concept and natural trends in the production of Pacific salmon, Can. J. Fish. Aquat. Sci., 56, 516–526, https://doi.org/10.1139/f98-200, 1999.
Beamish, R. J., Sweeting, R. M., Lange, K. L., Noakes, D. J., Preikshot, D. B., and Neville, C. M.: Early Marine Survival of Coho Salmon in the Strait of Georgia Declines to Very Low Levels, Mar. Coast. Fish., 2, 424–439, https://doi.org/10.1577/C09-040.1, 2010.
Beamish, R. J., Lange, K. L., Neville, C.-E. M., Sweeting, R. M., and Beacham, T. D.: Structural patterns in the distribution of ocean- and stream-type juvenile chinook salmon populations in the Strait of Georgia in 2010 during the critical early marine period, North Pacific Anadromous Fish Commission, https://www.npafc.org/wp-content/uploads/Public-Documents/2011/1354Canada.pdf (last access: 14 January 2025), 2011.
Bluestein, L.: A linear filtering approach to the computation of discrete Fourier transform, IEEE Trans. Audio Electroacoustics, 18, 451–455, https://doi.org/10.1109/TAU.1970.1162132, 1970.
Brockwell, P. J. and Davis, R. A.: Introduction to Time Series and Forecasting, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-29854-2, 2016.
Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F., Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., Williams, K. J., and Poloczanska, E. S.: Geographical limits to species-range shifts are suggested by climate velocity, Nature, 507, 492–495, https://doi.org/10.1038/nature12976, 2014.
Collaud Coen, M., Andrews, E., Bigi, A., Martucci, G., Romanens, G., Vogt, F. P. A., and Vuilleumier, L.: Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope, Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, 2020.
Collins, A. K., Allen, S. E., Pawlowicz, R., Collins, A. K., Allen, S. E., and Pawlowicz, R.: The role of wind in determining the timing of the spring bloom in the Strait of Georgia, Can. J. Fish. Aquat. Sci., 66, 1597–1616, https://doi.org/10.1139/F09-071, 2009.
Cooley, J. W. and Tukey, J. W.: An Algorithm for the Machine Calculation of Complex Fourier Series, Math. Comput., 19, 297–301, 1965.
Copernicus Climate Change Service: ORAS5 global ocean reanalysis monthly data from 1958 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/CDS.67E8EEB7, 2021.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de Mutsert, K., Coll, M., Steenbeek, J., Ainsworth, C., Buszowski, J., Chagaris, D., Christensen, V., Heymans, S. J. J., Lewis, K. A., Libralato, S., Oldford, G., Piroddi, C., Romagnoni, G., Serpetti, N., Spence, M. A., and Walters, C.: Advances in spatial-temporal coastal and marine ecosystem modeling using Ecospace, in: Reference Module in Earth Systems and Environmental Sciences, Elsevier, https://doi.org/10.1016/B978-0-323-90798-9.00035-4, 2023.
Digital Research Alliance of Canada: Advanced Research Computing, https://alliancecan.ca/en/services/advanced-research-computing, last access: 10 June 2022.
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K., Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchitser, E., Powell, T. M., and Rivière, P.: North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838, 2008.
Dosser, H. V., Waterman, S., Jackson, J. M., Hannah, C., and Hunt, B. P. V.: Tidal mixing maintains regional differences in water properties and nutrient ratios in British Columbia coastal waters, ESS Open Archive [preprint], https://doi.org/10.1002/essoar.10505244.1, 2020.
Dosser, H. V., Waterman, S., Jackson, J. M., Hannah, C. G., Evans, W., and Hunt, B. P. V.: Stark Physical and Biogeochemical Differences and Implications for Ecosystem Stressors in the Northeast Pacific Coastal Ocean, J. Geophys. Res.-Oceans, 126, e2020JC017033, https://doi.org/10.1029/2020JC017033, 2021.
Ebbesmeyer, C. C., Coomes, C. A., Cannon, G. A., and Bretschneider, D. E.: Linkage of Ocean and Fjord Dynamics at Decadal Period, in: Aspects of Climate Variability in the Pacific and Western Americas, edited by: Peterson, D. H., American Geophysical Union (AGU), 399–417, https://doi.org/10.1029/gm055p0399, 1989.
Edwards, A., Tai, Travis, Watson, J., Peña, M. A., Hilborn, A., Hannah, C. G., Rooper, C. N., Flynn, K. L., and Oldford, G.: pacea: An R package of Pacific ecosystem information to help facilitate an ecosystem approach to fisheries management, v1.0.0, Zenodo [data set], https://doi.org/10.5281/zenodo.13840804, 2024.
