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Abstract. We propose a new point-prediction model, the
DEep Learning WAVe Emulating model (DELWAVE), which
successfully emulates the behaviour of a numerical surface
ocean wave model (Simulating WAves Nearshore, SWAN)
at a sparse set of locations, thus enabling numerically
cheap large-ensemble prediction over synoptic to climate
timescales. DELWAVE was trained on COSMO-CLM (Cli-
mate Limited-area Model) and SWAN input data during the
period of 1971–1998, tested during 1998–2000, and cross-
evaluated over the far-future climate time window of 2071–
2100. It is constructed from a convolutional atmospheric en-
coder block, followed by a temporal collapse block and,
finally, a regression block. DELWAVE reproduces SWAN
model significant wave heights with a mean absolute error
(MAE) of between 5 and 10 cm, mean wave directions with
a MAE of 10–25°, and a mean wave period with a MAE
of 0.2 s. DELWAVE is able to accurately emulate multi-
modal mean wave direction distributions related to domi-
nant wind regimes in the basin. We use wave power anal-
ysis from linearised wave theory to explain prediction er-
rors in the long-period limit during southeasterly condi-
tions. We present a storm analysis of DELWAVE, employ-
ing threshold-based metrics of precision and recall to show
that DELWAVE reaches a very high score (both metrics over
95 %) of storm detection. SWAN and DELWAVE time se-

ries are compared to each other in the end-of-century sce-
nario (2071–2100) and compared to the control conditions
in the 1971–2000 period. Good agreement between DEL-
WAVE and SWAN is found when considering climatologi-
cal statistics, with a small (≤ 5 %), though systematic, un-
derestimate of 99th-percentile values. Compared to control
climatology over all wind directions, the mismatch between
DELWAVE and SWAN is generally small compared to the
difference between scenario and control conditions, suggest-
ing that the noise introduced by surrogate modelling is sub-
stantially weaker than the climate change signal.

1 Introduction

The multi-decadal characterisation of wave climate is a pri-
mary requirement for a number of applications. Coastal ero-
sion, particularly in sandy, low-lying beaches, is largely
dominated by wave-induced sediment transport at multiple
timescales, with a short-term response at the seasonal or even
at the event scale, mainly given by cross-shore fluxes, and
a long-term response at the annual to decadal scale result-
ing from the modulation of long-shore sediment fluxes and
their spatial gradients (USACE, 2002). In transitional envi-
ronments, wave climate can significantly affect morphody-
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namic processes both directly by locally reworking morpho-
logical features such as shoals and salt marshes (Friedrichs,
2011) or indirectly by controlling the potential sediment sup-
ply from the open coast (Di Silvio et al., 2010; Tognin et al.,
2021). Wave climate is also an important factor controlling
the safety and durability of human infrastructures along the
coast as well as offshore. Not least, in the framework of an
ever-increasing demand for energy availability, particularly
from renewable sources, information on wave climate and its
variability is crucial for assessing the feasibility and improv-
ing the design of wave energy converter facilities (Astariz
and Iglesias, 2015).

In recent decades, the progressively deeper understand-
ing of the physical mechanisms underlying wave dynam-
ics, together with an increasing availability of computational
power, has contributed to making wave modelling the ref-
erence tool for a number of applications at different scales,
from short-term forecasting to multi-decadal hindcasting and
climate predictions (Cavaleri et al., 2007; Morim et al.,
2020). Nonetheless, surface ocean wave modelling in partic-
ular is numerically very expensive. This is related to the fact
that surface waves typically span deeply subgrid short spatial
and temporal scales which are very far from being resolved
in most ocean general circulation models (GCMs). Mod-
elling surface waves therefore typically translates to solv-
ing evolution equations of the directional wave-energy spec-
trum, requiring direction and frequency discretisation at each
model grid point, thus inflating computational demand. Fur-
thermore, notwithstanding the continuous improvements and
particularly when dealing with long-term projections, numer-
ical modelling maintains an intrinsic uncertainty at differ-
ent levels. This impacts not only the very evolution of the
global climate, but also the propagation of the climate sig-
nal through different scales and systems and the numerical
description and parameterisation of the processes involved.
Part of this uncertainty can be addressed by means of an en-
semble approach, in which multiple model descriptions are
provided by considering different physical characterisations
and a different composition of the modelling chain (Parker,
2013). This approach comes at the cost of multiplying, usu-
ally by an order of magnitude, the requirements for computa-
tional power and data storage. This tends to limit the feasibil-
ity of extensive studies on future wave climate, particularly
at the regional to local scale, and can require some heavy
trade-off in terms of resolution, geographical and temporal
coverage, or size of the model ensemble.

Deep learning has been shown to promise great poten-
tial for addressing these issues across multiple fields of sci-
ence, including machine vision and natural language pro-
cessing, and, more recently, in various subfields of meteorol-
ogy (Janssens and Hulshoff, 2022; Beucler et al., 2021; Rasp
et al., 2018) and oceanography (Rus et al., 2023; Sonnewald
et al., 2021; Boehme and Rosso, 2021; Žust et al., 2021;
Mallett et al., 2018). With particular reference to wave dy-
namics applications, James et al. (2018) proposed a machine

Figure 1. Topography and bathymetry of the Adriatic region.
Abbreviations used on the map are as follows: AA stands
for Acqua Alta tower, OB (2 and 3) for Ortona buoy (2
and 3), and MB for Monopoli buoy. Directions of Bora and
Scirocco are marked with beige arrows. The image was cre-
ated by the authors based on EMODnet bathymetry data,
available at https://portal.emodnet-bathymetry.eu/ (last access:
8 June 2022) and the Copernicus European Digital Eleva-
tion Model, available at https://land.copernicus.eu/imagery-in-situ/
eu-dem/eu-dem-v1-0-and-derived-products/eu-dem-v1.0 (last ac-
cess: 8 June 2022).

learning system for predicting the steady-state response of
the sea state in a coastal area to a given wind configuration,
whereas Rodriguez-Delgado and Bergillos (2021) developed
a framework for propagating the open-sea information on in-
coming waves onshore for renewable energy production pur-
poses. In specific cases and for specific tasks, deep learning
methods have been shown to achieve state-of-the-art perfor-
mance, while keeping numerical costs low. This allows for
performance gains, which are often welcome, in particular
when considering computational requirements of classical
geophysical numerical models at high spatial resolutions and
at climate timescales.

