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Abstract. Modelling the risk of natural hazards for society,
ecosystems, and the economy is subject to strong uncertain-
ties, even more so in the context of a changing climate, evolv-
ing societies, growing economies, and declining ecosystems.
Here, we present a new feature of the climate-risk modelling
platform CLIMADA (CLIMate ADAptation), which allows
us to carry out global uncertainty and sensitivity analysis.
CLIMADA underpins the Economics of Climate Adaptation
(ECA) methodology which provides decision-makers with a
fact base to understand the impact of weather and climate on
their economies, communities, and ecosystems, including the
appraisal of bespoke adaptation options today and in future.
We apply the new feature to an ECA analysis of risk from
tropical cyclone storm surge to people in Vietnam to show-
case the comprehensive treatment of uncertainty and sensi-
tivity of the model outputs, such as the spatial distribution
of risk exceedance probabilities or the benefits of different
adaptation options. We argue that broader application of un-
certainty and sensitivity analysis will enhance transparency
and intercomparison of studies among climate-risk modellers
and help focus future research. For decision-makers and
other users of climate-risk modelling, uncertainty and sen-
sitivity analysis has the potential to lead to better-informed
decisions on climate adaptation. Beyond provision of uncer-
tainty quantification, the presented approach does contextu-
alize risk assessment and options appraisal, and might be
used to inform the development of storylines and climate
adaptation narratives.

1 Introduction

Societal impacts from natural disasters have steadily in-
creased over the last decades (IFRC, 2020), and they are
expected to follow the same path under climatic, socio-
economic, and ecological changes in the coming decades
(IPCC, 2021). This creates the need for better preparedness
and adaptation towards such events, and raises a demand for
risk assessments and appraisals of adaptation options at lo-
cal, national, and global levels. Typically, such studies are
carried out through the use of computer models – which will
be referred to as climate-risk models in this paper – that allow
us to estimate the socio-economic and ecological impact1 of
various natural hazards such as tropical cyclones, wildfires,
heat waves, droughts, coastal, fluvial, or pluvial flooding.

The specific setup of climate-risk models depends on the
hazard under consideration, the location of interest, and the
goal of the study. However, such models often share a simi-
lar structure given by three sub-models, usually referred to as
hazard, exposure, and vulnerability. These constitute the in-
put variables of climate-risk models and represent the main
drivers of climate risk as defined by the Intergovernmental
Panel on Climate Change (IPCC) (IPCC, 2014a). Hazard is a

1“Impacts generally refer to effects on lives; livelihoods; health
and well-being; ecosystems and species; economic, social and cul-
tural assets; services (including ecosystem services); and infrastruc-
ture. Impacts may be referred to as consequences or outcomes, and
can be adverse or beneficial.” (IPCC, 2014b)
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model of the physical forcing at each location of interest; ex-
posure is a model of the spatial distribution of the exposed el-
ements such as people, buildings, infrastructures, and ecosys-
tems; and vulnerability is characterized by a uni- or multi-
variate impact function describing the impact of the consid-
ered hazard on the given exposed elements. By combining
hazard, exposure, and vulnerability, the socio-economic im-
pact of natural hazards can be assessed. In so doing, one can
also carry out an appraisal of adaptation options by compar-
ing the current and future risk reduction capacity of adapta-
tion options with expected implementation costs.

In practice, the quantification of risk with climate-risk
models is particularly challenging as it involves dealing with
the absence of robust verification data (Matott et al., 2009;
Pianosi et al., 2016; Wagener et al., 2022) when setting
up the hazard, exposure, and vulnerability sub-models, as
well as dealing with large uncertainties in the input pa-
rameters and the model structure itself (Knüsel, 2020). For
example, in hazard modelling, many authors have shown
large uncertainties affecting the computation of flood maps
through hydraulic modelling (Merwade et al., 2008; Dottori
et al., 2013); similarly, alternative models have been pro-
posed for modelling tracks and intensities of tropical cy-
clones (Emanuel, 2017; Bloemendaal et al., 2020). For ex-
posure, notable uncertainties are associated with the quality
of the data being used; their resolution; and, since proxy data
are often used (Ceola et al., 2014; Eberenz et al., 2020), their
fitness for purpose. The vulnerability module also introduces
significant uncertainties, because data needed to calibrate im-
pact function curves are often very scarce and scattered (Wa-
genaar et al., 2016). In addition, uncertainties affecting ex-
posure, hazard, and vulnerability are exacerbated by the un-
knowns in climatic, economical, social, and ecological pro-
jections. Furthermore, modelling adaptation options is a pro-
cess that is particularly strongly affected by normative un-
certainties (Knüsel et al., 2020). For example, the choice of
the discount rate, which affects the effectiveness of a given
option, raises intergenerational justice issues (Doorn, 2015;
Moeller, 2016; Mayer et al., 2017). Finally, the choice of out-
put metrics, the performance measures, and the very formu-
lation of the risk management problem also underlie value-
laden choices (Kasprzyk et al., 2013; Ciullo et al., 2020),
as they dictate what actors and what actors’ interests are in-
cluded in the risk assessment and appraisal of adaptation op-
tions (Knüsel et al., 2020; Otth, 2021; Otth et al., 2022).

Uncertainty and sensitivity analyses are among the estab-
lished methods proposed by the scientific literature to quan-
titatively treat uncertainties in model simulation (Saltelli et
al., 2008). While for both methods an analytical treatment
is preferable (Norton, 2015), it is often not possible. There-
fore, numerical Monte Carlo or quasi-Monte Carlo schemes
(Lemieux, 2009; Leobacher and Pillichshammer, 2014) are
applied, which require repeated model runs using differ-
ent values for the uncertain input parameters. Uncertainty
analysis is then the study of the distribution of outputs ob-

tained when the uncertain input parameters are sampled from
plausible uncertainty ranges. Ideally, these plausible ranges
should be defined based on background knowledge related to
these parameters (Beven et al., 2018b). Sensitivity analysis
in turn assesses the respective contributions of the input pa-
rameters to the total output variability, and often builds upon
uncertainty analysis. It allows us to test the robustness of the
model, single out the input uncertainties most responsible
for the output uncertainty, and improve understanding about
the model’s structure and input–output relationships (Pianosi
et al., 2016). Arguably, conducting uncertainty and sensitiv-
ity analyses should be part of any modelling exercise as it
reveals its fitness for purpose and limitations (Saltelli et al.,
2019). Nevertheless, uncertainty and sensitivity analyses are
still lacking in many published modelling studies (Beven
et al., 2018a; Saltelli et al., 2019). In this context, climate-
risk assessment studies are no exception. Although there are
examples in the scientific literature of applications of un-
certainty and sensitivity analyses to the full (de Moel et al.,
2012; Koks et al., 2015) or partial (Hall et al., 2005; Savage
et al., 2016) climate-risk modelling chains, these techniques
(Douglas-Smith et al., 2020) are neither common practice,
nor applied in a systematic fashion. This may strongly un-
dermine the quality of the risk assessment and appraisal of
adaptation options, and may lead to poor decisions (Beven
et al., 2018a).

In order to fill this gap and facilitate the widespread adop-
tion and application of uncertainty and sensitivity analyses
in climate-risk models, this paper introduces and showcases
a new feature of the probabilistic climate-risk assessment
and modelling platform CLIMADA (CLIMate ADAptation)
(Aznar-Siguan and Bresch, 2019; Bresch and Aznar-Siguan,
2021; Kropf et al., 2022a), which seamlessly integrates the
SALib – Sensitivity Analysis Library in Python package (Her-
man and Usher, 2017) into the overall CLIMADA modelling
framework, and thus supports all sampling and sensitivity in-
dex algorithms implemented therein. The new feature allows
conducting uncertainty and sensitivity analyses for any CLI-
MADA climate-risk assessment and appraisal of adaptation
options with little additional effort, and in a user-friendly
manner. Here, we describe the UNcertainty and SEnsitity
QUAntification (unsequa) module in detail and demonstrate
it’s use of a previously published case study on the impact of
tropical cyclones in Vietnam (Rana et al., 2022).

