Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Chahan M. Kropf
CORRESPONDING AUTHOR
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Alessio Ciullo
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Laura Otth
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Simona Meiler
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Arun Rana
Frankfurt School of Finance and Management Gemeinnützige GmbH, Adickesallee 32–34, 60322 Frankfurt am Main, Germany
Emanuel Schmid
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Jamie W. McCaughey
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
David N. Bresch
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Related authors
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, https://doi.org/10.5194/nhess-21-393-2021, 2021
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Samuel Eberenz, Dario Stocker, Thomas Röösli, and David N. Bresch
Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, https://doi.org/10.5194/essd-12-817-2020, 2020
Short summary
Short summary
The modeling of economic disaster risk on a global scale requires high-resolution maps of exposed asset values. We have developed a generic and scalable method to downscale national asset value estimates proportional to a combination of nightlight intensity and population data. Here, we present the methodology together with an evaluation of its performance for the subnational downscaling of GDP. The resulting exposure data for 224 countries and the open-source Python code are available online.
Gabriela Aznar-Siguan and David N. Bresch
Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, https://doi.org/10.5194/gmd-12-3085-2019, 2019
Short summary
Short summary
The need for assessing the risk of weather events is ever increasing. In addition to quantification of risk today, the role of aggravating factors such as population growth and changing climate conditions matter too. We present the open-source software CLIMADA, which integrates hazard, exposure, and vulnerability to compute metrics to assess risk and to quantify socio-economic impact, and use it to estimate and contextualize the damage of hurricane Irma through the Caribbean in 2017.
Elisabeth Maidl, David N. Bresch, and Matthias Buchecker
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-393, https://doi.org/10.5194/nhess-2018-393, 2019
Publication in NHESS not foreseen
Short summary
Short summary
Natural hazard risk management today aims to involve all actors possibly affected by damage. Citizens are regarded as responsible actors in risk mitigation. Practitioners therefore face the challenge of building social capacity towards such a culture of risk. Research on capacity building in Alpine countries, however, so far lacks empirical evidence on individual preparedness in the common population. This study for the first time provides insights for research and practice.
Tobias Geiger, Katja Frieler, and David N. Bresch
Earth Syst. Sci. Data, 10, 185–194, https://doi.org/10.5194/essd-10-185-2018, https://doi.org/10.5194/essd-10-185-2018, 2018
Short summary
Short summary
Tropical cyclones (TCs) pose a major risk to societies worldwide but very limited data exist on their socioeconomic impacts. Here, we apply a common wind field model to comprehensively and consistently estimate the number of people and the sum of assets exposed by all TCs between 1950 and 2015. This information is crucial to assess changes in societal vulnerabilites, to calibrate TC damage functions, and to make risk data more accessible to non-experts and stakeholders.