Environment and Climate Change Canada (ECCC): High Resolution Deterministic Prediction System (HRDPS) – Continental [data set] (7.0.0), ECCC Identifier: 5b401fa0-6c29-57f0-b3d5-749f301d829d, https://eccc-msc.github.io/open-data/msc-data/nwp_hrdps/readme_hrdps-datamart_en/ (last access: 10 January 2023), 2020.
Environment and Climate Change Canada (ECCC): HOTSSea Forcings – RDRS v2.1, Zenodo [data set], https://doi.org/10.5281/zenodo.12206291, 2024.
Esenkulova, S., Suchy, K. D., Pawlowicz, R., Costa, M., and Pearsall, I. A.: Harmful Algae and Oceanographic Conditions in the Strait of Georgia, Canada Based on Citizen Science Monitoring, Front. Mar. Sci., 8, 1193, https://doi.org/10.3389/FMARS.2021.725092, 2021.
Fatland, R., MacCready, P., and Oscar, N.: Chapter 14 – LiveOcean, in: Cloud Computing in Ocean and Atmospheric Sciences, edited by: Vance, T. C., Merati, N., Yang, C., and Yuan, M., Academic Press, 277–296, https://doi.org/10.1016/B978-0-12-803192-6.00014-1, 2016.
Feely, R., Doney, S., and Cooley, S.: Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World, Oceanography, 22, 36–47, https://doi.org/10.5670/oceanog.2009.95, 2009.
Fisheries and Oceans Canada (DFO): British Columbia lightstation daily sea-surface temperature and salinity measurements, 1914 to present, DFO [data set], https://catalogue.cioospacific.ca/dataset/ca-cioos_654a4ece-7271-4f5a-ba60-b50a62dbd051?local=en (last access: 10 January 2025), 2022a.
Fisheries and Oceans Canada (DFO): Vertical profiles of seawater properties measured by Conductivity-Temperature-Depth loggers in British Columbia, Canada, 1965 to present, https://catalogue.cioospacific.ca/dataset/ca-cioos_89aa45fc-7b42-426e-9293-e5703534bc4f?local=en (last access: 14 December 2023), 2022b.
Fisheries and Oceans Canada (DFO): Marine Environmental Data Section Archive, Wave Data Online, DFO [data set], https://meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/index-eng.asp (last access: 20 January 2023), 2024.
Foreman, M. G. G., Crawford, W. R., Cherniawsky, J. Y., Henry, R. F., and Tarbotton, M. R.: A high-resolution assimilating tidal model for the northeast Pacific Ocean, J. Geophys. Res.-Oceans, 105, 28629–28651, https://doi.org/10.1029/1999JC000122, 2000.
Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E., and Tulloch, J. D. V.: Where the Ecological Gaps Remain, a Modelers' Perspective, Front. Ecol. Evol., 7, 424, https://doi.org/10.3389/fevo.2019.00424, 2019.
Georgia Strait Alliance: About the Strait, https://georgiastrait.org/issues/about-the-strait-2/, last access: 17 January 2020.
Gasset, N., Fortin, V., Dimitrijevic, M., Carrera, M., Bilodeau, B., Muncaster, R., Gaborit, É., Roy, G., Pentcheva, N., Bulat, M., Wang, X., Pavlovic, R., Lespinas, F., Khedhaouiria, D., and Mai, J.: A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model, Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, 2021.
Gocic, M. and Trajkovic, S.: Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia, Glob. Planet. Change, 100, 172–182, https://doi.org/10.1016/j.gloplacha.2012.10.014, 2013.
Goldfeld, S. M. and Quandt, R. E.: Some Tests for Homoscedasticity, J. Am. Stat. Assoc., 60, 539–547, https://doi.org/10.1080/01621459.1965.10480811, 1965.
Gower, J., King, S., Statham, S., Fox, R., and Young, E.: The malaspina dragon: A newly-discovered pattern of the early spring bloom in the strait of georgia, british columbia, canada, Prog. Oceanogr., 115, 181–188, https://doi.org/10.1016/j.pocean.2013.05.024, 2013.
Groot, C. and Margolis, L.: Pacific salmon life histories, UBC press, Vancouver, BC, xv + 564 pp., ISBN 0-7748-0359-2, 1991.
Gruber, N., Boyd, P. W., Frölicher, T. L., and Vogt, M.: Biogeochemical extremes and compound events in the ocean, Nature, 600, 395–407, https://doi.org/10.1038/s41586-021-03981-7, 2021.
Guan, L.: Spatial and temporal dynamics of larval fish assemblages in the Strait of Georgia, PhD Dissertation, University of Victoria, Victoria, BC, Canada, xvi + 158 pp., https://dspace.library.uvic.ca/items/72db1611-a9db-4d0e-920c-3b3ce854fd8f (last access: 10 January 2025), 2015.