The paper is structured as follows: Sect. 2 will introduce
the CLIMADA modelling platform and describe how uncer-
tainty and sensitivity analyses are integrated therein; Sect. 3
demonstrates the use of uncertainty and sensitivity analyses
by revisiting a case study on the impact of tropical cyclone in
Vietnam; Sect. 4 discusses results and provides an outlook.
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2 Uncertainty and sensitivity analyses in the
climate-risk modelling platform CLIMADA

2.1 Brief introduction to CLIMADA

To our knowledge, CLIMADA is the first global platform
for probabilistic multi-hazard risk modelling and options ap-
praisal to seamlessly include uncertainty and sensitivity anal-
yses in its workflow, as described in this section. CLIMADA
is written in Python 3 (Van Rossum and Drake, 2009); it is
fully open source and open access (Kropf et al., 2022a). It im-
plements a probabilistic global multi-hazard natural-disaster
impact model based on the three sub-modules, i.e. hazard,
exposure, and vulnerability. It can be used to assess the risk
of natural hazards and to perform appraisal of adaptation op-
tions by comparing the averted impact (benefit) thanks to
adaptation measures of any kind (from grey to green infras-
tructure, behavioural, etc.) with their implementation costs
(Aznar-Siguan and Bresch, 2019; Bresch and Aznar-Siguan,
2021).

The hazard is modelled as a probabilistic set of events,
each one a map of intensity at geographical locations, and
with an associated probability of occurrence. For example,
the intensity can be expressed in terms of flood depth in
metres, maximum wind speed in metres per second, or heat
wave duration in days, and the probability as a frequency per
year. The exposure is modelled as values distributed on a ge-
ographical grid. For instance, the number of animal species,
the value of assets in dollars, or the number of people liv-
ing in a given area. The vulnerability is modelled for each
exposure type by an impact function, which is a function of
hazard intensity (for details, see Aznar-Siguan and Bresch,
2019). For example, this could be a sigmoid function with
0 % of affected people below 0.2 m flood depth, and 90 % of
affected people above 1 m flood depth. The adaptation mea-
sures are modelled as modification of the impact function,
exposure, or hazard. For example, a new regional plan can
incite people to relocate to less flood-prone areas, hence re-
sulting in a modified exposure (cf. Aznar-Siguan and Bresch,
2019; Bresch and Aznar-Siguan, 2021).

The risk of a single event is defined as its impact multi-
plied by its probability of occurrence. The impact is obtained
by multiplying the value of the impact function at a given
hazard intensity with the exposure value at a given location.
The total risk over time is obtained from the impact matrix,
which entails the impact of each hazard event at each expo-
sure location, and the hazard frequency vector. The benefits
of adaptation measures are obtained as the change in total
risk. Both the total risk and the benefits can thus be computed
for today and in the future, following climate-change scenar-
ios and socio-economic development pathways (cf. Aznar-
Siguan and Bresch, 2019; Bresch and Aznar-Siguan, 2021).

With CLIMADA, risk is assessed in a globally consistent
fashion, from city to continental scale, for historical data or
future projections, considering various adaptation options,

including future projections for the climate, socio-economic
growth, or vulnerability changes.

2.2 Uncertainty and sensitivity quantification
(unsequa) module overview

The general workflow of the new uncertainty and sensitivity
quantification module unsequa, illustrated in Fig. 1, follows
a Monte Carlo logic (Hammersley, 1960) and implements
similar steps as generic uncertainty and sensitivity analyses
schemes (Pianosi et al., 2016; Saltelli et al., 2019). It consists
of the following steps:

– Input variables and input parameters definition. The
probability distributions of the uncertain input param-
eters (random variables) are defined. They character-
ize the input variables – hazard, exposure, and impact
function for risk assessment and, additionally, adapta-
tion measures for appraisal of adaptation options – of
the climate-risk model CLIMADA.

– Samples generation. Samples of the input parame-
ter values are drawn according to their respective
uncertainty–probability distribution.

– Model output computation. The CLIMADA engine is
used to compute all relevant model outputs for each of
the samples for risk assessment (risk metrics) and/or ap-
praisal adaptation options (benefit and cost metrics).

– Uncertainty visualization and statistics. The distribu-
tion of model outputs obtained in the previous step are
analysed and visualized.

– Sensitivity indices computation. Sensitivity indices for
each input parameter are computed for each of the
model output metric distributions.

– Sensitivity visualization and statistics. The various sen-
sitivity indices are analysed and visualized.

We remark that the third and fourth steps typically con-
stitute the core elements of the uncertainty analysis, and the
fifth and sixth steps the core elements of the sensitivity anal-
ysis. In Sect. 2.3, we describe each one of the steps in more
detail. Detailed documentation on how to use the unsequa
module is available at https://climada-python.readthedocs.io/
(last access: 30 August 2022).

2.3 Detailed workflow of unsequa module

2.3.1 Input variables and parameters

The CLIMADA engine integrates the input variables expo-
sure (E), hazard (H), and impact function (F) for risk assess-
ment. For the appraisal of adaptation options, the exposure
and impact function are combined with the adaptation mea-
sure (M) in a container input variable called entity (T). Note
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Figure 1. The workflow for uncertainty and sensitivity analyses with the unsequa module in CLIMADA consists of six steps (from left to
right). (1) Define the input variables (hazard, exposure, impact function, adaptation measure) and their uncertainty input parameters (e.g.
hazard intensity, total exposure value, impact function intensity, measures cost). (2) Generate the input parameter samples. (3) Compute
the model output metrics of interest for risk assessment and appraisal of adaptation options for each sample using the CLIMADA engine.
(4) Analyse the obtained uncertainty distributions with statistical tools and provide a set of visualizations. (5) Compute the sensitivity indices
for each input parameter and each output metric. (6) Analyse the sensitivity indices by means of statistical methods and provide different
visualizations.

that further input variables might be added in future versions
of CLIMADA. Each of these input variables comes with any
number of uncertainty input parameters α, distributed ac-
cording to an independent probability distribution pα . An
input variable can have any number of uncertainty input pa-
rameters, and there is no restriction on the type of probability
distributions (uniform, Gaussian, skewed, heavy-tailed, dis-
crete, etc.). In the current implementation, any distribution
from the Scipy.stats Python module (Virtanen et al., 2020)
is accepted. The input parameters can define any variation
or perturbation of the input variables (e.g. initial conditions,
boundary conditions, forcing inputs, resolutions, normative
choices, etc.). 2 Note that the choice of the variation and the
associated range and distribution can substantially affect the
results of uncertainty and sensitivity analyses (Paleari and
Confalonieri, 2016). Ideally, this modelling choice should be
made based on solid background knowledge. However, the

2In literature, the terminology “input factor” instead of “input
parameter” is also used. Here we shall exclusively use the terminol-
ogy “input parameter” for numerical random variables, and “input
variable” for the inputs to the CLIMADA model.

latter is often lacking or highly uncertain; in such cases, we
encourage users to explore how the results may vary with
alternate distributions and choices of input parameters. It is
thus about not only deriving definitive quantitative values de-
scribing the deviation of the climate-risk model’s output from
the “real” value, but also assessing the robustness, sensitiv-
ity, and plausibility of the model output under clearly defined
assumptions.

Overall, the user must define one method for each of
the uncertain input variables X, which returns the input
variable’s value X(α1,α2, . . .) for each valid value of the
associated uncertain input parameters α1,α2, . . .. The lat-
ter are univariate random variables distributed according to
pα1 ,pα2 , . . .. In order to support the user, a series of helper
methods are implemented in the unsequa module (cf. Ap-
pendix B). This general problem formulation allows for the
parametrization of generic uncertainty, with broadly speak-
ing two types of approaches: (1) an input variable is di-
rectly perturbed with statistical methods; or (2) the under-
lying model used to generate the input variable is fed with
the uncertain parameters. Note that each input variable is in-
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dependent, and thus either approach can be used for different
input variables for the same study (cf. the illustration case
study in Sect. 3.1).

As one example, suppose we are modelling the im-
pact of heat waves on people in Switzerland. As exposure
layer, we might use gridded population data based on the
total population estimate from the UN World population
prospect (United Nations, Department of Economic and So-
cial Affairs, Population Division, 2019), reported to be ts =
8655000 in 2020. Assuming an estimation error of ±5 %,
the input variable E has one uncertain input parameter t with
a uniform distribution pt between [0.95ts,1.05ts]. As hazard,
we might consider the heat waves of the past 40 years as mea-
sured by the Swiss Meteorological institute. Disregarding
measurement uncertainties, one could decide to model this
without uncertainty. Finally, the impact function might be
represented by a sigmoid function calibrated on past events
which yields uncertainty for the slope s and the asymptotic
value a. The slope’s uncertainty could be a multiplicative fac-
tor s drawn from a truncated Gaussian distribution ps with
mean 1, standard deviation 0.2, and the truncation of nega-
tive values, while the asymptotic value could be given by a
which follows a uniform distribution pa between [0.8,1].