Related subject area
Climate and Earth system modeling
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Historical Trends and Controlling Factors of Isoprene Emissions in CMIP6 Earth System Models
Modeling Commercial-Scale CO2 Storage in the Gas Hydrate Stability Zone with PFLOTRAN v6.0
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Using feature importance as exploratory data analysis tool on earth system models
CropSuite – A comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
A non-intrusive, multi-scale, and flexible coupling interface in WRF
T&C-CROP: Representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5): Model formulation and validation
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
The Earth Science Box Modeling Toolkit (ESBMTK)
High Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Presentation, Calibration and Testing of the DCESS II Earth System Model of Intermediate Complexity (version 1.0)
Baseline Climate Variables for Earth System Modelling
The DOE E3SM Version 2.1: Overview and Assessment of the Impacts of Parameterized Ocean Submesoscales
Evaluation of atmospheric rivers in reanalyses and climate models in a new metrics framework
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-162, https://doi.org/10.5194/gmd-2024-162, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most dangerous effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a sub-sea CO2 injection.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-133, https://doi.org/10.5194/gmd-2024-133, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
EGUsphere, https://doi.org/10.5194/egusphere-2024-2526, https://doi.org/10.5194/egusphere-2024-2526, 2024
Short summary
Short summary
CropSuite is a fuzzy-logic based high resolution open-source crop suitability model considering the impact of climate variability. We apply CropSuite for 48 important staple and cash crops at 1 km spatial resolution for Africa. We find that climate variability significantly impacts on suitable areas, but also affects optimal sowing dates, and multiple cropping potentials. The results provide information that can be used for climate impact assessments, adaptation and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-140, https://doi.org/10.5194/gmd-2024-140, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article details a new feature we implemented in the most popular regional atmospheric model (WRF). This feature allows data to be exchanged between WRF and any other model (e.g. an ocean model) using the coupling library Ocean-Atmosphere-Sea-Ice-Soil – Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2072, https://doi.org/10.5194/egusphere-2024-2072, 2024
Short summary
Short summary
We outline and validate developments to the pre-existing process-based model T&C to better represent cropland processes. Foreseen applications of T&C-CROP include hydrological and carbon storage implications of land-use transitions involving crop, forest, and pasture conversion, as well as studies on optimal irrigation and fertilization under a changing climate.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Ulrich Georg Wortmann, Tina Tsan, Mahrukh Niazi, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
EGUsphere, https://doi.org/10.5194/egusphere-2024-1864, https://doi.org/10.5194/egusphere-2024-1864, 2024
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a Python library designed to separate model description from numerical implementation. This approach results in well-documented, easily readable, and maintainable model code, allowing students and researchers to concentrate on conceptual challenges rather than mathematical intricacies.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Esteban Fernández and Gary Shaffer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-122, https://doi.org/10.5194/gmd-2024-122, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Here we describe, calibrate and test DCESS II, a new, broad, adaptable and fast Earth System Model. DCESS II has been designed for global simulations over time scales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II should prove to be a useful, computational-friendly tool for simulations of past climates as well as for future Earth System projections.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O’Rourke, and Beth Dingley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2363, https://doi.org/10.5194/egusphere-2024-2363, 2024
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 132 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most heavily used variables from Earth System Models, based on an assessment of data publication and download records from the largest archive of global climate projects.
Katherine Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golez, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautum Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordonez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-149, https://doi.org/10.5194/gmd-2024-149, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer biases reduction in temperature, salinity, and sea-ice extent in the North Atlantic, a small strengthening of the Atlantic Meridional Overturning Circulation, and improvements in many atmospheric climatological variables.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis O'Brien
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-142, https://doi.org/10.5194/gmd-2024-142, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
1. A metrics package designed for easy analysis of AR characteristics and statistics is presented. 2. The tool is efficient for diagnosing systematic AR bias in climate models, and useful for evaluating new AR characteristics in model simulations. 3. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the north and south Atlantic (south Pacific and Indian Ocean).
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Cited articles
Anderson, W., Guikema, S., Zaitchik, B., and Pan, W.: Methods for Estimating
Population Density in Data-Limited Areas: Evaluating Regression and
Tree-Based Models in Peru, PLOS ONE, 9, e100037,
https://doi.org/10.1371/journal.pone.0100037, 2014. a
Berger, L.: Leaving No One Off The Map:
A Guide For Gridded Population Data For
Sustainable Development,
A Report by the Thematic Research Network on Data and Statistics
(TReNDS) of the UN Sustainable Development Solutions Network
(SDSN) in Support of the POPGRID Data Collaborative, https://www.unsdsn.org/leaving-no-one-off-the-map-a-guide-for-gridded-population-data-for-sustainable-development (last access: 28 August 2022), 2020. a
Beven, K. J., Almeida, S., Aspinall, W. P., Bates, P. D., Blazkova, S., Borgomeo, E., Freer, J., Goda, K., Hall, J. W., Phillips, J. C., Simpson, M., Smith, P. J., Stephenson, D. B., Wagener, T., Watson, M., and Wilkins, K. L.: Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas, Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, 2018. a, b
Beven, K. J., Aspinall, W. P., Bates, P. D., Borgomeo, E., Goda, K., Hall, J. W., Page, T., Phillips, J. C., Simpson, M., Smith, P. J., Wagener, T., and Watson, M.: Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?, Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, 2018b. a, b
Bloemendaal, N., Haigh, I. D.,de Moel, H., Muis, S.,
Haarsma, R. J., and Aerts, J. C. J. H.: Generation of a Global Synthetic
Tropical Cyclone Hazard Dataset Using STORM, Sci. Data, 7, 40,
https://doi.org/10.1038/s41597-020-0381-2, 2020. a
Borgonovo, E.: A New Uncertainty Importance Measure, Reliab. Eng.
