Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1359-2023
https://doi.org/10.5194/gmd-16-1359-2023
Methods for assessment of models
 | 
27 Feb 2023
Methods for assessment of models |  | 27 Feb 2023

Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation

Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens

Related authors

Global transport of stratospheric aerosol produced by Ruang eruption from EarthCARE ATLID, limb-viewing satellites and ground-based lidar observations
Sergey Khaykin, Michaël Sicard, Thierry Leblanc, Tetsu Sakai, Nickolay Balugin, Gwenaël Berthet, Stëphane Chevrier, Fernando Chouza, Artem Feofilov, Dominique Gantois, Sophie Godin-Beekmann, Arezki Haddouche, Yoshitaka Jin, Isamu Morino, Nicolas Kadygrov, Thomas Lecas, Ben Liley, Richard Querel, Ghasssan Taha, and Vladimir Yushkov
Atmos. Chem. Phys., 26, 607–622, https://doi.org/10.5194/acp-26-607-2026,https://doi.org/10.5194/acp-26-607-2026, 2026
Short summary
Demonstrating Aeolus capability to observe wind-cloud interactions
Zacharie Titus, Marine Bonazzola, Hélène Chepfer, Artem G. Feofilov, Marie-Laure Roussel, Benjamin Witschas, and Sophie Bastin
Atmos. Chem. Phys., 26, 443–475, https://doi.org/10.5194/acp-26-443-2026,https://doi.org/10.5194/acp-26-443-2026, 2026
Short summary
Uncertainty in aerosol effective radiative forcing from anthropogenic and natural aerosol parameters in ECHAM6.3-HAM2.3
Yusuf A. Bhatti, Duncan Watson-Parris, Leighton A. Regayre, Hailing Jia, David Neubauer, Ulas Im, Carl Svenhag, Nick Schutgens, Athanasios Tsikerdekis, Athanasios Nenes, Muhammed Irfan, Bastiaan van Diedenhoven, Ardit Arifi, Guangliang Fu, and Otto P. Hasekamp
Atmos. Chem. Phys., 26, 269–293, https://doi.org/10.5194/acp-26-269-2026,https://doi.org/10.5194/acp-26-269-2026, 2026
Short summary
GCM clouds and actual clouds as seen from different space lidars: towards a long-term assessment of cloud representation in GCMs using lidar simulators
Marie-Laure Roussel, Hélène Chepfer, Zacharie Titus, and Marine Bonazzola
Atmos. Chem. Phys., 26, 117–134, https://doi.org/10.5194/acp-26-117-2026,https://doi.org/10.5194/acp-26-117-2026, 2026
Short summary
Machine learning reveals strong grid-scale dependence in the satellite Nd–LWP relationship
Matthew W. Christensen, Andrew Geiss, Adam C. Varble, and Po-Lun Ma
Atmos. Chem. Phys., 26, 59–76, https://doi.org/10.5194/acp-26-59-2026,https://doi.org/10.5194/acp-26-59-2026, 2026
Short summary

Cited articles

Bonazzola, M.: ATB CALIOP profiles, Zenodo [data set], https://doi.org/10.5281/zenodo.7107232, 2022a. 
Bonazzola, M.: CALIOP SR profiles, Zenodo [data set], https://doi.org/10.5281/zenodo.7107162, 2022b. 
Bonazzola, M. and Chepfer, H.: COSPv2.0: Adding lidar aerosol simulator, Zenodo [code], https://doi.org/10.5281/zenodo.7418199, 2022. 
Cesana, G. and Chepfer, H.: How well do climate models simulate cloud vertical structure? a comparison between CALIPSO-GOCCP satellite observations and CMIP5 models, Geophys. Res. Lett., 39, L20803, https://doi.org/10.1029/2012GL053153, 2012. 
Cesana, G. and Chepfer, H.: Evaluation of the cloud water phase in a climate model using CALIPSO-GOCCP, J. Geophys. Res., 118, 7922–7937, https://doi.org/10.1002/jgrd.50376, 2013. 
Download
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Share