Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Chahan M. Kropf
CORRESPONDING AUTHOR
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Alessio Ciullo
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Laura Otth
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Simona Meiler
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Arun Rana
Frankfurt School of Finance and Management Gemeinnützige GmbH, Adickesallee 32–34, 60322 Frankfurt am Main, Germany
Emanuel Schmid
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Jamie W. McCaughey
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
David N. Bresch
Institute for Environmental Decisions, ETH Zurich, Universitätstr. 16, 8092 Zurich, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich Airport, Switzerland
Related authors
Sophie L. Buijs, Inga J. Sauer, Chahan M. Kropf, Samuel Juhel, Zélie Stalhandske, and Marleen C. De Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3200, https://doi.org/10.5194/egusphere-2025-3200, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how repeated disasters affect recovery across housing, health, economic systems, and governance. Our findings show that failing to recover fully between events can increase long-term risks but also offers opportunities for learning and adaptation. Understanding these dynamics can help societies plan better, reduce vulnerability, and build resilience to increasingly frequent and severe hazards.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Sophie L. Buijs, Inga J. Sauer, Chahan M. Kropf, Samuel Juhel, Zélie Stalhandske, and Marleen C. De Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3200, https://doi.org/10.5194/egusphere-2025-3200, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how repeated disasters affect recovery across housing, health, economic systems, and governance. Our findings show that failing to recover fully between events can increase long-term risks but also offers opportunities for learning and adaptation. Understanding these dynamics can help societies plan better, reduce vulnerability, and build resilience to increasingly frequent and severe hazards.
Christophe Lienert, Andreas Paul Zischg, Horst Kremers, Jamie McCaughey, Lara Zinkl, and David N. Bresch
Abstr. Int. Cartogr. Assoc., 9, 1, https://doi.org/10.5194/ica-abs-9-1-2025, https://doi.org/10.5194/ica-abs-9-1-2025, 2025
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, https://doi.org/10.5194/nhess-21-393-2021, 2021
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Cited articles
Anderson, W., Guikema, S., Zaitchik, B., and Pan, W.: Methods for Estimating
Population Density in Data-Limited Areas: Evaluating Regression and
Tree-Based Models in Peru, PLOS ONE, 9, e100037,
https://doi.org/10.1371/journal.pone.0100037, 2014. a
Berger, L.: Leaving No One Off The Map:
A Guide For Gridded Population Data For
Sustainable Development,
A Report by the Thematic Research Network on Data and Statistics
(TReNDS) of the UN Sustainable Development Solutions Network
(SDSN) in Support of the POPGRID Data Collaborative, https://www.unsdsn.org/leaving-no-one-off-the-map-a-guide-for-gridded-population-data-for-sustainable-development (last access: 28 August 2022), 2020. a
Beven, K. J., Almeida, S., Aspinall, W. P., Bates, P. D., Blazkova, S., Borgomeo, E., Freer, J., Goda, K., Hall, J. W., Phillips, J. C., Simpson, M., Smith, P. J., Stephenson, D. B., Wagener, T., Watson, M., and Wilkins, K. L.: Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas, Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, 2018. a, b
Beven, K. J., Aspinall, W. P., Bates, P. D., Borgomeo, E., Goda, K., Hall, J. W., Page, T., Phillips, J. C., Simpson, M., Smith, P. J., Wagener, T., and Watson, M.: Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?, Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, 2018b. a, b
Bloemendaal, N., Haigh, I. D.,de Moel, H., Muis, S.,
Haarsma, R. J., and Aerts, J. C. J. H.: Generation of a Global Synthetic
Tropical Cyclone Hazard Dataset Using STORM, Sci. Data, 7, 40,
https://doi.org/10.1038/s41597-020-0381-2, 2020. a
Borgonovo, E.: A New Uncertainty Importance Measure, Reliab. Eng.
