Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-4705-2024
https://doi.org/10.5194/gmd-17-4705-2024
Model description paper
 | 
17 Jun 2024
Model description paper |  | 17 Jun 2024

DELWAVE 1.0: deep learning surrogate model of surface wave climate in the Adriatic Basin

Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer

Related authors

The EUPPBench postprocessing benchmark dataset v1.0
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023,https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary

Related subject area

Oceanography
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024,https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024,https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024,https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary

Cited articles

Antonioli, F., Anzidei, M., Amorosi, A., Lo Presti, V., Mastronuzzi, G., Deiana, G., De Falco, G., Fontana, A., Fontolan, G., Lisco, S., Marsico, A., Moretti, M., Orrù, P., Sannino, G., Serpelloni, E., and Vecchio, A.: Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100, Quaternary Sci. Rev., 158, 29–43, https://doi.org/10.1016/j.quascirev.2016.12.021, 2017. a
Astariz, S. and Iglesias, G.: The economics of wave energy: A review, Renew. Sust. Energ. Rev., 45, 397–408, https://doi.org/10.1016/j.rser.2015.01.061, 2015. a
Bellafiore, D., Bucchignani, E., Gualdi, S., Carniel, S., Djurdjević, V., and Umgiesser, G.: Assessment of meteorological climate models as inputs for coastal studies, Ocean Dynam., 62, 555–568, https://doi.org/10.1007/s10236-011-0508-2, 2012. a
Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F., Sclavo, M., Langone, L., and Carniel, S.: Response of the Adriatic Sea to an intense cold air outbreak: Dense water dynamics and wave-induced transport, Prog. Oceanogr., 128, 115–138, https://doi.org/10.1016/j.pocean.2014.08.015, 2014. a
Benetazzo, A., Davison, S., Barbariol, F., Mercogliano, P., Favaretto, C., and Sclavo, M.: Correction of ERA5 Wind for Regional Climate Projections of Sea Waves, Water, 14, 1590, https://doi.org/10.3390/w14101590, 2022. a
Download
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.