In this paper, we present a newly developed deep learning
method, named the DEep Learning WAVe Emulating model
(DELWAVE), for emulating non-stationary modelled surface
sea states, such as those produced by the Simulating WAves
Nearshore (SWAN) model, albeit at a computational price
smaller by several orders of magnitude, in response to given
wind fields. The study site is the Adriatic Sea, a 200 km wide
and 800 km long elongated epicontinental basin in the north-
central Mediterranean. It is surrounded from all sides by the
mountain ridges (Apennines in the west, Alps in the north,
and Dinaric Alps in the east), which topographically con-
strain winds over the basin (Fig. 1). From a modelling point
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of view, this condition requires a high-resolution description
of the atmospheric dynamics and a fine tuning of the physical
parameterisations both at the air–sea and land–sea interfaces
(Cavaleri et al., 2018). Dominant wind–wave forcings con-
sist of the cold northeasterly Bora and warmer southeasterly
Scirocco winds. Bora events are predominantly winter occur-
rences (November through March) of cross-basin continental
airflow through the Dinaric orographic barriers over the Adri-
atic Sea. Scirocco is, on the other hand, a southerly wind that
transports warm and moist air masses from northern Africa
over the Adriatic, can persist for several days, and is chan-
nelled by the Apennines and Dinaric Alps into an along-axis
wind, with a fetch much longer than in the case of Bora.
Wave dynamics in the Adriatic Sea are thus controlled by
short-fetched wind seas and long-fetched swells, which oc-
casionally coexist and propagate over a broad and shallow
continental margin, and are characterised by different multi-
decadal trends (Pomaro et al., 2018) and possibly different
responses to climate change (Bonaldo et al., 2020). As a typ-
ical example of some major challenges associated with wave
modelling in semi-enclosed and coastal seas, the Adriatic Sea
appears to be a suitable testing site for wave model emulation
within the DELWAVE framework.

DELWAVE is based on well-established network archi-
tecture components, adapted to the field of wave forecast-
ing, and it is benchmarked against SWAN performance, both
models forced by the Climate Limited-area Model (COSMO-
CLM) atmospheric climate model of the far-future climate
(2071–2100) in the Adriatic Basin (Bonaldo et al., 2020).

While DELWAVE model, presented in this paper, has
been trained and tested on the outputs of COSMO-CLM and
SWAN models, the model can be used with any regional
atmospheric and wave modelling setup, or their ensembles,
provided that available model results span a large enough
time window to make DELWAVE training meaningful.

The paper is organised as follows. Classical geophysical
models, COSMO-CLM for atmosphere and SWAN for sur-
face wave modelling, are described in Sect. 2. DELWAVE
deep network is thoroughly discussed in Sect. 3. Results and
the far-future climate simulations are presented in Sect. 5.

2 Numerical models and datasets

The wind and wave fields used as a reference for this applica-
tion were retrieved from the numerical modelling chain de-
scribed by Bonaldo et al. (2020) for the projection of future
wave climate in a severe climate change scenario.

2.1 Atmospheric climate model COSMO

The wind fields used for the present applications were re-
trieved from an implementation of the regional climate model
(RCM) COSMO-CLM (Bucchignani et al., 2016), the cli-
mate version of the operational forecast model COSMO-

LM (Steppeler et al., 2003) implemented over Italy and
central Europe at a 0.0715° horizontal resolution (approx-
imately 8 km, totalling 224× 230 grid points) and forced
by the general circulation model (GCM) CMCC-CM (Cen-
tro Euro-Mediterraneo sui Cambiamenti Climatici Climate
Model; Scoccimarro et al., 2011). In that implementation,
the analysed period spanned from 1971 to 2100, reproduc-
ing the CMIP5 historical experiment in the 1971–2005 pe-
riod first and subsequently parting into two independent runs,
representing, respectively, the IPCC RCP4.5 (intermediate)
and RCP8.5 (severe) scenarios. The evaluation of the model
showed particularly good skills in reproducing the climatic
features of air temperature and precipitation over Italy (Buc-
chignani et al., 2016; Zollo et al., 2016). A subsequent fo-
cus on the wind fields over the Adriatic Sea (Bonaldo et al.,
2017), whose reproduction is a challenging task for hindcast
and operational models as well due to the geometry of the
basin and its complex coastal orography, highlighted out-
standing skills for both intensity, although with some ten-
dency to overestimate mean wind energy and direction. Most
interestingly for ocean modelling applications, COSMO-
CLM proved capable of capturing the bimodality of Bora
(northeasterly) and Scirocco (southeasterly) in the northern-
most part of the basin, which would be impossible to repro-
duce with previous climate models (Bellafiore et al., 2012).
In a recent work (Benetazzo et al., 2022) COSMO-CLM was
also used to quantile-adjust near-surface wind speeds from
the ECMWF ERA5 reanalysis, thus merging the accuracy
of the former with the higher temporal resolution and the
synchronisation with observed variability in the latter. For
the wave modelling experiment described by Bonaldo et al.
(2020) and for the present work, the COSMO-CLM wind
fields over the Adriatic Sea were retrieved for two 30-year
periods in control conditions in the recent past (CTR; 1971–
2000) and in the future in a severe RCP8.5 climate scenario
(SCE; 2071–2100).

2.2 Wave model SWAN

The modelling run described by Bonaldo et al. (2020) that
provides wave data for this application was thus implemented
in SWAN, with reference to the Adriatic Sea in the CTR
and SCE periods. SWAN provides a phase-averaged descrip-
tion of wind-generated sea states by solving a non-stationary
wave action balance equation (Booij et al., 1999):

∂N

∂t
+
∂cxN

∂x
+
∂cyN

∂y
+
∂cσN

∂σ
+
∂cθN

∂θ
=
Sw

σ
. (1)

N represents the action density – namely, the wave energy
density divided by the relative frequency – and t is time. The
propagation of N (second to fifth term in Eq. 1) is described
in 2-dimensional space (x and y, expressible in both Carte-
sian and spherical coordinates, with speed, represented by cx
and cy , respectively) and spectral space (radian frequency σ
relative to a frame moving with the ocean current; angle θ
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normal to the wave crest; and speed cσ and cθ , respectively).
Sw represents sources and sinks of wave energy density as-
sociated with generation, dissipation, and non-linear wave–
wave interactions.

For the application presented here, the domain was dis-
cretised into an orthogonal curvilinear structured grid, with a
horizontal resolution ranging from approximately 2 km in the
northern region to 8–10 km in the southeasternmost part of
the study area. Calm conditions were prescribed at the open
boundary at the Otranto Strait, where waves generated within
the basin were nonetheless permitted to radiate out of the do-
main. This assumption was made necessary by the lack of
available wave fields consistent with the atmospheric forcing
at the Mediterranean scale, but the validation confirmed that
no major drawbacks in the results could be found beyond
100–200 km from the boundary. Wave spectra were discre-
tised into 25 logarithmically distributed frequencies, ranging
between 0.05 and 0.5 Hz, and 36 directional sectors, whereas
the time step was set to 360 s. The bathymetry was reinter-
polated from a 1 km resolution dataset used in previous ap-
plications (Benetazzo et al., 2014; Bonaldo et al., 2016) and
obtained by merging recent surveys in the shallow northern
basin and in the southern continental margin into previous
basin-scale information. Sea level rise between the CTR and
SCE periods was taken into account by increasing the wa-
ter depth in the latter scenario by 0.70 m, based on estimates
by Antonioli et al. (2017), which is, for the sake of simplic-
ity, uniformly distributed throughout the domain. As wind
forcings from COSMO-CLM were provided with 6-hourly
time step, the same interval was maintained for the output,
in which the main spectral parameters were saved for each
grid point and the full spectra were saved for approximately
600 points along the Adriatic coast. The model validation
was based on directional wave recordings from three obser-
vatories off the Italian coast along the main axis of the basin,
namely the Acqua Alta oceanographic tower (AA, 45.31° N,
12.51° E; see Pomaro et al., 2018) and the Ortona and Mo-
nopoli buoys (respectively, 42.42° N, 14.51° E and 40.98° N,
17.38° E; Fig. 2).