As another example, we are interested in the risk of flood-
plain flooding for gridded physical assets in the Congo basin.
The flood hazard is generated from a floodplain modelling
information system (FMIS) with uncertainty parameters de-
scribing the uncertainty in the geospatial data, the temporal
data, the model parameters (Mannings), and the hydraulic
structure, such as shown in Merwade et al. (2008). These in-
put parameters are used directly as uncertainty input parame-
ters for the unsequa model, with a wrapper method returning
a CLIMADA hazard object produced from the FMIS flood
inundation map. In addition, the exposures are obtained by
interpolating and downscaling satellite images to a resolution
r (Eberenz et al., 2020). The sensitivity and robustness to the
resolution choice is modelled by pre-computing exposures at
resolutions r = 50as,100as,150as,300as,1000as. The un-
certainty parameter is then r , with a uniform choice distribu-
tion between the pre-computed values. Finally, we consider
all assets to be described by a single impact function, which
is derived from three different case studies found in litera-
ture. The impact function’s uncertainty is defined as a uni-
form choice-distributed parameter u ∈ [1,2,3] correspond-
ing to the selection of one of the three impact functions.

Defining the appropriate input variable uncertainty and
identifying the relevant input parameters for a given case
study are not trivial tasks. In general, only a small subset
of all possible parameters can be investigated Dottori et al.
(2013), Pianosi et al. (2016). In order to identify the rele-
vant parameters and defining the input variables’ uncertainty
accordingly, one can for instance use an assumption map
(Knüsel et al., 2020), as presented for CLIMADA in Otth
(2021), and Otth et al. (2022). Another general strategy is to
proceed iteratively: first a broad sensitivity analysis is used to

identify the most likely important uncertainties, followed by
a more detailed uncertainty and sensitivity analyses for full
quantification.

2.3.2 Samples

In general, there are two basic approaches regarding how
samples can be drawn. In the local “one-at-a-time” approach,
the input parameters are varied one after another, keeping
all the others constant (Pianosi et al., 2016). Local methods
are conceptually simpler, but capture neither interactions be-
tween input parameters nor non-linearities (Douglas-Smith
et al., 2020). By contrast, in global methods, the input param-
eters are sampled from the full space at once (Matott et al.,
2009). This allows for a more comprehensive depiction of
model uncertainty by accounting for the interactions among
the input parameters. Saltelli et al. (2019) even argue that un-
certainty and sensitivity analyses should always be based on
global methods for models with non-linearities such as CLI-
MADA.

Hence, the basic premise of the unsequa module is to use
a global sampling algorithm based on (quasi-) Monte Carlo
sequences (Lemieux, 2009; Leobacher and Pillichshammer,
2014) to generate a set of N samples of the input parame-
ters. Here, one sample refers to one value for each of the in-
put parameters. Following the heat wave example described
in Sect. 2.3.1, one would create N global samples xn =
(tn, sn,an) with n ∈ [1, . . .,N ]. One sample thus corresponds
to a set of three numbers in this case. Choosing the correct
number of samples is a notoriously difficult task (Iooss and
Lemaître, 2015; Sarrazin et al., 2016). One generic approach
is to start with a sample size that one can afford to generate
reasonably efficiently (e.g. N ∼ 100D), and then check the
confidence intervals of the estimated sensitivity indices (cf.
Sect. 2.3.5). If relative values of the estimated indices are
too ambiguous to draw key conclusions due to the overlap of
confidence intervals, one should either generate more sam-
ples, or use a more frugal method (e.g. reduce the number of
input parameters D) (Sarrazin et al., 2016).

CLIMADA imports the (quasi-) Monte Carlo sampling
algorithms from the SALib Python package (Herman and
Usher, 2017). Thus, all sampling algorithms from this pack-
age are directly available to the user within the unsequa mod-
ule. These algorithms are all implemented for a uniform dis-
tribution over [0,1] at least. In order to accommodate any
input parameter distributions, the unsequa module uses the
percent-point function (ppf) of the target probability density
distribution (cf. Appendix A).

2.3.3 Model output: risk assessment and appraisal of
adaptation options

For each sample of the input parameters, the model output
metrics are computed using the CLIMADA engine, e.g. for
the risk assessment, the impact matrix In for each sample xn.
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Following the heat wave example from the previous section,
for each sample xn = (tn, sn,an) of the input parameters, the
algorithm first sets the input variables E(n)= E(tn),H(n)=
H, and F(n)= F(sn,an). Second, the corresponding impact
matrix In is computed for each sample independently, fol-
lowing the algorithm described in Aznar-Siguan and Bresch
(2019). All CLIMADA risk output metrics such as the aver-
age annual impact, the exceedance frequency curve, or the
largest event are then derived from the matrix In and the haz-
ard frequency defined in H(n).

Similarly, for the appraisal adaptation options, each sam-
ple is assigned with the corresponding input variables. The
CLIMADA engine is then used to compute the impact ma-
trix Imn (y) for each sample n, each adaptation measurem, and
each year y following the algorithm described in Bresch and
Aznar-Siguan (2021). All CLIMADA benefit and cost met-
rics such as the total future risk, the adaptation-measure ben-
efits, the risk transfer options, and costs are derived from the
impact matrix Imn (y), the adaptation measure Mm(n,y), the
exposure E(n,y) and the hazard H(n,y). Note that in prac-
tice, the input variables for the exposure, impact function,
and adaptation measure are combined into one input variable
called entity T(n,y), which also includes information about
optional discount rates and risk transfer options.

We remark that no direct evaluation of the convergence of
this quasi-Monte Carlo scheme is provided in the unsequa
module, as it is not generally available for all the possible
sampling algorithms available through the SALib package.
Instead, the sensitivity analysis algorithms, to be described
in Sect. 2.3.5 below, provide confidence intervals. In SALib,
confidence intervals relate to the bounds which cover 95 % of
the possible sensitivity index value, estimated through boot-
strap resampling. These can be used as a proxy to assess the
convergence of the uncertainty analysis. If the intervals are
large and overlapping, the result is likely not robust and the
number of samples should be increased.

In all of the uncertainty and sensitivity analyses, comput-
ing the model outputs is usually the most expensive step
computationally. For convenience, an estimation of the to-
tal computation time for a given run is thus provided in the
unsequa module. Experiments showed that the computation
time scales approximately linearly with the number of sam-
ples N ; it is also proportional to the time for a single im-
pact computation. The latter is mostly defined by the size of
the exposure (i.e. depends on the resolution, size of the con-
sidered geographical area, etc.) and the size of the hazard
(i.e. depends on the number of events, the centroid’s reso-
lution, etc.). In case the input variables are generated using
an external model (e.g. a hydrological flood model for the
hazard), the computation time is also proportional to the ex-
ternal model run time. For complex models, this can be pro-
hibitively long. In such cases, one can pre-compute the sam-
ples for the given input variable, thus trading CPU time for
memory (cf. Litpop example in Sect. 3.2.1, and the helper
methods in Appendix B). The number of samples N in turn

scales with the dimension D (i.e. the number of input pa-
rameters), depending on the chosen sampling method. For
the default unsequa module, Sobol′ method, the scaling is
O(D). In addition, for the appraisal of adaption options, the
risk computation is repeated for each of the Nm adaptation
measures. This results in a total computation-time scaling of
O(D) for the risk assessment, and O(D ·Nm) for the ap-
praisal of adaptation options. Thus, for large number of in-
put parameters, and/or long single impact computation times,
and/or large numbers of adaptation measures, the computa-
tion time might become intractable. In this case, one could
consider using surrogate models (Sudret, 2008; Marelli and
Sudret, 2014), a feature that might be added to future itera-
tions of the unsequa module.