Syst. Safe., 92, 771–784, https://doi.org/10.1016/j.ress.2006.04.015, 2007. a
Borgonovo, E., Lu, X., Plischke, E., Rakovec, O., and Hill, M. C.: Making the
Most out of a Hydrological Model Data Set: Sensitivity Analyses to Open
the Model Black-Box, Water Resour. Res., 53, 7933–7950,
https://doi.org/10.1002/2017WR020767, 2017. a
Bradley, R. and Drechsler, M.: Types of Uncertainty, Erkenn, 79,
1225–1248, https://doi.org/10.1007/s10670-013-9518-4, 2014. a, b
Bradley, R. and Steele, K.: Making Climate Decisions, Philosophy Compass,
10, 799–810, https://doi.org/10.1111/phc3.12259, 2015. a, b
Center for International Earth Science Information Network
(CIESIN): Documentation for the Gridded Population of the
World, Version 4 (GPWv4), Revision 10 Data Sets [data set], https://doi.org/10.7927/H4D50JX4, 2017. a
Ceola, S., Laio, F., and Montanari, A.: Satellite Nighttime Lights Reveal
Increasing Human Exposure to Floods Worldwide, Geophys. Res. Lett.,
41, 7184–7190, https://doi.org/10.1002/2014GL061859, 2014. a
Ciullo, A., Kwakkel, J. H., Bruijn, K. M. D., Doorn, N., and Klijn, F.:
Efficient or Fair? Operationalizing Ethical Principles in Flood
Risk Management: A Case Study on the Dutch-German Rhine, Risk
Anal., 40, 1844–1862, https://doi.org/10.1111/risa.13527, 2020. a
Ciullo, A., Martius, O., Strobl, E., and Bresch, D. N.: A Framework for
Building Climate Storylines Based on Downward Counterfactuals: The Case
of the European Union Solidarity Fund, Climate Risk Management, 33,
100349, https://doi.org/10.1016/j.crm.2021.100349, 2021. a
Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., and Schaibly,
J. H.: Study of the Sensitivity of Coupled Reaction Systems to Uncertainties
in Rate Coefficients. I Theory, J. Chem. Phys., 59, 3873–3878,
https://doi.org/10.1063/1.1680571, 1973. a
de Moel, H., Asselman, N. E. M., and Aerts, J. C. J. H.: Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands, Nat. Hazards Earth Syst. Sci., 12, 1045–1058, https://doi.org/10.5194/nhess-12-1045-2012, 2012. a
Doorn, N.: The Blind Spot in Risk Ethics: Managing Natural Hazards, Risk Anal.,
35, 354–360, https://doi.org/10.1111/risa.12293, 2015. a
Dottori, F., Di Baldassarre, G., and Todini, E.: Detailed Data Is Welcome, but
with a Pinch of Salt: Accuracy, Precision, and Uncertainty in Flood
Inundation Modeling, Water Resour. Res., 49, 6079–6085,
https://doi.org/10.1002/wrcr.20406, 2013. a, b
Douglas-Smith, D., Iwanaga, T., Croke, B. F. W., and Jakeman, A. J.: Certain
Trends in Uncertainty and Sensitivity Analysis: An Overview of Software
Tools and Techniques, Environ. Modell. Softw., 124, 104588,
https://doi.org/10.1016/j.envsoft.2019.104588, 2020. a, b
Ehre, M., Papaioannou, I., and Straub, D.: A Framework for Global Reliability
Sensitivity Analysis in the Presence of Multi-Uncertainty, Reliab.
Eng. Syst. Safe., 195, 106726,
https://doi.org/10.1016/j.ress.2019.106726, 2020. a
Emanuel, K.: A Fast Intensity Simulator for Tropical Cyclone Risk Analysis, Nat.
Hazards, 88, 779–796, https://doi.org/10.1007/s11069-017-2890-7, 2017. a
Étoré, P., Prieur, C., Pham, D. K., and Li, L.: Global Sensitivity
Analysis for Models Described by Stochastic Differential Equations,
Methodol. Comput. Appl. Probab., 22, 803–831, https://doi.org/10.1007/s11009-019-09732-6,
2020. a
Funtowicz, S. O. and Ravetz, J. R.: Uncertainty and Quality in Science
for Policy, Springer Science & Business Media, https://doi.org/10.1007/978-94-009-0621-1, 1990. a
Gettelman, A., Bresch, D. N., Chen, C. C., Truesdale, J. E., and Bacmeister,
J. T.: Projections of Future Tropical Cyclone Damage with a High-Resolution
Global Climate Model, Climatic Change, 146, 575–585,
https://doi.org/10.1007/s10584-017-1902-7, 2017. a
Ghanem, R., Higdon, D., and Owhadi, H.: Handbook of Uncertainty
Quantification, Springer, New York, NY, 1st Edn., https://doi.org/10.1007/978-3-319-11259-6, 2017. a
Hall, J. W., Tarantola, S., Bates, P. D., and Horritt, M. S.: Distributed
Sensitivity Analysis of Flood Inundation Model Calibration, J.
