Articles | Volume 15, issue 18
Geosci. Model Dev., 15, 7177–7201, 2022
Geosci. Model Dev., 15, 7177–7201, 2022
Development and technical paper
23 Sep 2022
Development and technical paper | 23 Sep 2022

Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0

Chahan M. Kropf et al.

Related authors

Large-scale risk assessment on snow avalanche hazard in alpine regions
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2022
Preprint under review for NHESS
Short summary

Related subject area

Climate and Earth system modeling
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176,,, 2022
Short summary
Temperature forecasting by deep learning methods
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956,,, 2022
Short summary
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868,,, 2022
Short summary
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829,,, 2022
Short summary
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704,,, 2022
Short summary

Cited articles

Anderson, W., Guikema, S., Zaitchik, B., and Pan, W.: Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru, PLOS ONE, 9, e100037,, 2014. a
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, Geosci. Model Dev., 12, 3085–3097,, 2019. a, b, c, d, e, f, g, h, i, j
Berger, L.: Leaving No One Off The Map: A Guide For Gridded Population Data For Sustainable Development, A Report by the Thematic Research Network on Data and Statistics (TReNDS) of the UN Sustainable Development Solutions Network (SDSN) in Support of the POPGRID Data Collaborative, (last access: 28 August 2022), 2020. a
Beven, K. J., Almeida, S., Aspinall, W. P., Bates, P. D., Blazkova, S., Borgomeo, E., Freer, J., Goda, K., Hall, J. W., Phillips, J. C., Simpson, M., Smith, P. J., Stephenson, D. B., Wagener, T., Watson, M., and Wilkins, K. L.: Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas, Nat. Hazards Earth Syst. Sci., 18, 2741–2768,, 2018. a, b
Beven, K. J., Aspinall, W. P., Bates, P. D., Borgomeo, E., Goda, K., Hall, J. W., Page, T., Phillips, J. C., Simpson, M., Smith, P. J., Wagener, T., and Watson, M.: Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?, Nat. Hazards Earth Syst. Sci., 18, 2769–2783,, 2018b. a, b
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.