Hakai Institute: Hakai Water Properties Vertical Profile Data Measured by Oceanographic Profilers, Provisional, Hakai Institute [data set], https://catalogue.hakai.org/dataset/ca-cioos_6143028b-028d-46c7-a67d-f3a513435e63?local=en (last access: 10 September 2024), 2024.
Hare, S. R. and Mantua, N. J.: Empirical evidence for North Pacific regime shifts in 1977 and 1989, Prog. Oceanogr., 47, 103–145, https://doi.org/10.1016/S0079-6611(00)00033-1, 2000.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Harrison, P. J., Fulton, J. D., Taylor, F. J. R., Parsons, T. R., Futon, J. E., and Taylor, F. J. R.: Review of the Biological Oceanography of the Strait of Georgia: Pelagic Environment, Can. J. Fish. Aquat. Sci., 40, 1064–1094, https://doi.org/10.1139/f83-129, 1983.
Healey, M. C.: The ecology of juvenile salmon in Georgia Strait, British Columbia, in: Salmonid ecosystems of the North Pacific, 203–229, ISBN 0870713353, 1980.
Helsel, D. R. and Hirsch, R. M.: Statistical methods in water resources, Elsevier, Netherlands, 522 pp., ISBN 0-444-81463-9, 1992.
Hermann, A. J., Cheng, W., Stabeno, P. J., Pilcher, D. J., Kearney, K. A., and Holsman, K. K.: Applications of Biophysical Modeling to Pacific High-Latitude Ecosystems, Oceanography, 36, 101–108, 2023.
Hernández-Carrasco, I., Alou-Font, E., Dumont, P.-A., Cabornero, A., Allen, J., and Orfila, A.: Lagrangian flow effects on phytoplankton abundance and composition along filament-like structures, Prog. Oceanogr., 189, 102469, https://doi.org/10.1016/j.pocean.2020.102469, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Ianson, D., Allen, S. E., Moore-Maley, B. L., Johannessen, S. C., and Macdonald, and Robie W.: Vulnerability of a semienclosed estuarine sea to ocean acidification in contrast with hypoxia, Geophys. Res. Lett., 43, 5793–5801, https://doi.org/10.1002/2016GL068996, 2016.
Institute for Ocean Sciences (IOS) Water Properties Group, Water Properties Database, https://www.waterproperties.ca/, last access: 10 January 2025.
Islam, S. U., Hay, R. W., Déry, S. J., and Booth, B. P.: Modelling the impacts of climate change on riverine thermal regimes in western Canada's largest Pacific watershed, Sci. Rep., 9, 11398, https://doi.org/10.1038/s41598-019-47804-2, 2019.
Jackson, J. M., Bianucci, L., Hannah, C. G., Carmack, E. C., and Barrette, J.: Deep Waters in British Columbia Mainland Fjords Show Rapid Warming and Deoxygenation From 1951 to 2020, Geophys. Res. Lett., 48, e2020GL091094, https://doi.org/10.1029/2020GL091094, 2021.
Jarníková, T., Ianson, D., Allen, S. E., Shao, A. E., and Olson, E. M.: Anthropogenic Carbon Increase has Caused Critical Shifts in Aragonite Saturation Across a Sensitive Coastal System, Glob. Biogeochem. Cycles, 36, e2021GB007024, https://doi.org/10.1029/2021GB007024, 2022.
Johannessen, S. C., Masson, D., and Macdonald, R. W.: Oxygen in the deep Strait of Georgia, 1951–2009: The roles of mixing, deep-water renewal, and remineralization of organic carbon, Limnol. Oceanogr., 59, 211–222, https://doi.org/10.4319/lo.2014.59.1.0211, 2014.
Johannessen, S. C., Macdonald, R. W., and Strivens, J. E.: Has primary production declined in the Salish Sea?, Can. J. Fish. Aquat. Sci., 363–6310, https://doi.org/10.1139/cjfas-2020-0115, 2020.
Jones, A. R., Hosegood, P., Wynn, R. B., De Boer, M. N., Butler-Cowdry, S., and Embling, C. B.: Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot, Prog. Oceanogr., 128, 30–48, https://doi.org/10.1016/j.pocean.2014.08.002, 2014.
Kärnä, T., Ljungemyr, P., Falahat, S., Ringgaard, I., Axell, L., Korabel, V., Murawski, J., Maljutenko, I., Lindenthal, A., Jandt-Scheelke, S., Verjovkina, S., Lorkowski, I., Lagemaa, P., She, J., Tuomi, L., Nord, A., and Huess, V.: Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea, Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, 2021.