Hydraul. Eng., 131, 117–126, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(117),
2005. a
Hammersley, J. M.: Monte Carlo Methods for Solving Multivariable
Problems, Ann. NY Acad. Sci., 86, 844–874,
https://doi.org/10.1111/j.1749-6632.1960.tb42846.x, 1960. a
Hillger, D., Seaman, C., Liang, C., Miller, S., Lindsey, D., and Kopp, T.:
Suomi NPP VIIRS Imagery Evaluation, J. Geophys. Res.-Atmos., 119, 6440–6455, https://doi.org/10.1002/2013JD021170, 2014. a
Hinkel, J. and Bisaro, A.: Methodological Choices in Solution-Oriented
Adaptation Research: A Diagnostic Framework, Reg. Environ. Change, 16, 7–20,
https://doi.org/10.1007/s10113-014-0682-0, 2016. a, b
Holland, G.: A Revised Hurricane Pressure–Wind Model, Mon.
Wea. Rev., 136, 3432–3445, https://doi.org/10.1175/2008MWR2395.1, 2008. a
Hyde, K. M.: Uncertainty Analysis Methods For Multi-Criteria Decision
Analysis, PhD thesis, The University of Adelaide School of Civil and
Environmental Engineering, Adelaide, 2006. a
IFRC: World Disasters Rreport: Come Heat or High Water., INTL FED OF RED
CROSS, GENEVA, ISBN 978-2-9701289-5-3,
https://media.ifrc.org/ifrc/world-disaster-report-2020 (last access: 28 August 2022), 2020. a
Iooss, B. and Lemaître, P.: A Review on Global Sensitivity Analysis
Methods, in: Uncertainty Management in Simulation-Optimization of
Complex Systems: Algorithms and Applications, edited by: Dellino,
G. and Meloni, C., Operations Research/Computer Science Interfaces
Series, Springer US, Boston, MA, 101–122,
https://doi.org/10.1007/978-1-4899-7547-8_5, 2015. a
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., https://www.ipcc.ch/report/ar5/syr/ (last access: 28 August 2022), 2014a. a, b, c
IPCC: 2014: Summary for policymakers, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D.,
Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S.,
Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 1–32, https://www.ipcc.ch/report/ar5/wg2/ (last access: 28 August 2022), 2014b. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., https://www.ipcc.ch/report/ar6/wg1/ (last access: 28 August 2022), 2021. a
Kam, P. M., Aznar-Siguan, G., Schewe, J., Milano, L., Ginnetti, J., Willner,
S., McCaughey, J. W., and Bresch, D. N.: Global Warming and Population Change
Both Heighten Future Risk of Human Displacement Due to River Floods, Environ.
Res. Lett., 16, 044026, https://doi.org/10.1088/1748-9326/abd26c, 2021. a
Kasprzyk, J. R., Nataraj, S., Reed, P. M., and Lempert, R. J.: Many Objective
Robust Decision Making for Complex Environmental Systems Undergoing Change,
Environ. Modell. Softw., 42, 55–71,
https://doi.org/10.1016/j.envsoft.2012.12.007, 2013. a
Katzav, J., Thompson, E. L., Risbey, J., Stainforth, D. A., Bradley, S., and
Frisch, M.: On the appropriate and inappropriate uses of probability
distributions in climate projections and some alternatives, Climatic Change,
169, 15, https://doi.org/10.1007/s10584-021-03267-x, 2021. a
Kleppek, S., Muccione, V., Raible, C. C., Bresch, D. N., Köllner-Heck,
P., and Stocker, T. F.: Tropical Cyclones in ERA-40: A Detection and
Tracking Method, Geophys. Res. Lett., 35, L10705,
https://doi.org/10.1029/2008GL033880, 2008. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.:
The International Best Track Archive for Climate Stewardship
(IBTrACS): Unifying Tropical Cyclone Data, B. Am.
Meteorol. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010. a
Knüsel, B.: Epistemological Issues in Data-Driven Modeling in
Climate Research, Doctoral Thesis, ETH Zurich,
https://doi.org/10.3929/ethz-b-000399735, 2020. a, b
Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi,
G. A., Villarini, G., and Chavas, D.: Global Projections of Intense
Tropical Cyclone Activity for the Late Twenty-First Century from
Dynamical Downscaling of CMIP5/RCP4.5 Scenarios, J.
Climate, 28, 7203–7224, https://doi.org/10.1175/JCLI-D-15-0129.1, 2015. a, b
Koks, E. E., Bočkarjova, M., de Moel, H., and Aerts, J.