2.3.4 Uncertainty visualization and statistics

The output metrics values for each sample are characterized
and visualized. To this effect, various plotting methods have
been implemented as shown in Sect. 3.2.5 and 3.3.5. For in-
stance, it is possible to visualize the full distributions or com-
pute any statistical value for each model output metric. The
key objective is to obtain an understanding of the uncertain-
ties in the model outputs beyond the mean value and standard
deviation.

2.3.5 Sensitivity indices

The sensitivity index Sα(o) is a number that subsumes the
sensitivity of a model output metric o to the uncertainty of in-
put parameter α (Pianosi et al., 2016). Since CLIMADA is a
non-linear model, only global sensitivity indices are suitable
(Saltelli and Annoni, 2010). To derive such global sensitiv-
ity indices, several algorithms are made available through the
SALib Python package (Herman and Usher, 2017), including
variance-based (ANOVA) (Sobol′, 2001), elementary effects
(Morris, 1991), derivative-based (Sobol′ and Kucherenko,
2009), FAST (Cukier et al., 1973), and more (Saltelli et al.,
2008). Importantly, each method requires a specific sampling
sequence to compute the model output distribution and re-
sults in distinct sensitivity indices. These distinct indices will
typically agree on the general findings (e.g. what input pa-
rameter has the largest sensitivity), but might differ in the de-
tails as they correspond to fundamentally different quantities
(e.g. derivatives against variances). The recommended pair-
ing of the sampling sequence and sensitivity index method
is described in the SALib documentation, and simple save-
guard checks have been implemented in the unsequa mod-
ule. Note that it is technically valid to use different sampling
algorithms for the uncertainty and for the sensitivity analy-
ses. For example, one can first use sampling algorithm A to
perform an uncertainty analysis, i.e. steps from Sect. 2.3.1–
2.3.4. Then, one can use another sampling algorithm B as re-
quired for the chosen sensitivity index algorithm to perform
the sensitivity analysis, i.e. steps from Sect. 2.3.1–2.3.3 and
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2.3.5, 2.3.6. However, in practice, since generating samples
is often the computational-time bottleneck, it is more conve-
nient to use the same methods so that the same samples can
be used for both analyses (Borgonovo et al., 2017).

For typical case studies using CLIMADA, Sobol′ indices
are generally well-suited for both uncertainty and sensitiv-
ity analyses. For sampling the algorithm, the use of the
Sobol′ quasi-Monte Carlo sequence (Sobol′, 2001) is re-
quired, which provides good rates of convergence when the
number of input parameters is lower than ∼ 25 (Lemieux,
2009). Sobol′ indices are obtained as the ratio of the marginal
variances to the total variance of the output metric. In partic-
ular, the algorithm implemented in the SALib package allows
us to estimate the first-order, total-order, and second-order
indices (Saltelli, 2002). First-order indices measure the di-
rect contribution to the output variance from individual in-
put parameters. Total-order indices measure the overall con-
tribution from an input parameter considering its direct ef-
fect and its interactions with all the other input parameters.
Second-order indices describe the sensitivity from all pairs
of input parameters. In addition, the 95th percentile confi-
dence interval is provided for all indices. This allows us to
estimate whether the number N of chosen samples was suf-
ficient for both the uncertainty and sensitivity analysis. Note
that in general, the rate of convergence depends non-trivially
on the number of input parameters, the probability distribu-
tions of the input parameters, the type of sensitivity index,
and the sampling algorithm (Herman and Usher, 2017).

2.3.6 Sensitivity visualization and statistics

The last step consists of analysing and visualizing the ob-
tained sensitivity indices. To this effect, a series of visualiza-
tion plots are provided, such as bar plots or sensitivity maps
for first-order indices, and correlation matrices for second-
order indices, as shown in Sect. 3.2.5 and 3.3.6. This step
shows which input parameters’ uncertainty is the driver of
the uncertainty of each individual module output metric. This
is useful to support model calibration and verification, to pri-
oritize efforts for uncertainty reduction, and to inform robust
decision-making.

3 Illustration with a case study on tropical cyclones
storm surges in Vietnam

In the following discussion, we revisit a case study on tropi-
cal cyclone storm surges in Vietnam (Rana et al., 2022), and
perform an uncertainty and sensitivity analysis on the risk as-
sessment and appraisal of adaptation options to illustrate the
use of the CLIMADA-unsequa module.

3.1 Case study description

We only consider the parts of the climate-risk study by Rana
et al. (2022) that modelled the impact of Vietnam’s tropi-

cal cyclone storm surges in terms of the number of affected
people. The authors assessed the risk under present and fu-
ture climate conditions, and performed an appraisal of adap-
tation options by computing the benefits and costs for three
physical adaptation measures – mangroves, sea dykes, and
gabions. A more detailed recount of the case study is pro-
vided in Appendix C.

Below, we showcase uncertainty and sensitivity analyses
for the risk of storm surges in terms of affected people under
present (2020) climate conditions in Sect. 3.2, and for the
benefit and cost of the adaptation measure in 2050, consid-
ering the climate change Representative Concentration Path-
ways (RCP) 8.5 (IPCC, 2014a) in Sect. 3.3. The goal is to il-
lustrate the use of the unsequa module, rather than to present
a comprehensive uncertainty and sensitivity analysis for the
case study. Thus, some of the uncertainties are defined in a
stylized fashion by defining plausible distributions. A more
in-depth analysis would require the use of, e.g. an argument-
based framework (Otth, 2021; Otth et al., 2022; Knüsel et al.,
2020), and would be beyond the scope of this paper.

For simplicity, hereafter (Rana et al., 2022) will be referred
to as the original case study.

3.2 Risk assessment

The six steps of the uncertainty and sensitivity analyses (cf.
Fig. 1) are described in detail in the following sections for
the risk assessment of storm surges in Vietnam under present
(2020) climate in terms of the number of affected people.

3.2.1 Input variables and parameters

We identified four main quantifiable uncertainty parameters
which are summarized in the upper row of Table 1. As we
remarked above, the choice of the distribution of input pa-
rameters can substantially influence the results of the uncer-
tainty and sensitivity analyses; it should thus ideally be based
on background knowledge. The distributions chosen here are
plausible, yet stylized, and should not be considered as gen-
eral references for other case studies.

For the exposure, the total population is assumed to be sub-
ject to random sampling errors that are well captured by a
normal distribution, and a maximum error of ±10 % is as-
sumed. Thus, the total population is scaled by a multiplica-
tive input parameter T , distributed as a truncated Gaussian
distribution, with clipping values 0.9,1.1, mean value µ= 1,
and variance σ = 0.05. For the population distribution, the
original case study used the Gridded Population of the World
(GPW) dataset (CIESIN, 2018), which is available down to
admin-3 levels. To account for uncertainties arising from
the finite resolution, we use the CLIMADA’s LitPop mod-
ule (Eberenz et al., 2020) to enhance the data with nightlight
satellite imagery from the Black Marble annual composite of
the VIIRS day–night band (Grayscale) at 15 arcsec resolu-
tion from the NASA Earth Observatory (Hillger et al., 2014),
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a common technique used to rescale population densities to
higher resolutions (Anderson et al., 2014; Berger, 2020). In
LitPop, the nightlight and population layers are raised to an
exponent m and n, respectively, before the disaggregation.
Here, we vary the value of m and n as a description of the
uncertainty in the population distribution. In the original case
study, m is set to 0 and n to 1. We consider the addition of
the nightlight layer with m ∈ (0,0.5,1), and vary the popu-
lation layer with n ∈ (0.75,1,1.25). The corresponding dis-
tributions are shown in Fig. D1. A higher value of n empha-
sizes highly populated areas, a lower value the sparsely popu-
lated areas. The corresponding input parameter L represents
all pairs of (m,n).

For the hazard, we apply a bootstrapping technique, i.e.
uniform resampling of the event set with replacement to ac-
count for the uncertainties of sample estimates. Since the de-
fault Sobol′ global sampling algorithm requires repeated ap-
plication of the same value of any given input parameter, here
we define H as the parameter that labels a configuration of
the resampled events. Errors from the hazard modelling (cf.
Appendix C) are not further considered here. A more detailed
study might want to explore further uncertainty sources, such
as the wind-field model, the hazard resolution, or the random
event set generation algorithm.