Kendall, M. G.: Rank correlation methods, 1st edn., Griffin, London, vii + 196 p., https://webcat.library.ubc.ca/vwebv/holdingsInfo?bibId=2313941 (last access: 14 January 2025), 1948.
Khangaonkar, T., Sackmann, B., Long, W., Mohamedali, T., and Roberts, M.: Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model, Ocean Dynam., 62, 1353–1379, https://doi.org/10.1007/S10236-012-0562-4, 2012.
Khangaonkar, T., Nugraha, A., Xu, W., and Balaguru, K.: Salish Sea Response to Global Climate Change, Sea Level Rise, and Future Nutrient Loads, J. Geophys. Res.-Oceans, 124, 3876–3904, https://doi.org/10.1029/2018JC014670, 2019.
Khangaonkar, T., Nugraha, A., Lakshitha, P., Keister, J. E., and Borde, A.: Projections of algae, eelgrass, and zooplankton ecological interactions in the inner Salish Sea – for future climate and altered oceanic states, Ecol. Model., 441, 109420, https://doi.org/10.1016/j.ecolmodel.2020.109420, 2021a.
Khangaonkar, T., Nugraha, A., Yun, S. K., Premathilake, L., Keister, J. E., and Bos, J.: Propagation of the 2014–2016 Northeast Pacific Marine Heatwave Through the Salish Sea, Front. Mar. Sci., 8, 787604, https://doi.org/10.3389/fmars.2021.787604, 2021b.
Levier, B., Tréguier, A.-M., Madec, G., and Garnier, V.: Free surface and variable volume in the NEMO code, IFremer (Project Deliverable Report No. MERSEA-WP09-CNRS-STR-03-1A; p. 46, France, Zenodo, https://doi.org/10.5281/zenodo.3244182, 2007.
Libralato, S. and Solidoro, C.: Bridging biogeochemical and food web models for an End-to-End representation of marine ecosystem dynamics: The Venice lagoon case study, Ecol. Model., 220, 2960–2971, 2009.
Lin, Y., Dunphy, M., Krassovski, M., Blanken, H., and Hourston, R.: Preliminary development of a relocatable ocean model system for the west coast of Canada: A summary of OPP FA5 modeling (Canadian Technical Report of Hydrography and Ocean Sciences No. 343; p. v + 25 p.), Fisheries & Oceans Canada, ISBN: 978-0-660-45245-6, https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/41073794.pdf (last access: 10 January 2025), 2022.
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., and Ackerly, D. D.: The velocity of climate change, Nature, 462, 1052–1055, https://doi.org/10.1038/nature08649, 2009.
MacCready, P., McCabe, R. M., Siedlecki, S. A., Lorenz, M., Giddings, S. N., Bos, J., Albertson, S., Banas, N. S., and Garnier, S.: Estuarine Circulation, Mixing, and Residence Times in the Salish Sea, J. Geophys. Res.-Oceans, 126, e2020JC016738, https://doi.org/10.1029/2020JC016738, 2021.
Macias, D., Garcia-Gorriz, E., Piroddi, C., and Stips, A.: Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years, Glob. Biogeochem. Cycles, 28, 897–907, 2014.
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Zenodo [code], https://doi.org/10.5281/zenodo.1464816, 2017.
Madec, G., Bell, M., Blaker, A., Bricaud, C., Bruciaferri, D., Castrillo, M., Calvert, D., Chanut, J., Clementi, E., Coward, A., Epicoco, I., Éthé, C., Ganderton, J., Harle, J., Hutchinson, K., Iovino, D., Lea, D., Lovato, T., Martin, M., Martin, N., Mele, F., Martins, D., Masson, S., Mathiot, P., Mele, F., Mocavero, S., Müller, S., Nurser, A. J. G., Paronuzzi, S., Peltier, M., Person, R., Rousset, C., Rynders, S., Samson, G., Téchené, S., Vancoppenolle, M., and Wilson, C.: NEMO Ocean Engine Reference Manual, Zenodo, https://doi.org/10.5281/zenodo.8167700, 2023.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Mantua, N. J. and Hare, S. R.: The Pacific Decadal Oscillation, J. Oceanogr., 58, 35–44, https://doi.org/10.1023/A:1015820616384, 2002.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production, B. Am. Meteorol. Soc., 78, 1069–1079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2, 1997.
Martins, E. G., Hinch, S. G., Patterson, D. A., Hague, M. J., Cooke, S. J., Miller, K. M., Lapointe, M. F., English, K. K., and Farrell, A. P.: Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser River sockeye salmon (Oncorhynchus nerka), Glob. Change Biol., 17, 99–114, https://doi.org/10.1111/j.1365-2486.2010.02241.x, 2011.