The comparison to observational data (carried out in sta-
tistical terms, as climate models are not synchronised with
observed variability) was focused on significant wave height
(Hs), and mean direction showed overall satisfactory perfor-
mances for the SWAN implementation. The reported ten-
dency of COSMO-CLM to overestimate mean wind energy
actually had a moderate impact on wave modelling and was
partially compensated by other factors such as the southern
boundary conditions and some residual limitations in repro-
ducing orographic jets; its more marked effect was a partial
overestimate of significant wave height statistics in the south-
ernmost regions of the basin.

The end-of-century projections in a severe climate change
condition outlined a composite scenario. While Hs in mean
and stormy conditions appeared to decrease in most of the
basin and for most directions, the effect of storms from the

Figure 2. Geographical domain, validation locations, and locations
considered in SWAN and DELWAVE modelling.

southern quadrant (southwest to southeast) on the northern
Adriatic Sea was expected to intensify. This result, inter-
preted as a consequence of a northbound shift in the storm
tracks (Trenberth et al., 2003; Giorgi and Lionello, 2008) in
the Mediterranean region, was shown to have significant im-
plications for the coastal regions. Besides the obvious impact
of stronger storms where this will happen and besides the
baseline sea level rise exacerbating the effect of storms even
when their intensity is expected to decrease (Lionello et al.,
2017), the spatial variability in the impact of climate change
will result in a modification of the patterns of energy fluxes
onto and along the Adriatic coast, thus modifying the sed-
iment transport rates and gradients and, ultimately, coastal
morphodynamic processes.

2.3 Training and evaluation datasets

The training and the application of DELWAVE were based on
basin-wide wind fields from COSMO-CLM and pointwise
wave time series at six locations exposed to different wave
climates (Fig. 2), including AA (45.31° N, 12.51° E), OB
(42.42° N, 14.51° E), and MB (40.98° N, 17.38° E), which
coincide with the observation points used for the SWAN
model validation in Bonaldo et al. (2020) and are representa-
tive of nearshore conditions, respectively, along the north-
ern, central, and southern Italian coasts. Grado (45.68° N,
13.45° E) lies at the edge of the gulf of Trieste in the north-
ernmost end of the Adriatic Sea, facing south, and is partially
sheltered by the Istrian peninsula. OB2 (42.97° N, 15.35° E)
and OB3 (43.37° N, 16.00° E) are located along an ideal
transect off Ortona, respectively, in the middle of the basin
and along the Croatian coast. Wind fields are provided as
6-hourly meridional and zonal components, whereas wave
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data, also 6-hourly, are given in terms of significant wave
height (Hs), mean wave direction (d), and energy period
(Tm−1,0). The model data from the control (CTR) period
(1971–2000) were used for the network training, whereas fu-
ture scenario (SCE; 2071–2100) data were used as a refer-
ence for assessing the network skills, particularly in terms of
their capability to capture the features of the climate signal.

3 DELWAVE

In this section, we present our DEep Learning WAVe Emula-
tor (DELWAVE). DELWAVE is constructed from three logi-
cally separate parts. We proceed by providing an overview
of the model input fields. Following that, we describe the
DELWAVE architecture in detail and further discuss specific
model architecture decisions using ablation studies. Lastly,
we provide a description of the training procedure.

3.1 Model input tensor

The data DELWAVE uses to conduct both training and in-
ference are available in the form of a tensor, which contains
three logically separate fields: spatial wind field, location en-
coding, and grid encoding. Each of this parts serves a specific
purpose, and we elaborate on each in the following subsec-
tions.

3.1.1 Wind field

Let’s begin by first defining the input (wind) fields from
which core information for surface wave prediction is ex-
tracted. Let I t denote the spatial wind field over the Adriatic
Basin at time t . Then,

I t ∈ R2×nx×ny , dim(I t )= [2,nx,ny], (2)

where the first dimension corresponds to either u or v com-
ponents of the wind vector, while the last two correspond
to the zonal (nx) and meridional (ny) spatial dimensions of
the modelled wind field, which, in our case, are nx = 90 and
ny = 89.

3.1.2 Location encoding and grid encoding

We further complement the wind field input tensor I t by a
spatial encoding matrix. The purpose of this matrix is to pro-
vide the network with information about the specific location
for which we wish to predict surface wave attributes. This ap-
proach allows us to easily add new locations into the training
procedure by simply defining new spatial encoding matrices
without the need for any other modifications to the algorithm
or model architecture.

Let Ll denote the location encoding sparse matrix for lo-
cation l. Then, we have

Ll ∈ Rnx×ny , dim(Ll)= [nx,ny]. (3)

We now denote each ith row (i = 1, . . .,nx) and j th col-
umn (j = 1, . . .,ny) entry of Ll as Ll,(i,j) and compute the
matrix entries as

Ll,(i,j) =
1
√

2πς
exp

[
−

1
2
(li − i+ 1)2+ (lj − j + 1)2

ς2

]
, (4)

where we set the spatial variance to ς2
= 20. This variance

corresponds to a standard deviation of
√

20∼ 4–5 grid cells
or 0.45° in longitude and latitude, as shown in Fig. 3. We de-
termined the value of the spatial variance empirically by test-
ing multiple value configurations where we finally selected
the spatial variance value which produced the best results.
The variables li and lj denote the corresponding location l’s
position in the spatial field expressed in terms of row and col-
umn indices. We illustrate examples of multiple encodings
for different locations in Fig. 3.

Finally, we normalise the matrix entries to the range [0,1]
by

L̃l,(i,j) =
Ll,(i,j)−min(Ll)

max(Ll)−min(Ll)
. (5)

We use this normalised location encoding matrix to aug-
ment the input wind field tensor to form the wind-location
input tensor, I tl , where the tensor is now given for a specific
location target and time.

Here, the augmentation denotes the concatenation of the
starting input tensor and the location encoding along the
first dimension. This entails that dim(I tl )= [3,nx,ny], where
the increased size of the first dimension corresponds to this
augmentation. To create training samples for all k locations
based on the same wind field, we use the following approach:
we first randomly sample a wind field from the dataset. We
then augment the wind field with the k location matrices,
where each individual augmentation produces its own I tl cor-
responding to a location, l. This way, each training sample
contains the wind field together with a spatial encoding of a
specific location. As we train the model, the training takes
into account all the different locations and all the time steps
during the same training process.