Finally, for the impact function, we consider the uncer-
tainty in the threshold of the original step function that was
used to estimate the number of people “affected” (widely de-
fined) by storm surges. In the original case study, the thresh-
old was 1 m, with 0 % affected people below, and 100 % af-
fected people above. We consider a threshold shift S between
0.5 and 3 m. This extends a range examined in a study of hu-
man displacement due to river flooding (there from 0.5–2 m)
(Kam et al., 2021), in order to extensively explore the un-
certainty related to resolution of the population and topogra-
phy. This distribution does not examine a specific impact, but
rather how the total number of people affected varies based
on different thresholds used to define “affected”. The result-
ing range of the impact function is shown in Fig. D2.

3.2.2 Samples

We use the default Sobol′ sampling algorithm (Sobol′, 2001;
Saltelli and Annoni, 2010) to generate a total of 10240 sam-
ples as shown in Fig. D3.

3.2.3 Model output

For each of the samples n, the full impact matrix In is ob-
tained and saved for later use. Furthermore, from the impact
matrix, we compute several risk metrics for each sample: the
average annual impact aggregated over all exposure points,
the aggregated risk at returns periods of 5, 10, 20, 50, 100,
and 250 years, the impact at each exposure point, as well as
the aggregated impact for each event (for details cf. Aznar-
Siguan and Bresch, 2019).

3.2.4 Uncertainty visualization and statistics

In the following discussion, we concentrate on the analysis of
the full uncertainty distribution of various risk metrics. For
convenience, the original case study value, the uncertainty
mean value, and standard deviation are also reported. How-
ever, as we shall see below, focusing only on these numbers
would provide a limited picture.

The full uncertainty distribution for each of the return peri-
ods, as well as the exceedance frequency curve are shown in
Fig. 2. First, we remark that the exceedance frequency curve
of the original case study, shown in Fig. 2b, is close to the me-
dian percentile, while the upper and lower 95th percentiles of
the uncertainty are roughly +40 % and −60 % compared to
the median, respectively. Second, the distribution of uncer-
tainty for each return period separately, shown in Fig. 2a, is
in fact bimodal, particularly for shorter return periods. The
original case study values for the lower return periods are all
among the higher mode. Third, the distribution of the average
annual impact aggregated over all exposure points, shown in
Fig. 2c, is also bimodal, with the original case study lying in
the mode with larger impacts. The mean number of affected
people is 1.42 M with a variance of ±1.03 M, which is com-
patible with, but lower than the original case study value of
1.94 M.

The bimodal form of the impact uncertainty distribution
is interesting, as one could rather expect statistical white or
coloured noise (e.g. Gaussian or power-law distributions). As
a consistency proof that this is not due to a computational
setup error, we verified that the distribution of the total as-
set value, shown in Fig. 2d, aligns with the parametrization
of the exposure uncertainty (cf. Table 1). For a better un-
derstanding of the obtained uncertainty distributions, partic-
ularly understanding the bimodality, let us continue with the
sensitivity analysis.

3.2.5 Sensitivity indices

Ideally, we should choose the sensitivity method best suited
for the data at hand. In our case, the uncertainty distribu-
tion is strongly asymmetric (cf. Fig. 2), thus a density-based
approach would be best (Pianosi and Wagener, 2015; Bor-
gonovo, 2007; Plischke et al., 2013). However, this would
require generating a new set of samples, and for the purpose
of this demonstration, we used the unsequa default variance-
based Sobol′ method. Note that despite the questionable use
of variances to characterize sensitivity for multi-modal un-
certainty distributions, the derived indices prove useful to
better understand the results from the case study at hand.

We thus computed the total-order and the second-order
Sobol′ indices (Sobol′, 2001) for all the input parameters T ,
L, H , and S. We obtained the sensitivity indices for all the
risk metrics shown in Fig. 2: average annual impact aggre-
gated (aai_agg), impact for return periods of 5, 10, 20, 50,
100, and 250 years (rp5, rp10, rp20, rp50, rp100, rp250), and
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Table 1. Summary of the input parameter distributions. The input parameters T , L, and G characterize the uncertainty in the exposure
(people), H , I , and F in the hazard (storm surge), S in the impact function (vulnerability), and C in the adaptation measures (mangroves,
sea dykes, gabions). The parameters T , L, H , and S are needed for risk assessment (cf. Sect. 3.2.1), and the parameters T , L, H , S, G, I , F ,
and C are needed for adaptation options appraisal (cf. Sect. 3.3.1).

Risk assessment

Exposure Total value T Truncated Gaussian multiplicative clip:[0.9, 1.1]; µ : 1,σ : 0.05
Spatial distribution L LitPop layers exponents m ∈ (0,0.5,1);n ∈ (0.75,1,1.25)

Hazard Event set bootstrapping H Resampling the event set with replacement
Impact function Threshold shift S Uniform range [0.5, 3.0 m]

Appraisal of adaptation options

Exposure Total value T Truncated Gaussian multiplicative clip:[0.9, 1.1]; µ : 1,σ : 0.05
Spatial distribution L LitPop layers exponents m ∈ (0,0.5,1);n ∈ (0.75,1,1.25)

Hazard Event set bootstrapping H Resampling the event set with replacement
Impact function Threshold shift S Uniform range [0.5, 3.0 m]
Population growth Growth rate G Uniform range (case study value: 1.13) [1.10, 1.16]
Climate change Hazard intensity I Uniform range multiplicative [0.9, 1.1]

Hazard frequency F Uniform range multiplicative [0.5, 2.0]
Cost of all adaptation measures Total cost C Uniform range multiplicative [0.5, 2.0]

Figure 2. Uncertainty distribution for storm surge risk in terms of affected people in Vietnam for present climate conditions (2020). (a) Full
range of the uncertainty distribution of impacted people for each return period (5,10,20,50,100,250 years) and value in the original study
(vertical dotted lines). (b) Impact exceedance frequency curve shown for the original case study results (dotted green line), the median
percentile (solid blue line), 5th percentile (dash-dotted blue line), and 95th percentile (dashed blue line). (c) Distribution of annual average
impact aggregated over all exposure points (histogram bars) and (d) distribution of the uncertainty of the total population, i.e. the total
exposure value, (histogram bars). Panels (c) and (d) both include the average value (vertical dashed orange line), original case study result
(vertical dotted green line), standard deviation (horizontal solid black line), and kernel density estimation fit to guide the eye (solid dark-blue
line). The impacts are expressed in thousands (K) or millions (M) of affected people.
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additionally for the average annual impact at each exposure
point.

3.2.6 Sensitivity visualization and statistics

As shown in Fig. 3a, for the average annual impact aggre-
gated, the largest total-order sensitivity index is for the im-
pact function threshold shift with STS(aai_agg)≈ 0.95. This
indicates that the uncertainty in the impact function thresh-
old shift S is the main driver of the uncertainty. Thus, to un-
derstand the bi-modality of the uncertainty distribution (cf.
Fig. 2c), we have to better understand the relation between
S and the model output. Note that there are no strong in-
teractions between the input parameter uncertainties as all
second-order sensitivity indices S2≈ 0 (cf. Fig. D6). Thus,
it is reasonable to assume that the bi-modality of the distri-
bution comes directly from S and not from correlation with
other input parameters. We further remark that the 95th per-
centile confidence intervals of the sensitivity indices (indi-
cated with vertical black bars in Fig. 3) are much smaller
than the difference between the sensitivity indices. We thus
conclude that the number of samples was sufficient for a rea-
sonable convergence of the uncertainty and sensitivity sam-
pling algorithm.

A further analysis of the average annual impact aggregated
value in function of the impact function threshold shift S re-
veals a discontinuity at a value of Sd ∼ 1.85 m as shown in
Fig. D5a. Hence, the bimodality of the uncertainty distribu-
tions (cf. Fig. 2) is indeed due to the uncertainty input param-
eter S of the impact function, but it does not explain the root
cause. Further understanding is obtained from studying the
storm surge footprint used in the original case study. Plotting
the storm surge intensity of all events at each location with
values ordered from smallest to largest, we find a disconti-
nuity and plateau around 1.85 m, as shown in Fig. D5b. This
is the value corresponding to the threshold shift at which the
average annual impact is discontinuous. Thus, the bimodal-
ity of the uncertainty distributions, while caused by uncer-
tainty in the impact function, is rooted in the modelling of the
storm surge hazard footprints. Further research beyond the
scope of this paper would be needed to understand whether
this value of 1.85 m has a physical origin (e.g. landscape fea-
tures or protection standards), or is due to a modelling arte-
fact. However, despite the discontinuity, the patterns are as
expected: an impact function with a step at 0.5 m results in
many more people being classified as affected than when the
step is at 3 m (in the latter case, only particularly large storm
surges would result in people being affected). For planning
purposes, the lower end of this impact function shift is most
relevant – even 0.5 m depth of a storm surge can be danger-
ous for people – so the higher mode of the distribution in
Fig. 2 is most relevant.