Masson, D.: Deep Water Renewal in the Strait of Georgia, Estuar. Coast. Shelf Sci., 54, 115–126, https://doi.org/10.1006/ecss.2001.0833, 2002.
Masson, D. and Cummins, P. F.: Temperature trends and interannual variability in the Strait of Georgia, British Columbia, Cont. Shelf Res., 27, 634–649, 2007.
Masson, D. and Peña, A.: Chlorophyll distribution in a temperate estuary: The Strait of Georgia and Juan de Fuca Strait, Estuar. Coast. Shelf Sci., 82, 19–28, https://doi.org/10.1016/j.ecss.2008.12.022, 2009.
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an Integrating Concept in Earth Science, Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588, 2006.
Melnychuk, M. C., Welch, D. W., and Walters, C. J.: Spatio-temporal migration patterns of Pacific Salmon smolts in rivers and coastal marine waters, PLoS ONE, 5, e12916, https://doi.org/10.1371/journal.pone.0012916, 2010.
Melnychuk, M. C., Christensen, V., and Walters, C. J.: Meso-scale movement and mortality patterns of juvenile coho salmon and steelhead trout migrating through a coastal fjord, Environ. Biol. Fishes, 96, 325–339, https://doi.org/10.1007/s10641-012-9976-6, 2013.
Miller, K. M., Teffer, A., Tucker, S., Li, S., Schulze, A. D., Trudel, M., Juanes, F., Tabata, A., Kaukinen, K. H., Ginther, N. G., Ming, T. J., Cooke, S. J., Hipfner, J. M., Patterson, D. A., and Hinch, S. G.: Infectious disease, shifting climates, and opportunistic predators: Cumulative factors potentially impacting wild salmon declines, Evol. Appl., 7, 812–855, https://doi.org/10.1111/eva.12164, 2014.
Millero, F.: History of the Equation of State of Seawater, Oceanography, 23, 18–33, https://doi.org/10.5670/oceanog.2010.21, 2010.
Moore, S. K., Johnstone, J. A., Banas, N. S., and Salathé, E. P.: Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA, Harmful Algae, 48, 1–11, https://doi.org/10.1016/j.hal.2015.06.008, 2015.
Morrison, J., Quick, M. C., and Foreman, M. G. G.: Climate change in the Fraser River watershed: flow and temperature projections, J. Hydrol., 263, 230–244, 2002.
Morrison, J., Foreman, M. G. G., and Masson, D.: A method for estimating monthly freshwater discharge affecting British Columbia coastal waters, Atmos. Ocean, 50, 1–8, https://doi.org/10.1080/07055900.2011.637667, 2012.
NOAA National Data Buoy Center: Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys, NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/archive/accession/NDBC-CMANWx (last access: 10 January 2025), 1971.
Oldford, G.: goldford/HOTSSea_v1_NEMOandSupportCode: HOTSSea v1 Code for GMD-2024-58 v2, Zenodo [code], https://doi.org/10.5281/zenodo.13887813, 2024a.
Oldford, G.: HOTSSea Model v1 monthly outputs (v1.02.4), Zenodo [data set], https://doi.org/10.5281/zenodo.13942109, 2024b.
Oldford, G. and Dunphy, M.: HOTSSea Forcings – HRDPS, Zenodo [data set] https://doi.org/10.5281/zenodo.12193924, 2024a.
Oldford, G. and Dunphy, M.: HOTSSea v1 Forcings – CIOPSW, ERA5, ORAS5, Obs, Runoff etc, Zenodo [data set], https://doi.org/10.5281/zenodo.12312769, 2024b.
Olson, E. M., Allen, S. E., Do, V., Dunphy, M., and Ianson, D.: Assessment of Nutrient Supply by a Tidal Jet in the Northern Strait of Georgia Based on a Biogeochemical Model, J. Geophys. Res.-Oceans, 125, e2019JC015766, https://doi.org/10.1029/2019jc015766, 2020.
Pacific Salmon Foundation (PSF): Digital elevation model for the Salish Sea at a resolution of 80 metres, Pacific Salmon Foundation (PSF) [data set], https://doi.org/10.48689/6b05c683-10f5-44fe-9983-7914e5cf0c72, 2014.
Pacific Salmon Foundation (PSF): CSOP- CTD readings in the Strait of Georgia [data set], v31-12-2022, https://soggy2.zoology.ubc.ca/geonetwork/srv/eng/catalog.search#/metadata/21cf5dad-692e-42ac-98e6-e9067289814c (last access: 14 January 2025), 2023.