This input provides the necessary information for the
model to distinguish between the different locations for
which we require surface wave predictions. Without this en-
coding, the model would most likely gravitate towards an
average prediction at a specific time, t , for all locations as it
would not be able to distinguish between them. During DEL-
WAVE training, we minimise the root mean squared differ-
ence loss function, defined as

L=

√√√√1
n

n∑
i=1
(yi − ŷi)

2, (6)

where yi denotes the SWAN values for sample i and ŷi de-
notes DELWAVE’s predictions. If we were to omit the lo-
cation encoding from the input tensor for time t , then each
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Figure 3. The visualisation of the spatial encoding matrices for each location (the coastline is added for clarity). Each plot corresponds to
one location encoding matrix, which forms a part of the input sample tensor, Il .

location would share the same input tensor at time t (the lo-
cation encoding is what differentiates input tensors for each
target location); however, the wave field attributes of each lo-
cation are not the same. Therefore, the average prediction of
all target locations is the minimiser in this case.

The final transformation of the input tensor is the concate-
nation of the grid encoding. A building block of DELWAVE’s
architecture is the convolution operation, which is, by design,
translation invariant. This implies that the same signal at dif-
ferent spatial locations produces the same output response.
Since the location of specific wind patterns in relation to the
target location of interest is important (wind fetch), we have
to go against this inherent invariability of the convolution op-
eration in translations. We do this using the grid encoding,
which assigns a unique value to each spatial location inside
the input field. This enables the network to learn wind fea-
tures in specific regions of the input. We denote the grid en-
coding matrix as C ∈ Rnx×ny . Individual entries of the matrix
are computed as

C(i,j) =
(i− 1)ny + j − 1

nxny
, (7)

where i is the index of the row and j of the column. We aug-
ment the wind-location tensor with the above-defined grid
matrix to produce the final wind-location tensor (we do not
explicitly denote the grid-encoding presence inside the ten-
sor) in the same way as we did in the case of the location en-
coding. We end up with a tensor containing four input fields
(zonal wind, meridional wind, location encoding, and grid
encoding) of dimension [nx,ny]:

dim(I tl )= [4,nx,ny]. (8)

3.1.3 Temporal extent

The surface wave field at a specific location consists of the
local wind sea and of the incoming swell, generated re-
motely in the hours preceding forecast time t . Consequently,
predictions at time t require additional wind inputs from
times preceding t . The number of preceding time steps was
estimated using a deep-water dispersion relation for grav-
ity waves, σ 2(k)= gk, and the corresponding gravity wave
phase speed:

cf = σ/k = (g/k)
1/2
= (gλ/2π)1/2. (9)

Using an estimate of surface wave wavelength, λ= 40 m,
indicates that such waves traverse basin-scale distances in
about 1.5 d. We consequently estimate that the wave field at a
given location can be influenced by remotely generated swell
over distances traversed by swell waves in about 1 to 1.5 d,
corresponding to about 10–14 time steps in 3-hourly resolu-
tion input. We rounded this down to 10 temporally preceding
time steps.

We therefore take 10 preceding wind inputs from
consecutive time instants leading up to t – namely
[I t−10
l ,I t−9

l , . . ., I t−1
l ,I tl ]. Repeating this for over four fields

contained in the I tl tensor (zonal wind, meridional wind, lo-
cation encoding, and linear grid encoding), we end up with
11 time steps of four fields over a spatial grid of nx×ny cells.
Hence, the dimensions of final concatenated input tensor are

dim(Il)= [11,4,nx,ny] = [11,4,90,89]. (10)

Geosci. Model Dev., 17, 4705–4725, 2024 https://doi.org/10.5194/gmd-17-4705-2024
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Figure 4. DELWAVE architecture overview. The network is comprised of three logically distinct sections. Each section is denoted using a
different colour. The information in the network flows from left to right. Input ti denotes the n time steps passed on to the network, while
MWP, SWD, and MWD denote the mean wave period, significant wave height, and mean wave direction, respectively.

3.2 DELWAVE model architecture

DELWAVE is composed of three logically distinct compo-
nents, each responsible for a specific processing task, as
depicted in Fig. 4. The atmospheric encoder is responsible
for encoding the input fields for each time step into high-
dimensional vectors. These vectors are then passed to the
temporal collapse block, where they are merged into a sin-
gle vector and attenuated based on the temporal importance
of the individual inputs, as explained in Sect. 3.2.2 below.
Finally, the regression block transforms this vector into the
three outputs required. Individual blocks are described in
more detail in the following subsections.

Additionally, let us define the notion of an encoder. An en-
coder is a sequence of transformations, a sub-neural network,
which maps a specific input to a, usually, high-dimensional
vector. This vector is said to be an encoding of the provided
input, carrying information about it, albeit in an obtuse way.
The encoder–decoder structure Cho et al. (2014), for exam-
ple, is a common paradigm in machine learning that lever-
ages this terminology.

3.2.1 Atmospheric encoder block

The atmospheric encoder block, displayed in Fig. 5, is con-
structed from three sub-components: the per-input atmo-
spheric encoder, the joint atmospheric encoder, and the out-
put atmospheric encoder.

Input atmospheric encoder. The input atmospheric en-
coder encodes each time step individually before passing
them to the joint atmospheric encoder. Each per-time-step
input tensor has its own input atmospheric encoder block.
This is to ensure that the initial processing of the wind field
with the location encoding is unique to each time step. The

per-time-step encodings of spatial locations might be im-
portant for predicting wave characteristics at different time
steps; therefore, per-input encoders add to the flexibility of
the model being able to adapt to such requirements. How-
ever, using completely separate encoders for each time step
would result in slow, hard-to-scale architectures with overfit-
ting issues. Therefore, a shallow initial encoder structure for
each time step is a good compromise between the two ap-
proaches. Here, shallow denotes an architecture with only a
few layers, as is denoted in Fig. 5. Conversely, a deep neural
network architecture constitutes of many tens of layers.

To be more formal about the atmospheric encoders, de-
fined as Aj , the j th atmospheric encoder (in our case one
of 11), each corresponds to one consecutive time step. Then,
DELWAVE proceeds by encoding each time step of the in-
put tensor with its corresponding atmospheric encoder. This
results in the following set of atmospherically encoded input
tensors:

{A1(Il,(1)), . . .,A11(Il,(11))}, (11)

where Il,(j) denotes the j th time step from the input tensor
Il and Aj (Il,(j)) denotes the encoded tensor. This set is then
passed to the next transformation, the joint atmospheric en-
coder.

Joint atmospheric encoder. The joint atmospheric encoder
is the primary extractor of important wind field features as
it is also the encoder with the most layers. It is shared be-
tween time steps (we use the same joint atmospheric en-
coder to transform each per-time-step output of the previous
block), since we care to locate important wind features inde-
pendently of the time at which they occurred. For example, a
specific wind pattern can occur at different time steps. There-
fore, we can use the same wind pattern detector to locate and
recognise the pattern irrespective of the time of occurrence.
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Figure 5. DELWAVE atmospheric encoder block sub-components. Each sub-component is shown in a separate row. The variable f denotes
the number of output features of that operation and kernel denotes the kernel size of the convolution operation. Stride is always 1 for the
convolution layers and 2 for the maximum pool layers. The activation function of choice is the sigmoid linear unit (SiLU) (Hendrycks and
Gimpel, 2016).