Finally, the largest sensitivity index for the average annual
impact at each exposure point is reported on a map in Fig. 3b.
In the highly populated regions around Ho Chi Minh city

(South Vietnam) and Haiphong (North Vietnam), the largest
index is S in accordance with the sensitivity of the average
annual impact aggregated over all of Vietnam. However, in
less densely populated areas, such as the larger Mekong delta
(South Vietnam), the outcome is more sensitivity to the pop-
ulation distribution L. Furthermore, while for shorter return
periods, the largest total-order sensitivity index is the impact
function threshold shift STS , for longer return periods the
sensitivity to the population distribution STL becomes larger
as shown in Fig. 3c. This might be because stronger events
with large return periods consistently have larger intensities
than the maximum threshold shift of 3 m. Together, these re-
sults hint to potentially hidden high-impact events in unex-
pected areas (e.g. a large storm surge in the less densely pop-
ulated southern tip of Vietnam could affect a large number of
people).

3.3 Appraisal of adaptation options

We focus on the appraisal of the three adaptation measures,
i.e. mangroves, sea dykes, and gabions, to reduce the num-
ber of people affected by storm surges assuming the high-
emission climate-change scenario RCP8.5. We consider the
time period 2020–2050 as in the original case study.

3.3.1 Input variables and parameters

We identified four additional quantifiable uncertainty input
parameters for the appraisal of adaptation options compared
to the risk-assessment study (cf. Sect. 3.2.1) that are sum-
marized in the bottom row of Table 1. For the exposure, the
growth rate of the population from 2020 to 2050 was esti-
mated at 13 % in the original case study based on data from
the United Nations (United Nations, Department of Eco-
nomic and Social Affairs, Population Division, 2019). Here,
we assume a growth rateG uniformly sampled between 10 %
and 16 %. For the hazard, the original case study used the pa-
rameters from Knutson et al. (2015) to scale the intensity and
frequency of the events, considering the climate-change sce-
nario RCP8.5 from 2020 to 2050 (see Appendix C for more
details). This method is subject to large uncertainties (see e.g.
Knüsel et al., 2020) and we thus scale the intensity and fre-
quency with parameters I and F , uniformly sampled from
[0.9,1.1] and [0.5,2], respectively. Finally, the cost of the
adaptation measures is assumed to vary by a multiplicative
factor C, sampled uniformly between [0.5,2].

3.3.2 Samples

For the sampling, we use the default Sobol′ sampling algo-
rithm to generate a total ofN = 18432 samples. Owing to the
larger amount of input parameters, the total number of sam-
ples is larger than for the risk assessment (cf. Sect. 3.2.2).
The drawn samples are shown in Fig. D4.
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Figure 3. Total order Sobol′ sensitivity indices (ST) for storm surge risk for people in Vietnam in the present climate conditions (2020).
Panel (a) shows results for the average annual impact aggregated over all exposure points (aai_agg); (b) represents the map of the largest
sensitivity index at each exposure point. The category “None” refers to areas with vanishing risk. (c) Sensitivity results for risk estimate
over return periods (rp) 5,10,20,50,100,250 years. The input parameters (cf. Table 1) are T : total population, L: population distribution,
S: impact function threshold shift, and H : hazard events bootstrapping. The vertical black bars in (a) and (b) indicate the 95th percentile
confidence interval.

3.3.3 Model output

For each of the samples, we obtained the cumulative output
metrics over the whole time period 2020–2050. In particular,
we obtained the total risk without adaptation measures, the
benefits (averted risk) for each adaptation measure, and the
cost of each adaptation measure (for details see Bresch and
Aznar-Siguan, 2021). One can then compare the cost–benefit
ratios, i.e. the cost in dollars per reduced number of affected
people, for each of the adaptation measures including model
uncertainties.

3.3.4 Uncertainty visualization and statistics

The uncertainty for the cumulative, total average annual risk
from storm surges aggregated over all exposure points is
shown in Fig. 4d. The distribution is bimodal, which can
be traced back to the storm surge model as explained in
Sect. 3.2.3. The original case study value is located in the
larger mode, similar to the average annual risk in 2020 as
discussed in Sect. 3.2.3. This bimodality translates to the un-
certainty in the benefit (total averted risk) for the adaptation
measure sea dykes, Fig. 4b, but not to the adaptation mea-
sures mangroves and gabions, Fig. 4a and c. Rather, the lat-

ter show a heavy-tail uncertainty distribution. Furthermore,
the uncertainty analysis of the ratio of the cost to the bene-
fits for each adaptation measure indicates that, contrary to the
original case study, the sea dykes might in fact be the least
(instead of the most) cost-efficient adaptation measure (see
Fig. D7a–c). Note that expressing the cost-efficiency of an
adaptation measure in terms of a reduced number of affected
people for each invested dollar presents ethical challenges as
will be discussed in more detail in Sect. 4.

3.3.5 Sensitivity indices

We use the same method as for the risk assessment
to compute the total-order ST and the second-order S2
Sobol′ indices (Sobol′, 2001) for all the input parameters
T ,L,G,H,F,I,S,C (cf. Table 1). We obtain the sensitiv-
ity indices for all the metrics shown in Figs. 4 and D7, i.e.
the total risk as well as the benefits and cost–benefit ratios
for all adaptation measures.

3.3.6 Sensitivity visualization and statistics

The total risk without adaptation measure is most sensitive to
the impact function threshold shift S with STS(total risk)≈
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Figure 4. Uncertainty distribution (histogram bars) for benefits (averted risk) from the adaptation measures: (a) mangroves, (b) sea dykes,
(c) gabions, and (d) the total risk without adaptation measures. Benefits and total risk are cumulative over the time period 2020–2050 for
the climate-change scenario RCP8.5. Vertical dotted green lines indicate the case study value, vertical dashed orange lines show the average
benefit over the uncertainty distribution, the horizontal solid black line shows the standard deviation, and the solid dark-blue line indicates
the kernel density estimation fit to guide the eye. The benefits and total risk are expressed in millions (M) of affected people.

0.85 as shown in Fig. 5b. In addition, the sensitivity to the
storm surge frequency changes STF (total risk)≈ 0.18 is sig-
nificantly larger than the sensitivity to the intensity changes
SI (total risk)≈ 0.02. This could be a consequence of the
choice to use a step function to model the vulnerability.

The uncertainty of the benefits for all adaptation mea-
sures are most sensitive to the impact function threshold
shift, with STmangroves

S (benefit)≈ STgabions
S (benefit)≈ 0.85,

and STsea dykes
S (benefit)≈ 0.75 as shown in Fig. 5a. This is

consistent with the sensitivity of the risk in 2020 (cf. Fig. 3).
Furthermore, there is some sensitivity to the people distribu-
tion L, and to the uncertainty in the climate-change input pa-
rameters I and F . Note, however, that STsea dykes

I (benefit)≈
0, i.e. the uncertainty of the benefits from the adaptation mea-
sure sea dykes is not sensitive to the hazard intensity uncer-
tainty, while it is for both mangroves and gabions. This could
be because sea dykes are parameterized to reduce the storm
surge level by 2 m, which is above the Sd = 1.85 m identi-
fied in Sect. 3.2.3 as critical for the surge modelling, while
gabions and mangroves are parameterized to provide a re-
duction of 0.5 m which is below (cf. Appendix C and Rana
et al., 2022). Thus, a change in the hazard frequency and the

population distribution patterns will result in a stronger vari-
ation of the benefits for sea dykes because fewer, but stronger
events contribute to the remaining risk each year.

Note that the 95th percentile confidence intervals of the
sensitivity indices (indicated with vertical black bars in
Fig. 5) are much smaller than the difference between the sen-
sitivity indices. We thus conclude that the number of samples
was sufficient for a reasonable convergence of the uncertainty
and sensitivity sampling algorithm.