Syst. Safe., 92, 771–784, https://doi.org/10.1016/j.ress.2006.04.015, 2007. a
Borgonovo, E., Lu, X., Plischke, E., Rakovec, O., and Hill, M. C.: Making the
Most out of a Hydrological Model Data Set: Sensitivity Analyses to Open
the Model Black-Box, Water Resour. Res., 53, 7933–7950,
https://doi.org/10.1002/2017WR020767, 2017. a
Bradley, R. and Drechsler, M.: Types of Uncertainty, Erkenn, 79,
1225–1248, https://doi.org/10.1007/s10670-013-9518-4, 2014. a, b
Bradley, R. and Steele, K.: Making Climate Decisions, Philosophy Compass,
10, 799–810, https://doi.org/10.1111/phc3.12259, 2015. a, b
Center for International Earth Science Information Network
(CIESIN): Documentation for the Gridded Population of the
World, Version 4 (GPWv4), Revision 10 Data Sets [data set], https://doi.org/10.7927/H4D50JX4, 2017. a
Ceola, S., Laio, F., and Montanari, A.: Satellite Nighttime Lights Reveal
Increasing Human Exposure to Floods Worldwide, Geophys. Res. Lett.,
41, 7184–7190, https://doi.org/10.1002/2014GL061859, 2014. a
Ciullo, A., Kwakkel, J. H., Bruijn, K. M. D., Doorn, N., and Klijn, F.:
Efficient or Fair? Operationalizing Ethical Principles in Flood
Risk Management: A Case Study on the Dutch-German Rhine, Risk
Anal., 40, 1844–1862, https://doi.org/10.1111/risa.13527, 2020. a
Ciullo, A., Martius, O., Strobl, E., and Bresch, D. N.: A Framework for
Building Climate Storylines Based on Downward Counterfactuals: The Case
of the European Union Solidarity Fund, Climate Risk Management, 33,
100349, https://doi.org/10.1016/j.crm.2021.100349, 2021. a
Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., and Schaibly,
J. H.: Study of the Sensitivity of Coupled Reaction Systems to Uncertainties
in Rate Coefficients. I Theory, J. Chem. Phys., 59, 3873–3878,
https://doi.org/10.1063/1.1680571, 1973. a
de Moel, H., Asselman, N. E. M., and Aerts, J. C. J. H.: Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands, Nat. Hazards Earth Syst. Sci., 12, 1045–1058, https://doi.org/10.5194/nhess-12-1045-2012, 2012. a
Doorn, N.: The Blind Spot in Risk Ethics: Managing Natural Hazards, Risk Anal.,
35, 354–360, https://doi.org/10.1111/risa.12293, 2015. a
Dottori, F., Di Baldassarre, G., and Todini, E.: Detailed Data Is Welcome, but
with a Pinch of Salt: Accuracy, Precision, and Uncertainty in Flood
Inundation Modeling, Water Resour. Res., 49, 6079–6085,
https://doi.org/10.1002/wrcr.20406, 2013. a, b
Douglas-Smith, D., Iwanaga, T., Croke, B. F. W., and Jakeman, A. J.: Certain
Trends in Uncertainty and Sensitivity Analysis: An Overview of Software
Tools and Techniques, Environ. Modell. Softw., 124, 104588,
https://doi.org/10.1016/j.envsoft.2019.104588, 2020. a, b
Ehre, M., Papaioannou, I., and Straub, D.: A Framework for Global Reliability
Sensitivity Analysis in the Presence of Multi-Uncertainty, Reliab.