Parzen, E.: An approach to empirical time series analysis, Radio Sci., 68, 937–951, 1964.
Pata, P. R., Galbraith, M., Young, K., Margolin, A. R., Perry, R. I., and Hunt, B. P. V.: Persistent zooplankton bioregions reflect long-term consistency of community composition and oceanographic drivers in the NE Pacific, Prog. Oceanogr., 206, 102849, https://doi.org/10.1016/j.pocean.2022.102849, 2022.
Pauly, D.: The gill-oxygen limitation theory (GOLT) and its critics, Sci. Adv., 7, eabc6050, https://doi.org/10.1126/sciadv.abc6050, 2021.
Pauly, D. and Cheung, W. W. L.: Sound physiological knowledge and principles in modeling shrinking of fishes under climate change, Glob. Change Biol., 24, e15–e26, https://doi.org/10.1111/gcb.13831, 2018.
Pawlowicz, R., Hannah, C., and Rosenberger, A.: Lagrangian observations of estuarine residence times, dispersion, and trapping in the Salish Sea, Estuar. Coast. Shelf Sci., 225, 106246, https://doi.org/10.1016/j.ecss.2019.106246, 2019.
Pearsall, A. I., Schmidt, M., Kemp, I., and Riddell, B.: Factors Limiting Survival of Juvenile Chinook Salmon, Coho Salmon and Steelhead in the Salish Sea: Synthesis of Findings of the Salish Sea Marine Survival Project, Pacific Salmon Fountain, Vancouver, BC, https://marinesurvival.wpengine.com/wp-content/uploads/2021PSF-SynthesisPaper-Screen.pdf (last access: 14 January 2025), 2021.
Peña, M. A., Masson, D., and Callendar, W.: Annual plankton dynamics in a coupled physical–biological model of the Strait of Georgia, British Columbia, Prog. Oceanogr., 146, 58–74, 2016.
Perry, I.: Vignette 2: Lower Trophic Levels in the Salish Sea, in: State Salish Sea, edited by: Sobocinski, K. L., Broadhurst, G., and Baloy, N. J. K., Salish Sea Institute, Western Washington University, https://doi.org/10.25710/vfhb-3a69, 2021.
Piroddi, C., Akoglu, E., Andonegi, E., Bentley, J. W., Celiæ, I., Coll, M., Dimarchopoulou, D., Friedland, R., de Mutsert, K., Girardin, R., Garcia-Gorriz, E., Grizzetti, B., Hernvann, P. Y., Heymans, J. J., Müller-Karulis, B., Libralato, S., Lynam, C. P., Macias, D., Miladinova, S., Moullec, F., Palialexis, A., Parn, O., Serpetti, N., Solidoro, C., Steenbeek, J., Stips, A., Tomczak, M. T., Travers-Trolet, M., and Tsikliras, A. C.: Effects of Nutrient Management Scenarios on Marine Food Webs: A Pan-European Assessment in Support of the Marine Strategy Framework Directive, Front. Mar. Sci., 8, 596797, https://doi.org/10.3389/fmars.2021.596797, 2021.
Potisomporn, P., Adcock, T. A. A., and Vogel, C. R.: Evaluating ERA5 reanalysis predictions of low wind speed events around the UK, Energy Rep., 10, 4781–4790, https://doi.org/10.1016/j.egyr.2023.11.035, 2023.
Preikshot, D. B.: The influence of geographic scale, climate and trophic dynamics upon North Pacific oceanic ecosystem models, University of British Columbia, 208 pp., https://doi.org/10.14288/1.0074902, 2007.
Riche, O., Johannessen, S. C., and Macdonald, R. W.: Why timing matters in a coastal sea: Trends, variability and tipping points in the Strait of Georgia, Canada, J. Mar. Syst., 131, 36–53, 2014.
Riddell, B., Brodeur, R. D., Bugaev, A. V., Moran, P., Murphy, J. M., Orsi, J. A., Trudel, M., Weitkamp, L. A., Wells, B. K., and Wertheimer, A. C.: Ocean ecology of Chinook salmon, in: Ocean Ecology of Pacific Salmon and Trout, edited by: Beamish, R. J., American Fisheries Society, Bethesda, Maryland, 555–696, ISBN 978-1-934874-45-5, 2018.
Rose, K. A.: End-to-end models for marine ecosystems: Are we on the precipice of a significant advance or just putting lipstick on a pig?, Sci. Mar., 76, 195–201, https://doi.org/10.3989/scimar.03574.20B, 2012.