3.4 Summary of the case study

The original case study intended to serve as a blueprint for
future analyses of other world regions with limited data avail-
ability, and thus focused on the application of established re-
search tools to provide insights into natural hazard risks and
potential benefits of adaptation options (Rana et al., 2022). In
view of limited observational data for impacts from tropical
cyclones, the results of the study should have been subject to
considerable uncertainty. The need for uncertainty and sen-
sitivity analyses was identified within the original study, but
deemed out of scope. This was partly due to the absence of a
comprehensive and easily applicable scheme, now resolved
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Figure 5. Total-order Sobol′ sensitivity indices (ST) for the uncertainty of (a) storm surge adaptation options benefits for mangroves, sea
dykes, and gabions and of (b) the total risk without adaptation measures, for the time period 2020–2050 under the climate-change scenario
RCP8.5. The input parameters (cf. Table 1) are H : hazard events bootstrapping, T : total population, L: population distribution, S: impact
function intensity threshold shift, C: cost of adaptation options, I : hazard intensity change, F : hazard frequency change, and G: population
growth. The vertical solid black bars indicate the 95th percentile confidence interval.

with the uncertainty and sensitivity quantification (unsequa)
module presented here. In addition, a full-fledged uncertainty
and sensitivity analysis leads to a large number of additional
data to process. Indeed, the results shown in this section con-
sidered only a small subset of the original case study, which,
among others, also considered the impact of tropical cyclone
wind gusts, and the impact of wind and surge on physical
assets in dollars. Nevertheless, the benefits of an uncertainty
and sensitivity analysis are manifest. On the one hand, it pro-
vides a much more comprehensive picture on risk from storm
surges and the benefits of identified adaptation measures. On
the other hand, it allows us to identify the main shortcom-
ings of the model, which is needed to focus modelling im-
provement efforts and to understand the limitations of the ob-
tained results. Even when used in the context of studies such
as ECA, which are bound by time and money, this is useful
to improve the confidence in, and transparency of the out-
comes, and allows model improvements from study to study.
For instance, in this section, it was conclusively shown that
in order to improve the impact modelling, one should focus
on the storm surge model, among other aspects. Furthermore,
the analysis showed that urban and rural regions might not be
equally well-represented by the model.

4 Discussion and outlook

In this paper, we described the unsequa module for uncer-
tainty and sensitivity analyses recently added to the climate-
risk model CLIMADA. We highlighted its ease of use with
an application to a previous case study assessing risks from
tropical storm surges to people in Vietnam and appraising
local adaptation options. We showed that only providing
percentile information without the full distributions can be
misleading, and that uncertainty analysis without sensitivity
analysis does not provide a thorough picture of uncertainty

(Saltelli and Annoni, 2010). The example showed the vi-
tal role played by uncertainty and sensitivity analyses in not
only producing better and more transparent modelling data,
but also providing a more comprehensive context to quantita-
tive results in order to better support robust decision-making
(Wilby and Dessai, 2010). This expansion of the CLIMADA
platform allows for risk assessment and options appraisal, in-
cluding quantification of uncertainties in a modular form and
occasionally bespoke fashion (Hinkel and Bisaro, 2016), yet
with the high re-usability of common functionalities to foster
usage in interdisciplinary studies (Souvignet et al., 2016) and
international collaboration. Further, the presented approach
can be used to inform the development of storylines (Shep-
herd et al., 2018; Ciullo et al., 2021) and climate adaptation
narratives (Krauß and Bremer, 2020).

The illustrative case study in this paper was run on a com-
puting cluster. However, many potential users will not have
access to such computational resources. Nonetheless, mean-
ingful uncertainty and sensitivity analyses can be conducted
only on a single computer, for instance by reducing resolu-
tion, sample size, or the number of uncertainty input param-
eters. For example, the illustrative case study in the paper
could be run reasonably on a typical laptop by reducing the
resolution to 150 arcsec. By doing so, it is not possible to ex-
plore all possible nuances, but one can still get a big-picture
view of where key areas of uncertainty and sensitivity may
lie.

While we showed that quantitative uncertainty and sensi-
tivity are significant steps to improve the information value
of climate-risk models, we stress that not all uncertainties can
be described with the shown method (see e.g. Appendix D for
a discussion on event uncertainty). Indeed, only the uncer-
tainty of those input parameters that are varied can be quan-
tified, and even for these input parameters, defining the prob-
ability distribution is subject to strong uncertainties, often be-
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ing based only on educated guesses. Yet, the choice of prob-
ability distribution can have a strong impact on the resulting
model output distribution and sensitivity (Paleari and Con-
falonieri, 2016; Otth, 2021; Otth et al., 2022). In addition, it
is often not evident how to perturb the input variables, since
one does not always have access to the underlying generat-
ing model, and it is otherwise difficult to define physically
consistent statistical perturbations of geospatial data. More-
over, there is a large part of climate-risk models’ uncertainty
that is not even quantifiable in principle (Beven et al., 2018b;
Knüsel et al., 2020). When building a climate-risk model, a
number of things must be specified, such as the model type,
the algorithmic structure, the input data, the resolution, the
calibration and validation data, etc. These choices are of-
ten not made based on solid knowledge (Knüsel, 2020). One
particular type of uncertainty that modellers are less familiar
with is normative uncertainties; these arise from value-driven
modelling choices (Bradley and Drechsler, 2014; Bradley
and Steele, 2015) that are particularly relevant when the
climate-risk analysis is carried out to support decisions and
options appraisal. Normative uncertainties are rarely identi-
fied in common modelling practice (Bradley and Drechsler,
2014; Bradley and Steele, 2015; Moeller, 2016; Mayer et al.,
2017). In most cases, these uncertainties can hardly be quan-
tified and, therefore, they need to be addressed via methods
such as argument analysis (Knüsel et al., 2020), the NUSAP
methodology (Funtowicz and Ravetz, 1990), or sensitivity
auditing (Saltelli et al., 2013). In some other cases, e.g. the
decision regarding the value of a discount rate, normative un-
certainties can be quantified, and quantitative analyses can
highlight the effects of varying modelling choices on the de-
cision outcomes. A complementary study to this paper pro-
poses a methodological framework for a broader assessment
of uncertainties for decision processes with CLIMADA as
the climate-risk model, including both conceptual and quan-
titative approaches (Otth, 2021; Otth et al., 2022).

If a climate-risk modeller conducts uncertainty and sensi-
tivity analyses, either by using the CLIMADA module pub-
lished here, or by implementing a similar analysis in another
modelling framework, the next question is: what should be
done with the results? We suggest two main areas that could
benefit from such analyses. First, within the field, the more
that uncertainty and sensitivity analyses become standard
practice, the more these analyses will enhance transparency
of studies among climate-risk modellers. This can help to
focus related research on areas that can provide better un-
derstanding of the parameters, or on modelling choices that
are most influential on model outputs. Second, for decision-
makers and other users of climate-risk modelling, uncertainty
and sensitivity analyses have the potential to lead to better-
informed decisions on climate adaptation. Several methods
exist for inclusion into quantitative decision-making analy-
sis (Hyde, 2006). Certainly, the numerical and graphical out-
puts of the module published here, or outputs from similar
analyses, are far too technical to directly hand over as is to

decision-makers and other users (unless the user is a risk
analyst already versed in uncertainty and sensitivity analy-
ses). Rather, the results of uncertainty and sensitivity anal-
yses can inform discussions between climate-risk modellers
and decision-makers about how best to refine and interpret
model results. It is especially important to reflect additionally
on uncertainties that lie outside the model and thus were not
analysed in the quantitative uncertainty and sensitivity anal-
yses (Otth, 2021; Otth et al., 2022). Further research and re-
flective practice can focus on how to most effectively achieve
this.

In future iterations, uncertainty analysis in CLIMADA
could for instance be extended with the addition of surro-
gate models to reduce the computational costs and allow
for the testing of a larger number of input parameter with
a larger number of samples for models at higher resolution.
Overall, we hope that the simplicity of use of the presented
unsequa module will motivate modellers to include uncer-
tainty and sensitivity analyses as natural parts of climate-risk
modelling. Finally, we caution that numbers even with elab-
orate error bars and distributions can give a false sense of
accuracy (Hinkel and Bisaro, 2016; Katzav et al., 2021) and
that modellers should remember to reflect on the wider, non-
quantifiable uncertainties, unknowns, and normative choices
of their models.