Eng. Syst. Safe., 195, 106726,
https://doi.org/10.1016/j.ress.2019.106726, 2020. a
Emanuel, K.: A Fast Intensity Simulator for Tropical Cyclone Risk Analysis, Nat.
Hazards, 88, 779–796, https://doi.org/10.1007/s11069-017-2890-7, 2017. a
Étoré, P., Prieur, C., Pham, D. K., and Li, L.: Global Sensitivity
Analysis for Models Described by Stochastic Differential Equations,
Methodol. Comput. Appl. Probab., 22, 803–831, https://doi.org/10.1007/s11009-019-09732-6,
2020. a
Funtowicz, S. O. and Ravetz, J. R.: Uncertainty and Quality in Science
for Policy, Springer Science & Business Media, https://doi.org/10.1007/978-94-009-0621-1, 1990. a
Gettelman, A., Bresch, D. N., Chen, C. C., Truesdale, J. E., and Bacmeister,
J. T.: Projections of Future Tropical Cyclone Damage with a High-Resolution
Global Climate Model, Climatic Change, 146, 575–585,
https://doi.org/10.1007/s10584-017-1902-7, 2017. a
Ghanem, R., Higdon, D., and Owhadi, H.: Handbook of Uncertainty
Quantification, Springer, New York, NY, 1st Edn., https://doi.org/10.1007/978-3-319-11259-6, 2017. a
Hall, J. W., Tarantola, S., Bates, P. D., and Horritt, M. S.: Distributed
Sensitivity Analysis of Flood Inundation Model Calibration, J.
Hydraul. Eng., 131, 117–126, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(117),
2005. a
Hammersley, J. M.: Monte Carlo Methods for Solving Multivariable
Problems, Ann. NY Acad. Sci., 86, 844–874,
https://doi.org/10.1111/j.1749-6632.1960.tb42846.x, 1960. a
Hillger, D., Seaman, C., Liang, C., Miller, S., Lindsey, D., and Kopp, T.:
Suomi NPP VIIRS Imagery Evaluation, J. Geophys. Res.-Atmos., 119, 6440–6455, https://doi.org/10.1002/2013JD021170, 2014. a
Hinkel, J. and Bisaro, A.: Methodological Choices in Solution-Oriented
Adaptation Research: A Diagnostic Framework, Reg. Environ. Change, 16, 7–20,
https://doi.org/10.1007/s10113-014-0682-0, 2016. a, b
Holland, G.: A Revised Hurricane Pressure–Wind Model, Mon.
Wea. Rev., 136, 3432–3445, https://doi.org/10.1175/2008MWR2395.1, 2008. a
Hyde, K. M.: Uncertainty Analysis Methods For Multi-Criteria Decision
Analysis, PhD thesis, The University of Adelaide School of Civil and
Environmental Engineering, Adelaide, 2006. a
IFRC: World Disasters Rreport: Come Heat or High Water., INTL FED OF RED
CROSS, GENEVA, ISBN 978-2-9701289-5-3,
https://media.ifrc.org/ifrc/world-disaster-report-2020 (last access: 28 August 2022), 2020. a
Iooss, B. and Lemaître, P.: A Review on Global Sensitivity Analysis
Methods, in: Uncertainty Management in Simulation-Optimization of
Complex Systems: Algorithms and Applications, edited by: Dellino,
G. and Meloni, C., Operations Research/Computer Science Interfaces
Series, Springer US, Boston, MA, 101–122,
https://doi.org/10.1007/978-1-4899-7547-8_5, 2015. a
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., https://www.ipcc.ch/report/ar5/syr/ (last access: 28 August 2022), 2014a. a, b, c
IPCC: 2014: Summary for policymakers, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D.,
Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S.,
Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 1–32, https://www.ipcc.ch/report/ar5/wg2/ (last access: 28 August 2022), 2014b. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., https://www.ipcc.ch/report/ar6/wg1/ (last access: 28 August 2022), 2021. a
Kam, P. M., Aznar-Siguan, G., Schewe, J., Milano, L., Ginnetti, J., Willner,
S., McCaughey, J. W., and Bresch, D. N.: Global Warming and Population Change
Both Heighten Future Risk of Human Displacement Due to River Floods, Environ.