The approach of weight sharing between time steps also re-
duces the computational complexity and the number of re-
quired parameters and acts as a regularising method prevent-
ing overfitting. We denote this encoder, which is applied to
all output of the individual atmospheric encoders and results
in a single output tensor, as Ajoint.

Ajoint(A1(Il,(1)), . . .,A11(Il,(11))). (12)

Output atmospheric encoder. The output atmospheric en-
coder selects the recognised wind features important for
each time step. We do this using a convolution operation
with a kernel size of 1, signifying a linear combination of
the input features. The resulting per-time-step tensors of di-
mension [b,256,4,4], where b denotes the batch size, are
summed across their last two dimensions, resulting in a 256-
dimensional vector as the final output of this layer. These
vectors serve as high-dimensional weather descriptors for in-
dividual time steps and contain wind information at each time
step.

3.2.2 Temporal collapse block

The temporal collapse block, displayed in Fig. 6, collects the
individual atmospheric vectors and encodes them into a sin-
gle 256-dimensional vector. This is done by a sequence of
two 1-dimensional convolution operations Conv1d (2024),
where we set the kernel size and output feature count to 1 for
the latter of the two. This essentially achieves a linear com-
bination of the inputs across the time step dimension. The
first convolution produces a new set of interleaved tempo-
ral feature vectors. The second block reduces these temporal

feature vectors into a single vector by means of a linear com-
bination.

3.2.3 Regression block

Finally, the regression block, displayed in Fig. 7, is com-
prised of consecutive fully connected layers with skip con-
nections. This block produces the final outputs: MWP, SWH,
and MWD. To prevent overfitting and improve performance
on unseen data in the test dataset, a dropout with a removal
probability of 0.2 is applied prior to each fully connected
layer, except for the last one (the output, linear layer).

3.3 Training protocol

The CTR period was used for training, while the SCE pe-
riod was used for testing the final, developed model. The
CTR data were further split into two parts: the actual training
dataset (CTRtrn) and the validation dataset (CTRvld). CTRtrn
contains the first 80 % of the training data, while CTRvld con-
tains the remaining 20 %. The data for each location and for
each variable (significant wave height, mean wave period,
mean wave direction) are separately standardised to exhibit
zero mean and a variance of 1. Prior to the standardisation,
we log-transform significant wave heights as ln(SWH+ 1).
We give arguments for this transformation in the following
paragraphs. Then, at each training iteration, a random batch
of training samples is collected and the model loss function,
the root mean squared difference, defined in Eq. (6), is used
to optimise DELWAVE’s parameters, which are evaluated at
these batches.
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Figure 6. DELWAVE temporal collapse block. The variable n denotes the number of time steps used to train the model, and b denotes the
batch size. The n weather feature vectors of dimension [b,256] are stacked to form a single tensor, which is then reduced to a single 256-
dimensional vector by passing through the convolutional operations. Stride is always 1 for the convolution layers. The activation function of
choice is the sigmoid linear unit (SiLU) (Hendrycks and Gimpel, 2016).

Figure 7. DELWAVE regression block reduces the output of the
temporal collapse block into the final outputs: MWP, SWH, and
MWD. The regression is conducted by a cascade of three dense
skip connections followed by the final dense connection with three
outputs. The activation function of choice is the sigmoid linear unit
(SiLU) (Hendrycks and Gimpel, 2016).

Neural networks often have difficulties predicting extreme
events in the tails of the distributions because these events are
by definition rare and the network rarely encounters them in
the training set. To learn and model underrepresented values
of the target variables better, we increased their presence in
the training set by employing the so-called random impor-
tance sampling. We illustrate random importance sampling
in Fig. 8. If we observe the distributions of the three target
variables in a randomly sampled batch (left panel in Fig. 8),
we can see that these are skewed. For example, the significant
wave height is distributed similarly to a left-slanted gamma-
like distribution with a very long tail. Therefore, the model
is not exposed to the tail of the distribution frequently which
inhibits efficient training in that part of the distribution. This
results in systematic errors, where the regression accuracy
for significant wave height drops with increasing height. This
is understandable as samples with wave heights over 2 m
constitute only a small fraction of the dataset, contributing
less during training compared to samples with smaller wave
heights.

Our implementation of importance sampling is conducted
on the fly at batch acquisition. The reasons we do this on the
fly as opposed to conducting this statically (oversampling be-
fore training and saving the new samples on disc) is the fol-
lowing: oversampling highly skewed distributions to a point
of close uniformity would require a large number of addi-
tional samples. Since we had limited disc space, this was not

an option. Therefore, we implemented single-variable impor-
tance sampling that oversamples one of the target variables at
random for a given training batch. However, when we over-
sample one of the variables, the remaining usually remain
biased. We can observe this effect in the skewed green his-
tograms in Fig. 8, while the blue histograms are more uni-
form. To alleviate this issue, we alternated the sampling be-
tween the three target variables randomly to eliminate single-
variable importance-sampling bias.

Furthermore, we alternated between regular sampling and
importance sampling, where every second batch was ran-
domly importance-sampled. This compromise offered the
best performance out of the two approaches. We believe that
this is due to the majority of data taking on only a small
subset of values; thus, these values influence the loss more
than the rare events. This is especially true for significant
wave heights, where only 5 % of all samples across all loca-
tions exhibit wave heights over 2 m. Additionally, since fit-
ting unbiased estimates of the tail of the distribution for sig-
nificant wave heights was still challenging, we also penalised
the network for misclassifying significant wave height twice
as much as for the remaining two variables.

We conducted our training procedure in two stages. Since
we trained our model on the Vega cluster (Institute of In-
formation Science, 2023), we were limited by the maximum
time our training could take up. A single run could last up to
2 d maximum; therefore, we first trained our model using the
Adam solver (Kingma and Ba, 2014), with default PyTorch
parameters, a learning rate of 10−3, and a weight decay of
10−6 for 2 d. Following this period, we extracted the model
that performed on the validation dataset best, reinitialized the
learning procedure with a reduced learning rate of 10−5, and
retrained for 600 more epochs. We again took the model that
performed on the validation dataset best and used it to com-
pute the test dataset results we present in the following sec-
tions.
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Figure 8. Random importance sampling’s effect on the batch constitution during training. The single row on the left, with orange columns,
represents the distributions of all three target variables in a random training batch without importance sampling. The three rows on the
right display importance-sampled batches, each row belonging to a specific variable that was importance-sampled. The histograms coloured
in blue contain those variables that were importance-sampled. Importance sampling results in more uniform distributions for the sampled
variables, which indicates a more equal sampling of the target variable realisation space.