Rose, K. A., Allen, J. I., Artioli, Y., Barange, M., Blackford, J., Carlotti, F., Creekmore, S., Cropp, R., Daewel, U., Edwards, K., Flynn, K., Hill, S. L., HilleRisLambers, R., Huse, G., Mackinson, S., Mergrey, B., Moll, A., Rivkin, R., Salihoglu, B., Schrum, C., Shannon, L., Shin, Y., Smith, S. L., Smith, C., Solidoro, C., St. John, M., and Zhou, M.: End-To-End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps, Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci., 2, 115–130, https://doi.org/10.1577/C09-059.1, 2010.
Schulzweida, U.: CDO User Guide, Zenodo, https://doi.org/10.5281/zenodo.7112925, 2022.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and Statistical Modeling with Python, in: Proceedings of the 9th Python in Science Conference, Austin, Texas, 28 June–3 July 2010, 92–96, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Shapiro, S. S. and Wilk, M. B.: An Analysis of Variance Test for Normality (Complete Samples), Biometrika, 52, 591–611, https://doi.org/10.2307/2333709, 1965.
Sharma, R., Vélez-Espino, L. A., Wertheimer, A. C., Mantua, N., and Francis, R. C.: Relating spatial and temporal scales of climate and ocean variability to survival of Pacific Northwest Chinook salmon (Oncorhynchus tshawytscha), Fish. Oceanogr., 22, 14–31, https://doi.org/10.1111/fog.12001, 2013.
Snauffer, E. L., Masson, D., and Allen, S. E.: Modelling the dispersal of herring and hake larvae in the Strait of Georgia for the period 2007–2009, Fish. Oceanogr., 23, 375–388, https://doi.org/10.1111/fog.12072, 2014.
Sobocinski, K. L., Kendall, N. W., Greene, C. M., and Schmidt, M. W.: Ecosystem indicators of marine survival in Puget Sound steelhead trout, Prog. Oceanogr., 188, 102419, https://doi.org/10.1016/j.pocean.2020.102419, 2020.
Sobocinski, K. L., Greene, C. M., Anderson, J. H., Kendall, N. W., Schmidt, M. W., Zimmerman, M. S., Kemp, I. M., Kim, S., and Ruff, C. P.: A hypothesis-driven statistical approach for identifying ecosystem indicators of coho and Chinook salmon marine survival, Ecol. Indic., 124, 107403, https://doi.org/10.1016/j.ecolind.2021.107403, 2021.
Soontiens, N. and Allen, S. E.: Modelling sensitivities to mixing and advection in a sill-basin estuarine system, Ocean Model., 112, 17–32, https://doi.org/10.1016/j.ocemod.2017.02.008, 2017.
Soontiens, N., Allen, S. E., Latornell, D., Souëf, K. L., Paquin, J., Lu, Y., Thompson, K., Korabel, V., Soontiens, N., Allen, S. E., Latornell, D., Souëf, K. L., Paquin, J., Lu, Y., Thompson, K., Korabel, V., Surges, S., Soontiens, N., Allen, S. E., Latornell, D., Souëf, K. L., and Machuca, I.: Storm Surges in the Strait of Georgia Simulated with a Regional Model, Atmos. Ocean, 54, 1–21, https://doi.org/10.1080/07055900.2015.1108899, 2016.
Suchy, K. D., Young, K., Galbraith, M., Perry, R. I., and Costa, M.: Match/Mismatch Between Phytoplankton and Crustacean Zooplankton Phenology in the Strait of Georgia, Canada, Front. Mar. Sci., 9, 832684, https://doi.org/10.3389/fmars.2022.832684, 2022.
Teffer, A. K., Bass, A. L., Miller, K. M., Patterson, D. A., Juanes, F., and Hinch, S. G.: Infections, fisheries capture, temperature, and host responses: multistressor influences on survival and behaviour of adult Chinook salmon, Ocean Track. Netw. Adv. Aquat. Res. Manag., 75, 2069–2083, https://doi.org/10.1139/cjfas-2017-0491, 2018.
Theil, H.: A rank-invariant method of linear and polynominal regression analysis, Indagationes Mathematicae, 12, 1397–1412, 1950.
Thomson, R. E. and Huggett, W. S.: M2 Baroclinic Tides in Johnstone Strait, British Columbia, J. Phys. Oceanogr., 10, 1509–1539, https://doi.org/10.1175/1520-0485(1980)010<1509:MBTIJS>2.0.CO;2, 1980.
Tietsche, S., Alonso-Balmaseda, M., Zuo, H., and de Rosnay, P.: Comparing Arctic winter sea-ice thickness from SMOS and ORAS5, Tech. Memo., https://www.ecmwf.int/en/elibrary/17275-comparing-arctic-winter-sea-ice-thickness-smos-and-oras5 (last access: 14 January 2025), 2017.