Res. Lett., 16, 044026, https://doi.org/10.1088/1748-9326/abd26c, 2021. a
Kasprzyk, J. R., Nataraj, S., Reed, P. M., and Lempert, R. J.: Many Objective
Robust Decision Making for Complex Environmental Systems Undergoing Change,
Environ. Modell. Softw., 42, 55–71,
https://doi.org/10.1016/j.envsoft.2012.12.007, 2013. a
Katzav, J., Thompson, E. L., Risbey, J., Stainforth, D. A., Bradley, S., and
Frisch, M.: On the appropriate and inappropriate uses of probability
distributions in climate projections and some alternatives, Climatic Change,
169, 15, https://doi.org/10.1007/s10584-021-03267-x, 2021. a
Kleppek, S., Muccione, V., Raible, C. C., Bresch, D. N., Köllner-Heck,
P., and Stocker, T. F.: Tropical Cyclones in ERA-40: A Detection and
Tracking Method, Geophys. Res. Lett., 35, L10705,
https://doi.org/10.1029/2008GL033880, 2008. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.:
The International Best Track Archive for Climate Stewardship
(IBTrACS): Unifying Tropical Cyclone Data, B. Am.
Meteorol. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010. a
Knüsel, B.: Epistemological Issues in Data-Driven Modeling in
Climate Research, Doctoral Thesis, ETH Zurich,
https://doi.org/10.3929/ethz-b-000399735, 2020. a, b
Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi,
G. A., Villarini, G., and Chavas, D.: Global Projections of Intense
Tropical Cyclone Activity for the Late Twenty-First Century from
Dynamical Downscaling of CMIP5/RCP4.5 Scenarios, J.
Climate, 28, 7203–7224, https://doi.org/10.1175/JCLI-D-15-0129.1, 2015. a, b
Koks, E. E., Bočkarjova, M., de Moel, H., and Aerts, J.
C. J. H.: Integrated Direct and Indirect Flood Risk Modeling:
Development and Sensitivity Analysis, Risk Anal., 35, 882–900,
https://doi.org/10.1111/risa.12300, 2015. a
Krauß, W. and Bremer, S.: The Role of Place-Based Narratives of Change in
Climate Risk Governance, Climate Risk Manage., 28, 100221,
https://doi.org/10.1016/j.crm.2020.100221, 2020. a
Kropf, C. M., Schmid, E., Aznar-Siguan, G., Eberenz, S., Vogt, T., Steinmann,
C. B., Röösli, T., Lüthi, S., Sauer, I. J., Mühlhofer, E.,
Hartman, J., Guillod, B. P., Stalhandske, Z., Ciullo, A., Fairless, C., Kam,
P. M. M., wjan262, Meiler, S., Bungener, R., Bozzini, V., Stocker, D., and
Bresch, D. N.: CLIMADA-project/Climada_python: V3.1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.5947271, 2022a. a, b, c, d
Kropf, C. M., Rana, A., and Zhu, Q.: Probabilistic storm surge hazard event set
for Vietnam on 30 arcsecond resolution (2020 and 2050), ETH Research Collection [code and data set],
https://doi.org/10.3929/ethz-b-000566528, 2022b. a
Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling, Springer
Science & Business Media, https://doi.org/10.1007/978-0-387-78165-5, 2009. a, b, c
Leobacher, G. and Pillichshammer, F.: Introduction to Quasi-Monte Carlo
Integration and Applications, Springer, https://doi.org/10.1007/978-3-319-03425-6, 2014. a, b
Marelli, S. and Sudret, B.: UQLab: A Framework for Uncertainty