C. J. H.: Integrated Direct and Indirect Flood Risk Modeling:
Development and Sensitivity Analysis, Risk Anal., 35, 882–900,
https://doi.org/10.1111/risa.12300, 2015. a
Krauß, W. and Bremer, S.: The Role of Place-Based Narratives of Change in
Climate Risk Governance, Climate Risk Manage., 28, 100221,
https://doi.org/10.1016/j.crm.2020.100221, 2020. a
Kropf, C. M., Schmid, E., Aznar-Siguan, G., Eberenz, S., Vogt, T., Steinmann,
C. B., Röösli, T., Lüthi, S., Sauer, I. J., Mühlhofer, E.,
Hartman, J., Guillod, B. P., Stalhandske, Z., Ciullo, A., Fairless, C., Kam,
P. M. M., wjan262, Meiler, S., Bungener, R., Bozzini, V., Stocker, D., and
Bresch, D. N.: CLIMADA-project/Climada_python: V3.1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.5947271, 2022a. a, b, c, d
Kropf, C. M., Rana, A., and Zhu, Q.: Probabilistic storm surge hazard event set
for Vietnam on 30 arcsecond resolution (2020 and 2050), ETH Research Collection [code and data set],
https://doi.org/10.3929/ethz-b-000566528, 2022b. a
Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling, Springer
Science & Business Media, https://doi.org/10.1007/978-0-387-78165-5, 2009. a, b, c
Leobacher, G. and Pillichshammer, F.: Introduction to Quasi-Monte Carlo
Integration and Applications, Springer, https://doi.org/10.1007/978-3-319-03425-6, 2014. a, b
Marelli, S. and Sudret, B.: UQLab: A Framework for Uncertainty
Quantification in Matlab, in: Second International Conference on
Vulnerability and Risk Analysis and Management (ICVRAM) and
the Sixth International Symposium on Uncertainty, Modeling, and
Analysis (ISUMA), American Society of Civil
Engineers, Liverpool, 2554–2563, https://doi.org/10.1061/9780784413609.257, 2014. a
Marrel, A., Iooss, B., Da Veiga, S., and Ribatet, M.: Global Sensitivity
Analysis of Stochastic Computer Models with Joint Metamodels, Stat. Comput.,
22, 833–847, https://doi.org/10.1007/s11222-011-9274-8, 2012. a
Matott, L. S., Babendreier, J. E., and Purucker, S. T.: Evaluating Uncertainty
in Integrated Environmental Models: A Review of Concepts and Tools, Water
Resour. Res., 45, W06421, https://doi.org/10.1029/2008WR007301, 2009. a, b
Mayer, L. A., Loa, K., Cwik, B., Tuana, N., Keller, K., Gonnerman, C., Parker,
A. M., and Lempert, R. J.: Understanding Scientists' Computational Modeling
Decisions about Climate Risk Management Strategies Using Values-Informed
Mental Models, Global Environ. Chang., 42, 107–116,
https://doi.org/10.1016/j.gloenvcha.2016.12.007, 2017. a, b
Merwade, V., Olivera, F., Arabi, M., and Edleman, S.: Uncertainty in Flood
Inundation Mapping: Current Issues and Future Directions, J.
Hydrol. Eng., 13, 608–620,
https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608), 2008. a, b
Morris, M. D.: Factorial Sampling Plans for Preliminary Computational
Experiments, Technometrics, 33, 161–174,
https://doi.org/10.1080/00401706.1991.10484804, 1991. a
Norton, J.: An introduction to sensitivity assessment of simulation models,
Environ. Modell. Softw., 69, 166–174,
https://doi.org/10.1016/j.envsoft.2015.03.020, 2015. a
Paleari, L. and Confalonieri, R.: Sensitivity Analysis of a Sensitivity
Analysis: We Are Likely Overlooking the Impact of Distributional
Assumptions, Ecol. Modell., 340, 57–63,
https://doi.org/10.1016/j.ecolmodel.2016.09.008, 2016. a, b
Pianosi, F. and Wagener, T.: A Simple and Efficient Method for Global
Sensitivity Analysis Based on Cumulative Distribution Functions,
Environ. Modell. Softw., 67, 1–11,
https://doi.org/10.1016/j.envsoft.2015.01.004, 2015. a
Plischke, E., Borgonovo, E., and Smith, C. L.: Global Sensitivity Measures from
given Data, Eur. J. Oper. Res., 226, 536–550,
https://doi.org/10.1016/j.ejor.2012.11.047, 2013. a
Saltelli, A.: Making Best Use of Model Evaluations to Compute Sensitivity
Indices, Comput. Phys. Commun., 145, 280–297,
https://doi.org/10.1016/S0010-4655(02)00280-1, 2002. a
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis: The Primer, John Wiley & Sons, Ltd,
Chichester, England, Hoboken, NJ, ISBN 9780470059975, Online ISBN 9780470725184, https://doi.org/10.1002/9780470725184, 2008. a, b, c
Saltelli, A. and Annoni, P.: How to Avoid a Perfunctory Sensitivity Analysis,
Environ. Modell. Softw., 25, 1508–1517,
https://doi.org/10.1016/j.envsoft.2010.04.012, 2010. a, b, c
Saltelli, A., Guimaraes Pereira, Â., der Sluijs, J.