4 Temporal ablation study of the input

In this section, we investigate the impact of the number of
time steps on the performance of the model. Adding mul-
tiple time steps results in inputting more information into
the model; therefore, training performance might increase.
However, due to overfitting, this performance might not be
reflected in the actual accuracy using unseen data. Therefore,
we conducted a preliminary comparison between five DEL-
WAVE variants, each trained with a different number of in-
put time steps. These variants are DELWAVE2, DELWAVE4,
DELWAVE8, DELWAVE11, and DELWAVE16, where the
subscript denotes the number of time steps used. Here, each
of the five variants uses n+1 time steps, where n denotes the
number of previous time steps (in the case of DELWAVE8,
this means seven previous time steps, with the addition of the
current one). The results of this study are presented in Table 1
and their validation loss during training in Fig. 9.

We can observe the diminishing returns nature of adding
time steps beyond the 11th time step; the performance
seems to be roughly identical between DELWAVE16 and
DELWAVE11. Also note that DELWAVE16 contains more
trainable parameters and is also slower to train compared to
DELWAVE11. DELWAVE11 exhibits the best performance
in four cases, which is equal to DELWAVE16, followed by
DELWAVE8, with two cases. Similarly, we can observe that
after the threshold of 11 time samples is reached, we enter the
diminishing returns domain, where DELWAVE16 offers neg-

Table 1. Table containing the performance evaluations of DEL-
WAVE, which we constructed by varying the number of time steps
used during training, for three training locations: AA, MB, and OB.
RMS denotes the root mean squared error, and the best-performing
(with the lowest RMS) variant is in bold.

AA MB OB

DELWAVE2 RMSheight 0.145 0.134 0.072
DELWAVE4 RMSheight 0.091 0.078 0.034
DELWAVE8 RMSheight 0.065 0.082 0.033
DELWAVE11 RMSheight 0.067 0.083 0.032
DELWAVE16 RMSheight 0.073 0.079 0.032

DELWAVE2 RMSperiod 98.279 44.930 107.135
DELWAVE4 RMSperiod 82.057 30.432 76.555
DELWAVE8 RMSperiod 50.457 24.402 55.783
DELWAVE11 RMSperiod 43.546 24.407 55.614
DELWAVE16 RMSperiod 44.056 25.084 58.559

DELWAVE2 RMSdirection 22.057 69.798 25.836
DELWAVE4 RMSdirection 19.877 62.432 22.065
DELWAVE8 RMSdirection 16.504 57.108 19.985
DELWAVE11 RMSdirection 16.775 54.720 19.626
DELWAVE16 RMSdirection 16.270 55.614 18.961

ligible or even worse performance in some cases compared
to DELWAVE11. Therefore, we concluded that DELWAVE11
is the most promising network variant for further training.
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Figure 9. Root mean squared error in the validation dataset (aver-
aged over all three variables) for all DELWAVE temporal ablation
variants. The cutoff number of epochs is the amount achieved by
DELWAVE16 in 2 d of training since it is the slowest of all the vari-
ants.

5 Results

In order to assess the potential and the possible limitations of
the DELWAVE network, the analysis of the results is divided
into three phases. After an overview of the performance of
the network in reproducing the main overall properties of the
SWAN time series (Sect. 5.1), the analysis focuses on two as-
pects of particular relevance for practical purposes – namely,
the capability of reproducing storms (including, but not lim-
ited to, extreme events; Sect. 5.2) and their main properties
and the capability of capturing the main features of the cli-
mate change signal (Sect. 5.3).

5.1 Deep network vs. SWAN in the far-future climate
of 2071–2100

In this section, we present DELWAVE performance during
the far-future period of 2071–2100, as benchmarked against
SWAN simulations. In other words, SWAN simulations rep-
resent the ground truth DELWAVE aims to model. Figure 10
depicts DELWAVE–SWAN scatterplots ofHs, d, and Tm−1,0
at the locations of the Acqua Alta oceanographic tower (AA)
and the Ortona and Monopoli buoys (OB and MB, respec-
tively; see Fig. 2 for the locations). Results for other locations
are provided in the Supplement.

We proceed by analysing DELWAVE performance using
three related figures. Figure 10 depicts DELWAVE predic-
tions for Hs, d, and Tm−1,0 compared to those from the
SWAN model, obtained from the same wind fields, i.e. for
the same forecasting time window. Figure 11 shows the over-
laps of histograms of Hs, d, and Tm−1,0 from both DEL-

WAVE and SWAN models. Note that close overlap of the
distribution histograms from both models does not guaran-
tee a good forecast since this overlap does not say anything
about the synchronicity of both forecasts; one therefore needs
to view Fig. 11 in conjunction with Fig. 10. Additionally,
Fig. 11 illustrates how DELWAVE forecasting mean absolute
errors change depending on which part of distribution we are
modelling. Here, mean errors imply error averaging over all
the forecasting samples in a specific distribution bin. Con-
sequently, the error values are only well defined in the bins
containing a large enough (e.g. over 100) number of sam-
ples. In what follows, we base our remarks on an interplay of
messages from all three figures.

Location AA in the northern Adriatic (off the Venetian
shore; see Fig. 2 for the location) is marked by an excellent
performance in Hs and d prediction, indicated by the near-
linear scatterplot displayed in Fig. 10. The same aspect of
DELWAVE performance is illustrated via histogram distri-
bution for the same three parameters in Fig. 11. Mean wave
direction d (top row, right column of Fig. 11) exhibits two
maximums related to two dominant Adriatic winds, north-
easterly Bora at roughly 75° and southeasterly Scirocco at
roughly 135°. Short wave periods at the AA location, on
the other hand, seem to be the hardest to predict, as can be
seen from in the left column in either Fig. 10 or Fig. 11.
This is, to some extent, expected: long wave periods corre-
spond to longer waves and consequently windy atmospheric
conditions. Short periods, on the other hand, correspond to
calm conditions, where the network is essentially modelling
low-amplitude, short-wavelength, stochastic sea surface be-
haviour.

Similar observations can be made for OB and MB loca-
tions. SWAN Hs is modelled very reliably with DELWAVE.
Multi-modal direction histograms at all locations are also re-
produced to a high degree of accuracy, as can be seen from
the middle column of Fig. 11. On the other hand, the net-
work seems to be struggling to reproduce northerly directions
(roughly 0°± 10°) at this location. This leads to horizontal
strips of incorrect predictions displayed in the scatterplot of
the right column, second row in Fig. 10 and to a bump in
mean absolute error in the histogram displayed at the same
location in Fig. 11.

Figure 11 also hints at quantitative estimates of DEL-
WAVE performance. When it comes to Hs predictions (mid-
dle column), errors at all locations grow with significant
wave height from errors below 5 cm for Hs below 1 m to er-
rors on the order of 10–15 cm for Hs over 3 m. DELWAVE
predictions of mean wave direction d (right column) exhibit
the smallest errors in the directional bins corresponding to
prevalent wind patterns. In general, directional errors are be-
low 25° and even lower at AA. High directional errors at 0
and 360° stem at least partly from the algorithm’s false dis-
tinction between 0 and 360° directions.