Quantification in Matlab, in: Second International Conference on
Vulnerability and Risk Analysis and Management (ICVRAM) and
the Sixth International Symposium on Uncertainty, Modeling, and
Analysis (ISUMA), American Society of Civil
Engineers, Liverpool, 2554–2563, https://doi.org/10.1061/9780784413609.257, 2014. a
Marrel, A., Iooss, B., Da Veiga, S., and Ribatet, M.: Global Sensitivity
Analysis of Stochastic Computer Models with Joint Metamodels, Stat. Comput.,
22, 833–847, https://doi.org/10.1007/s11222-011-9274-8, 2012. a
Matott, L. S., Babendreier, J. E., and Purucker, S. T.: Evaluating Uncertainty
in Integrated Environmental Models: A Review of Concepts and Tools, Water
Resour. Res., 45, W06421, https://doi.org/10.1029/2008WR007301, 2009. a, b
Mayer, L. A., Loa, K., Cwik, B., Tuana, N., Keller, K., Gonnerman, C., Parker,
A. M., and Lempert, R. J.: Understanding Scientists' Computational Modeling
Decisions about Climate Risk Management Strategies Using Values-Informed
Mental Models, Global Environ. Chang., 42, 107–116,
https://doi.org/10.1016/j.gloenvcha.2016.12.007, 2017. a, b
Merwade, V., Olivera, F., Arabi, M., and Edleman, S.: Uncertainty in Flood
Inundation Mapping: Current Issues and Future Directions, J.
Hydrol. Eng., 13, 608–620,
https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608), 2008. a, b
Morris, M. D.: Factorial Sampling Plans for Preliminary Computational
Experiments, Technometrics, 33, 161–174,
https://doi.org/10.1080/00401706.1991.10484804, 1991. a
Norton, J.: An introduction to sensitivity assessment of simulation models,
Environ. Modell. Softw., 69, 166–174,
https://doi.org/10.1016/j.envsoft.2015.03.020, 2015. a
Paleari, L. and Confalonieri, R.: Sensitivity Analysis of a Sensitivity
Analysis: We Are Likely Overlooking the Impact of Distributional
Assumptions, Ecol. Modell., 340, 57–63,
https://doi.org/10.1016/j.ecolmodel.2016.09.008, 2016. a, b
Pianosi, F. and Wagener, T.: A Simple and Efficient Method for Global
Sensitivity Analysis Based on Cumulative Distribution Functions,
Environ. Modell. Softw., 67, 1–11,
https://doi.org/10.1016/j.envsoft.2015.01.004, 2015. a
Plischke, E., Borgonovo, E., and Smith, C. L.: Global Sensitivity Measures from
given Data, Eur. J. Oper. Res., 226, 536–550,
https://doi.org/10.1016/j.ejor.2012.11.047, 2013. a
Saltelli, A.: Making Best Use of Model Evaluations to Compute Sensitivity
Indices, Comput. Phys. Commun., 145, 280–297,
https://doi.org/10.1016/S0010-4655(02)00280-1, 2002. a
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis: The Primer, John Wiley & Sons, Ltd,
Chichester, England, Hoboken, NJ, ISBN 9780470059975, Online ISBN 9780470725184, https://doi.org/10.1002/9780470725184, 2008. a, b, c
Saltelli, A. and Annoni, P.: How to Avoid a Perfunctory Sensitivity Analysis,
Environ. Modell. Softw., 25, 1508–1517,
https://doi.org/10.1016/j.envsoft.2010.04.012, 2010. a, b, c
Saltelli, A., Guimaraes Pereira, Â., der Sluijs, J.