Trudel, M. and Tucker, S.: Depth distribution of 1SW Chinook salmon in Quatsino Sound, British Columbia, during winter, North Pacific Anadromous Fish Commission, Research Document No. 1453, 8 pp., https://www.npafc.org/wp-content/ (last access: 10 January 2025), 2013.
Trudel, M., Fisher, J., Orsi, J. A., Morris, J. F. T., Thiess, M. E., Sweeting, R. M., Hinton, S., Fergusson, E. A., and Welch, D. W.: Distribution and Migration of Juvenile Chinook Salmon Derived from Coded Wire Tag Recoveries along the Continental Shelf of Western North America, Trans. Am. Fish. Soc., 138, 1369–1391, https://doi.org/10.1577/t08-181.1, 2009.
Tucker, S., Trudel, M., Welch, D. W., Candy, J. R., Morris, J. F. T., Thiess, M. E., Wallace, C., Teel, D. J., Crawford, W., Farley, E. V., and Beacham, T. D.: Seasonal Stock-Specific Migrations of Juvenile Sockeye Salmon along the West Coast of North America: Implications for Growth, Trans. Am. Fish. Soc., 138, 1458–1480, https://doi.org/10.1577/T08-211.1, 2009.
Tuller, S. E.: Measured wind speed trends on the west coast of Canada, Int. J. Climatol., 24, 1359–1374, https://doi.org/10.1002/joc.1073, 2004.
Virtanen, P., Gommers, R., Oliphant, T. E., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Walters, C. J. and Christensen, V.: Effect of non-additivity in mortality rates on predictions of potential yield of forage fishes, Ecol. Model., 410, 108776, https://doi.org/10.1016/j.ecolmodel.2019.108776, 2019.
Walters, C. J., Pauly, D., and Christensen, V.: Ecospace: Prediction of Mesoscale Spatial Patterns in Trophic Relationships of Exploited Ecosystems, with Emphasis on the Impacts of Marine Protected Areas, Ecosystems, 2, 539–554, https://doi.org/10.1007/s12009-000-0069-3, 1999.
Walther, B. A. and Moore, J. L.: The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance, Ecography, 28, 815–829, https://doi.org/10.1111/j.2005.0906-7590.04112.x, 2005.
Welch, D. W., Melnychuk, M. C., Payne, J. C., Rechisky, E. L., Porter, A. D., Jackson, G. D., Ward, B. R., Vincent, S. P., Wood, C. C., and Semmens, J.: In situ measurement of coastal ocean movements and survival of juvenile Pacific salmon, P. Natl. Acad. Sci. USA, 108, 8708–8713, https://doi.org/10.1073/pnas.1014044108, 2011.
White, H.: A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity, Econometrica, 48, 817–838, https://doi.org/10.2307/1912934, 1980.
Wilcox, R.: A Note on the Theil-Sen Regression Estimator When the Regressor Is Random and the Error Term Is Heteroscedastic, Biom. J., 40, 261–268, https://doi.org/10.1002/(SICI)1521-4036(199807)40:3<261::AID-BIMJ261>3.0.CO;2-V, 1998.
Willmott, C. J.: On the Validation of Models, Phys. Geogr., 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981.
Yin, K., Goldblatt, R. H., Harrison, P. J., John, M. A. S., Clifford, P. J., Beamish, R. J., St. John, M. A., Clifford, P. J., and Beamish, R. J.: Importance of wind and river discharge in influencing nutrient dynamics and phytoplankton production in summer in the central Strait of Georgia, Mar. Ecol. Prog. Ser., 161, 173–183, https://doi.org/10.3354/meps161173, 1997.
Yue, S., Pilon, P., Phinney, B., and Cavadias, G.: The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Process., 16, 1807–1829, https://doi.org/10.1002/hyp.1095, 2002.
Zaron, E. D.: Introduction to Ocean Data Assimilation, in: Operational Oceanography in the 21st Century, edited by: Schiller, A. and Brassington, G. B., Springer Netherlands, Dordrecht, 321–350, https://doi.org/10.1007/978-94-007-0332-2_13, 2011.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
We developed a 3D ocean model called the Hindcast of the Salish Sea (HOTSSea v1) that recreates physical conditions throughout the Salish Sea from 1980 to 2018. It was not clear that acceptable accuracy could be achieved because of computational and data limitations, but the model's predictions agreed well with observations. When we used the model to examine ocean temperature trends in areas that lack observations, it indicated that some seasons and areas are warming faster than others.
We developed a 3D ocean model called the Hindcast of the Salish Sea (HOTSSea v1) that recreates...