Wave period Tm−1,0 predictions are illustrated in the left
column of Fig. 11. At all locations, periods below 6 s are
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Figure 10. A scatterplot of DELWAVE forecasts (y axis) compared to their SWAN targets (x axis) the for mean wave period [s] (first
column), significant wave height [m] (second column), and mean wave direction [°] (third column) at AA (first row), OB (second row), MB
(third row), and GD (fourth row). Mean wave directions are listed in nautical notation (0° representing north, 90° representing east, etc.).
The dashed diagonal line in each plot indicates a perfect forecast.
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Figure 11. Histograms of DELWAVE vs. SWAN distributions of Hs (left column), d (middle column), and Tm−1,0 (right column) from the
DELWAVE (turquoise bars) and SWAN models (brown bars) during the 2071–2100 time window at AA (first row), OB (second row), MB
(third row), and GD (fourth row). Light blue lines are scaled on the y axis and depict MAE averaged over a number of samples in each bin.
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captured well by DELWAVE, with prediction errors below
0.25 s. Longer periods, however, likely corresponding to an
incoming swell, exhibit more diverse behaviour. MB loca-
tion wave periods seem to be captured more accurately in
the long-period limit, with the forecast error dropping below
0.1 s. At the OB location, the errors in the long-period limit
slightly rise from 0.2 to 0.3–0.5 s. The AA location, on the
other hand, indicates a sharp rise in the Tm−1,0 prediction
error, which reaches 1 s for the period above 8 s.

The error behaviour at the AA location is possibly ex-
plained by the differing roles played by the basin geometry,
the local wind sea, and swell. Location AA is prevalently
exposed to northeasterly Bora (blowing from roughly 75°)
and to southeasterly Scirocco (blowing from 135°). In the
case of Bora, the fetch is quite limited since Bora is a cross-
basin wind. Therefore, we do not expect swell to play a ma-
jor role at the AA location during Bora conditions: the wave
field at the AA location must be determined by local wind
conditions. The case of Scirocco is very different. Scirocco
is an along-axis wind, with the largest fetch in the Adriatic
Basin. This means that during Scirocco, the swell field at AA
is determined to a large extent by non-local wind patterns in
the south of the basin. Local wind conditions at the AA lo-
cation are furthermore often a poor proxy for winds in the
south Adriatic. Bora in the north (promoting short fetch and
shorter wave periods) coinciding with Scirocco in the south
(promoting long-period swell arriving at AA) is, for exam-
ple, not unusual. These circumstances likely pose a challenge
for the DELWAVE deep network, resulting in growing errors
during longer wave periods (which most likely occur during
Scirocco).

This explanation can be further substantiated by compar-
ing wave period MAE to Hs, Tm−1,0, and wave power. The
latter is computed from the linear theory to be

P =
ρg2

64π
H 2

s Tm−1,0, (13)

with ρ being the water density and g the acceleration due to
gravity. This comparison is depicted in Fig. 12, which cor-
roborates this interpretation and constrains DELWAVE limi-
tations in capturing the basin-scale dynamics.

The concentration of the highest values of MAE at low
values of Hs and P (left and right columns, respectively)
confirms that largest errors tend to be associated with low-
energy, nearly random sea states, even in the presence of rel-
atively long waves along the main basin axis (Scirocco at
AA), and thus with limited impacts on possible practical ap-
plications. It is further worth mentioning that a separate anal-
ysis, carried out by independently considering the rising and
declining phases of the sea states (not shown), did not exhibit
any preferential concentration of the higher values of MAE
in either phase. Wave period error is therefore not system-
atically larger during either onset or calming of the storm,
suggesting that it is not directly related to the sequential and
monotonous temporal encoding of inputs within DELWAVE.

Had this not been the case, we would have expected some
error asymmetry with regard to the timing of the storm.

5.2 Storm analysis

The analysis of the storms was carried out by comparing the
DELWAVE results to the SWAN time series during the pe-
riod of 2071–2100. For each time series, the storms were
identified following the method proposed by Boccotti (Boc-
cotti, 2000) – namely, (i) finding the events with Hs larger
than 1.5 times the mean value Hs of each respective series,
(ii) merging the events parted by less than 10 h, and (iii)
discarding those overall shorter than 12 h. Figure 13 com-
pares SWAN and DELWAVE peak Hs and directions for
each storm at AA, OB, and MB (the same is shown for
the other locations in the Supplement), considering entire
sets of storms occurring during the period separately and the
annual maxima for each series. While the former provides
a broader view on how DELWAVE reproduces the whole
meteo-marine climate at each location, the latter aims at as-
sessing its capability of addressing extreme events. The pic-
ture is flanked by a quantification of the DELWAVE precision
(how many DELWAVE-predicted storms are actually present
in the SWAN time series) and recall (how many SWAN-
modelled storms are retrieved by DELWAVE). These two
metrics are computed as

precision=
TP

TP+FP
, recall=

TP
TP+FN

, (14)

where TP, FP, and FN denote true positive (storm present in
SWAN and predicted by DELWAVE), false positive (storm
predicted by DELWAVE but not present in SWAN), and false
negative (storm present in SWAN but not predicted by DEL-
WAVE) classifications. Figure 14 shows an example of the
application of Boccotti’s method in SWAN and DELWAVE
storms and the occurrence of false negatives and false posi-
tives.

All considered sets exhibit a satisfactory performance with
very high scores (precision and recall ≥ 0.95) when all the
storms are considered. When only annual maxima are taken
into account, precision and recall are lower, though fairly
high (≥ 0.8) and without an evidently prevailing directional
offset. Considering the whole storm sets, most of the false
negatives and positives are generally clustered among the
weakest events. This can be explained by considering that,
for particularly weak or short events, small absolute errors
can mean large relative errors. Therefore, in a smallHs limit,
a small error in the reproduction of Hs can already signif-
icantly impact whether the criteria for the identification of
storms are met or not (Fig. 14).

This result seems to be in contradiction with the results for
the yearly maxima sets, where prediction and recall scores
decrease and the number of false negatives and positives in-
creases. This contradiction is, however, only apparent and re-
lated to the propagation of Hs prediction errors downstream
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Figure 12. Comparison of the wave period (indicated by colour) relationship to significant wave height, Hs (a, c, and e; y axis), and to wave
power (b, d, and f; y axis) in all directions (x axis) for AA (a, b), OB (c, d), and MB (e, f). The white parts in the plot refer to combinations
of the direction and variable for which no occurrence was found in the data.

into the identification of the yearly maxima. More precisely,
in this case, the mismatch does not seem related to the clas-
sification of an event as a storm but rather to its classification
as a yearly maximum: in fact, a slight error in predicting the
peak height of storm events can introduce some noise in the
ranking of the events and, in particular, in the identification
of the yearly maxima, leading to a mismatch between DEL-

WAVE and SWAN. Nonetheless, as long as small errors in
the prediction of the peakHs are the cause for this mismatch,
even if the events retrieved by DELWAVE are not exactly
the ones resulting from the SWAN time series, their proper-
ties (or at least their peak Hs) should be quite close, which
should be sufficient for most practical applications.
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Figure 13. Comparison of SWAN and DELWAVE peak Hs values at AA, OB, and MB during all the storms (a, b, c) and for the annual
maxima (d, e, f). The dashed diagonal line indicates a perfect match. The colour map represents the directional offset during the peak of each
storm. Pluses and crosses along the plot axes represent false negatives (+) and false positives (×).