P. V., and Funtowicz, S.: What Do I Make of Your Latinorumc
Sensitivity Auditing of Mathematical Modelling, International Journal of Foresight and Innovation Policy, 9, 213,
https://doi.org/10.1504/IJFIP.2013.058610, 2013. a
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst,
N., Li, S., and Wu, Q.: Why so Many Published Sensitivity Analyses Are False:
A Systematic Review of Sensitivity Analysis Practices, Environ.
Modell. Softw., 114, 29–39, https://doi.org/10.1016/j.envsoft.2019.01.012,
2019. a, b, c, d
Sarrazin, F. J., Pianosi, F., and Wagener, T.: Global Sensitivity Analysis
of Environmental Models: Convergence and Validation, Environ.
Modell. Softw., 79, 135–152, https://doi.org/10.1016/j.envsoft.2016.02.005,
2016. a, b
Savage, J. T. S., Pianosi, F., Bates, P., Freer, J., and Wagener, T.:
Quantifying the Importance of Spatial Resolution and Other Factors through
Global Sensitivity Analysis of a Flood Inundation Model, Water Resour.
Res., 52, 9146–9163, https://doi.org/10.1002/2015WR018198, 2016. a
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S.,
Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O.,
Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth,
K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby,
R. L., and Zenghelis, D. A.: Storylines: An Alternative Approach to
Representing Uncertainty in Physical Aspects of Climate Change, Climatic
Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018. a
Sobol′, I. M. and Kucherenko, S.: Derivative Based Global Sensitivity Measures
and Their Link with Global Sensitivity Indices, Mathe. Comput.
Simulat., 79, 3009–3017, https://doi.org/10.1016/j.matcom.2009.01.023, 2009. a
Souvignet, M., Wieneke, F., Müller, L., and Bresch, D. N.: Economics of Climate Adaptation (ECA): Guidebook for Practitioners, KfW Group, KfW Development Bank, Frankfurt am Main, https://www.kfw-entwicklungsbank.de/PDF/Download-Center/Materialien/2016_No6_Guidebook_Economics-of-Climate-Adaptation_EN.pdf (last access: 28 August 2022), 2016. a
Sudret, B.: Global Sensitivity Analysis Using Polynomial Chaos Expansions,
Reliab. Eng. Syst. Safe., 93, 964–979,
https://doi.org/10.1016/j.ress.2007.04.002, 2008. a
Uusitalo, L., Lehikoinen, A., Helle, I., and Myrberg, K.: An Overview of
Methods to Evaluate Uncertainty of Deterministic Models in Decision Support,
Environ. Modell. Softw., 63, 24–31,
https://doi.org/10.1016/j.envsoft.2014.09.017, 2015. a
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace,
Scotts Valley, CA, ISBN 978-1-4414-1269-0, 2009. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and
van Mulbregt, P.: SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wagenaar, D. J., de Bruijn, K. M., Bouwer, L. M., and de Moel, H.: Uncertainty in flood damage estimates and its potential effect on investment decisions, Nat. Hazards Earth Syst. Sci., 16, 1–14, https://doi.org/10.5194/nhess-16-1-2016, 2016. a
Wagener, T., Reinecke, R., and Pianosi, F.: On the Evaluation of Climate Change
Impact Models, WIREs Clim. Change, 13, e772, https://doi.org/10.1002/wcc.772, 2022. a
Wilby, R. L. and Dessai, S.: Robust Adaptation to Climate Change, Weather, 65,
180–185, https://doi.org/10.1002/wea.543, 2010. a
Zhu, X. and Sudret, B.: Global Sensitivity Analysis for Stochastic Simulators
Based on Generalized Lambda Surrogate Models, Reliab. Eng.
Syst. Safe., 214, 107815, https://doi.org/10.1016/j.ress.2021.107815, 2021. a
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Mathematical models are approximations, and modellers need to understand and ideally quantify...