P. V., and Funtowicz, S.: What Do I Make of Your Latinorumc
Sensitivity Auditing of Mathematical Modelling, International Journal of Foresight and Innovation Policy, 9, 213,
https://doi.org/10.1504/IJFIP.2013.058610, 2013. a
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst,
N., Li, S., and Wu, Q.: Why so Many Published Sensitivity Analyses Are False:
A Systematic Review of Sensitivity Analysis Practices, Environ.
Modell. Softw., 114, 29–39, https://doi.org/10.1016/j.envsoft.2019.01.012,
2019. a, b, c, d
Sarrazin, F. J., Pianosi, F., and Wagener, T.: Global Sensitivity Analysis
of Environmental Models: Convergence and Validation, Environ.
Modell. Softw., 79, 135–152, https://doi.org/10.1016/j.envsoft.2016.02.005,
2016. a, b
Savage, J. T. S., Pianosi, F., Bates, P., Freer, J., and Wagener, T.:
Quantifying the Importance of Spatial Resolution and Other Factors through
Global Sensitivity Analysis of a Flood Inundation Model, Water Resour.
Res., 52, 9146–9163, https://doi.org/10.1002/2015WR018198, 2016. a
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S.,
Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O.,
Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth,
K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby,
R. L., and Zenghelis, D. A.: Storylines: An Alternative Approach to
Representing Uncertainty in Physical Aspects of Climate Change, Climatic
Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018. a
Sobol′, I. M. and Kucherenko, S.: Derivative Based Global Sensitivity Measures
and Their Link with Global Sensitivity Indices, Mathe. Comput.
Simulat., 79, 3009–3017, https://doi.org/10.1016/j.matcom.2009.01.023, 2009. a
Souvignet, M., Wieneke, F., Müller, L., and Bresch, D. N.: Economics of Climate Adaptation (ECA): Guidebook for Practitioners, KfW Group, KfW Development Bank, Frankfurt am Main, https://www.kfw-entwicklungsbank.de/PDF/Download-Center/Materialien/2016_No6_Guidebook_Economics-of-Climate-Adaptation_EN.pdf (last access: 28 August 2022), 2016. a
Sudret, B.: Global Sensitivity Analysis Using Polynomial Chaos Expansions,
Reliab. Eng. Syst. Safe., 93, 964–979,
https://doi.org/10.1016/j.ress.2007.04.002, 2008. a
Uusitalo, L., Lehikoinen, A., Helle, I., and Myrberg, K.: An Overview of
Methods to Evaluate Uncertainty of Deterministic Models in Decision Support,
Environ. Modell. Softw., 63, 24–31,
https://doi.org/10.1016/j.envsoft.2014.09.017, 2015. a
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace,
Scotts Valley, CA, ISBN 978-1-4414-1269-0, 2009. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and
van Mulbregt, P.: SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wagenaar, D. J., de Bruijn, K. M., Bouwer, L. M., and de Moel, H.: Uncertainty in flood damage estimates and its potential effect on investment decisions, Nat. Hazards Earth Syst. Sci., 16, 1–14, https://doi.org/10.5194/nhess-16-1-2016, 2016. a
Wagener, T., Reinecke, R., and Pianosi, F.: On the Evaluation of Climate Change
Impact Models, WIREs Clim. Change, 13, e772, https://doi.org/10.1002/wcc.772, 2022. a
Wilby, R. L. and Dessai, S.: Robust Adaptation to Climate Change, Weather, 65,
180–185, https://doi.org/10.1002/wea.543, 2010. a
Zhu, X. and Sudret, B.: Global Sensitivity Analysis for Stochastic Simulators
Based on Generalized Lambda Surrogate Models, Reliab. Eng.
Syst. Safe., 214, 107815, https://doi.org/10.1016/j.ress.2021.107815, 2021. a
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Mathematical models are approximations, and modellers need to understand and ideally quantify...