5.3 Climate change features

One of the main scopes of DELWAVE is to provide a compu-
tationally cheap model emulation system capable of provid-
ing large ensemble predictions for wave climate at a multi-
decadal scale. This kind of applications is, to some extent,
complementary to the event-scale analysis of single storms
and requires a specific assessment of the network capability
of capturing the main statistical features of the climate sig-
nal. Figure 15 provides a twofold comparison of the climato-
logical normals of the monthly mean, median, and 99th per-
centile of Hs at AA, OB, and MB (the same values for
the other locations are provided as a Supplement) provided
by SWAN and reproduced by DELWAVE. The statistics re-
sulting from SWAN and from the DELWAVE time series

are compared to each other in the end-of-century scenario
(2071–2100; SCE), and both are compared to the statistics
from the control condition (CTR), available only for SWAN
in the 1971–2000 period. The good agreement between DEL-
WAVE and SWAN is also confirmed when considering cli-
matological statistics, with a small (≤ 5 %), though system-
atic, underestimate of 99th-percentile values, reflecting what
was discussed in Sect. 5.1. Compared to the CTR climatolo-
gies, the mismatch between DELWAVE and SWAN is gen-
erally small compared to the difference between SCE and
CTR conditions, suggesting that the noise possibly intro-
duced by the model mimicking is weaker than the climate
change signal in the considered locations. Not surprisingly,
the only way in which the performance seems partially af-
fected by seasonality is through the modulation of signifi-
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Figure 14. Examples of false negatives (a) and false positives (b) in the identification of storms (thick lines), following the method by
Boccotti (2000) in the DELWAVE and SWANHs time series (thin lines). The dotted lines represent the reference threshold of 1.5Hs for each
time series.

cant wave height and the tendency of the network to under-
estimate higher (and therefore wintry) values. Nevertheless,
Fig. 15 shows that the potential modelling errors, introduced
by the DELWAVE model, are substantially smaller than the
difference between the scenario (2070–2100) and control pe-
riods (1970–2100).

Following a similar approach for the directional wave cli-
mate, the linearised wave roses in Fig. 16 show that the agree-
ment between DELWAVE and SWAN allows us to capture
important impacts of climate change in the wave regime not
only in absolute terms, but also in response to projected shifts
in the wind regimes. This is, for instance, the case of the
slight weakening of Bora (NE) storms associated with an in-
tensification of Scirocco (SE) events in the northern Adriatic
Sea in the broader framework of a tendency towards an over-
all decrease in the storminess in most of the basin, suggested
by Bonaldo et al. (2020) and confirmed by the DELWAVE
projections.

6 Conclusions

We present a new point-prediction deep learning method
for surface gravity wave emulation in epicontinental Adri-
atic Basin, which took about 2.5 d to train and can process
more than 100 wind fields per second, to be used for large-
ensemble prediction over synoptic to climate timescales. The
DELWAVE input set consists of atmospheric winds dur-
ing 1998–2000, and the test period is the far-future climate
time window of 2071–2100. We have thoroughly analysed
which architecture yields the best results for wave emula-
tion and these efforts led us to the presented architecture
of a convolution-based atmospheric encoder block, a tem-
poral collapse block, and finally a regression block. We in-
troduced random importance sampling for improved mod-
elling of underpopulated tails of variable data distributions.
Detailed ablation studies were performed to determine op-

timal performance regarding the input fields, temporal hori-
zon of the training set, and network architecture. We demon-
strated that DELWAVE reproduces SWAN model significant
wave heights with a mean absolute error (MAE) between 5
and 10 cm, mean wave directions with a MAE of 10–25°,
and mean wave period with a MAE of 0.2 s. The network is
able to accurately emulate multi-modal distributions of mean
wave directions, which are related to dominant wind regimes
in the basin. An analysis of DELWAVE performance during
storms was performed by employing threshold-based metrics
of precision and recall. DELWAVE reached a very high score
(both metrics over 95 %) of storm detection.

SWAN and DELWAVE time series are further compared to
each other in the end-of-century scenario (2071–2100), and
both are compared to control period of 1971–2000. Com-
pared to control climatology over all wind directions, the
mismatch between DELWAVE and SWAN is generally small
compared to the difference between scenario and control
conditions, suggesting that the noise introduced by surrogate
modelling is substantially weaker than the climate change
signal. There is a number of things we would like to explore
further: it is currently not clear how to leverage Gaussian (or
other) spatial encoding to generate, if possible, reliable pre-
dictions for locations which lie outside of the training set.
This might open the door for dense predictions of the wave
field, at least in the vicinities of input data locations. It would
furthermore be interesting to introduce temporal dependence
of the Gaussian variances in the spatial encoding matrix to
help the network focus on wider areas of input data as we
feed it data from a more distant past.

Future research and potential applications may also focus
on the larger scales – for example, the entire Mediterranean
Sea basin – using a high-resolution wind and waves model to
boost DELWAVE training. The objective would be to explore
the behaviour of numerical and machine learning models in
diverse wind and wave regimes, as well as wind and marine
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Figure 15. Comparison of SWAN (SW) and DELWAVE (DW) mean, median, and 99th-percentile Hs climatology statistics in the future
scenario (2071–2100; SCE), with the SWAN-modelled statistics referring to the control period (1971–2000; CTR) at AA, OB, and MB,
respectively.

storms, which exhibit distinct physical characteristics in a
basin with highly diverse morphological and dynamic fea-
tures.

Last but not least, another promising venue is offered by
recent developments in the field of physics-informed ma-
chine learning. Here, the solution subspace is further con-
strained by additional loss terms, which nudge the learn-
ing process towards physically consistent solutions. Since
the physical aspects of wind-driven surface gravity waves
are known in substantial detail, we expect there to be some
immediate benefits to introducing dynamics laws into the
training. Last but not least, it would be interesting to study
how well the network generalises to other domains and other
models. All these will be topics of further research.

Code and data availability. DELWAVE model code is avail-
able publicly on GitHub at https://github.com/petermlakar/
DELWAVE (last access: 11 June 2024) and Zenodo
(https://doi.org/10.5281/zenodo.10990866, Mlakar, 2024).
The raw COSMO dataset can be found at the following repository,
maintained by CMCC (Mercogliano, 2023). Preprocessed COSMO
datasets, suitable for DELWAVE input, can be found on the
following repository: https://doi.org/10.5281/zenodo.7816888
(Mlakar et al., 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-4705-2024-supplement.
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Figure 16. Comparison of SWAN (SW) and DELWAVE (DW) directional Hs statistics in the future scenario (2071–2100; SCE; black and
grey bars, respectively), with the same quantities modelled by SWAN, in reference to the control period (1971–2000; CTR; coloured bars) at
AA, OB, and MB, respectively.
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