Appendix A: Sampling algorithms

CLIMADA imports the quasi-Monte Carlo sampling algo-
rithms from the SALib Python package (Herman and Usher,
2017). Thus, all sampling algorithms from this package are
directly available to the user within the new module. These
algorithms are all at least implemented for uniform dis-
tribution pu over [0,1]. In order to accommodate any in-
put parameter distributions, the CLIMADA module uses the
percent-point function (ppf) Q (also called inverse cumu-
lative distribution, percentiles or quantile function) of the
target probability density distribution. For example, in or-
der to obtain a sample of N Gaussian-distributed pG values,
one first samples Xu

= x1,x2, . . .,xN values uniformly from
[0,1], and then applies the ppf of the Gaussian distribution
QG,

Xu
= x(1),x(2), . . .,x(N)→XG

=QG(x(1)),QG(x(2)), . . .,QG(x(N)). (A1)
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Appendix B: Helper methods

In the unsequa module, a number of helper methods exist
to parameterize a few common uncertainty parameter distri-
butions for the main input variables: exposure, impact func-
tions, hazard, and measures, as summarized in Table B1.
These helper methods are for the convenience of the users
only. Any other uncertainty parameter can be introduced,
and any other uncertainty parameter distributions (discrete,
continuous, multi-dimensional, etc.) can be defined by the
user if needed. For instance, the user could write a wrapper
function around an existing dynamical hazard model which
outputs a CLIMADA hazard object, and define the input fac-
tors of said dynamical model as uncertainty parameters.

For risk assessment, the impact at an exposure location x
for an event ε is defined (Aznar-Siguan and Bresch, 2019) as

Ix,ε = fx(hε(x̃)) · aε(x̃) · v(x), (B1)

where fx is the impact function for the exposure at location
x, hε(x̃) and aε(x̃) are the hazard intensity and fraction of
event ε at the location x̃ closest to x, and v(x) is the value of
the exposure at location x. Considering all locations and all
events defines the impact matrix I. All further risk metrics,
such as the average annual impact aggregated, are derived
from I and the annual frequency νε of each hazard event. The
helper methods are defined to describe generic uncertainties
on the input variables v, f , ν, h and a.

For the appraisal of adaptation options, the measures are
represented as a modification of the exposure, impact func-
tions, or hazard, at a given cost. Thus, all the helper methods
for the exposure, impact functions, and hazard defined in Ta-
ble B1 can be used for the measures uncertainty. In addition,
the discount rate used to properly consider future economic
risks can be defined. Thus, two additional helper methods for
uncertainty in the cost c and the discount rate d are defined
in Table B2.
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Table B1. Summary of available helper methods to define uncertainty parameter distributions for the main input variables of CLIMADA for
risk assessment. For all distributions, the parameters can be set by the user (e.g. the mean and variance of a Gaussian distribution are free
parameters). a The additive noise terms δNx are all independently and identically sampled from the same truncated Gaussian distribution.
The input parameter N labels the noise realizations (one realization consists of one value δx for all locations x). b The user can define a list
of exposures, hazards, or impact functions to uniformly choose from. For instance, a list of exposures with different resolutions, or a series
of LitPop exposures with different exponents can be used as shown in Fig. D1. Another example would be to define a pre-computed list of
hazards obtained from a dynamical model (e.g. a flood model) for different dynamical model input factors, or use a list of hazards obtained
from different data sources. Analogously, a list of impact functions obtained, e.g. with different calibration methods, could be used. c Events
are sampled with uniform probability and with replacement. The size of the resampled subsets is a free parameter. For instance, size equal
to 1 would correspond to considering single events, and size equal to the total number of events would correspond to bootstrapping. The
input parameter E labels one set of resampled events. These helper methods are for the convenience of the users only. Any other uncertainty
parameter distributions (discrete, continuous, multi-dimensional, etc.) can be defined by the user if needed.

Input variable Input parameter Distribution Equation

Exposure Total value T Uniform v(x) · T

Value noise N Multiplicative Gaussian noise on each valuea v(x)+ δNx
List members L Uniform choiceb v→ vL

Hazard Intensity I Uniform hε,x · I

Fraction A Uniform aε,x ·A

Frequency F Uniform νε ·F

Resampling E Resampling with replacementc {h}ε→ {h}εE

List members K Uniform choiceb h→ hK

Impact function Intensity i Uniform f (x)→ f (x+ i)

MDD D Uniform f (x)→ f (x)+D

List members F Uniform choiceb f → fF

Table B2. Summary of available helper methods to define uncertainty parameter distributions for the additional input variables of CLIMADA
required for appraisal of adaptation options. For all distributions, the parameters can be set by the user (e.g. the bounds of the uniform
distributions are free parameters). ∗ The discount rate value is sampled uniformly from a list of values. These helper methods are for the
convenience of the users only. Any other uncertainty parameter distributions (discrete, continuous, multi-dimensional, etc.) can be defined
by the user if needed.

Input variable Input parameter Distribution Equation

Measures Cost C Uniform c ·C

Discount rates Rate D Uniform choice∗ D
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Appendix C: Case study details

In the Vietnam case study Rana et al. (2022), hazard datasets
of probabilistic tropical cyclones for storm surges were cre-
ated for the period 1980−2020, based on 269 historical, land-
falling events recorded in the global International Best Track
Archive for Climate Stewardship (IBTrACS) (Knapp et al.,
2010). These historical tropical cyclone records were ex-
tended using a random walk algorithm to produce 99 proba-
bilistic tracks for each record, yielding a large set of synthetic
events (Kleppek et al., 2008; Gettelman et al., 2017; Aznar-
Siguan and Bresch, 2019). A 2D wind-field was calculated
for each track using the wind model after Holland (2008).
The surge hazard dataset (flood depth) is derived from wind
intensity with a linear relationship that modifies the water
level according to the local elevation and distance to the
coastal line, as further described in Rana et al. (2022). Future
climate hazard sets were created for two Relative Concentra-
tion Pathways (RCP) (IPCC, 2014a), RCP6.0 and RCP8.5,
based on parametric estimates. For each storm, the intensity
and frequency where homogeneously shifted by a multiplica-
tive constant derived from Knutson et al. (2015) based on the
storm’s Saffir–Simpson category.

The spatial distribution of population was obtained from
the LitPop module in CLIMADA at a resolution of 1 km
and using the population census data only, i.e. m= 0,n= 1
(Eberenz et al., 2020). For the future scenario, a total popula-
tion growth is estimated to amount to 13 % until 2050 based
on estimates from the United United Nations, Department
of Economic and Social Affairs, Population Division (2019).
The impact function for the effect of storm surges on popu-
lation was created in consultation with experts in the field;
all people are considered affected at 1 m water depth (Rana
et al., 2022). Benefit and cost information on the three adap-
tation measures (sea dykes, gabions, mangroves) are given in
Table 3. in Rana et al. (2022).

Appendix D: Event uncertainty

As stated in Sect. 4, not all quantifiable uncertainties are de-
scribed with the quasi-Monte Carlo method discussed in this
paper. For instance, the uncertainty in climate risk arising
from the inherent stochasticity of weather events can be di-
rectly described without using the unsequa module. In CLI-
MADA, this variability is directly modelled by considering
the hazard to be a probabilistic set of events, i.e. intensity
maps with associated frequencies (Aznar-Siguan and Bresch,
2019). Computing the risk from the hazard amounts to com-
puting the risk for each event in the set, which results in a
probabilistic risk distribution. The event risk distribution ex-
presses the fact that we do not know when a particular nat-
ural hazard event will happen, and qualifies as aleatory un-
certainty (Uusitalo et al., 2015; Ghanem et al., 2017). One
can compute statistical values, such as the mean or standard
deviation, or consider the full distribution over the event set
as shown in Fig. D8a for the original case study risk. There
is no need for an extra sampling (and use of the unsequa
module) to determine this uncertainty, as this is part of the
modelling of the hazard. Note however, that this variability
is itself subject to modelling uncertainty. The distribution of
risk obtained over all events and all input parameter samples,
as shown in Fig. D8b, can then be seen as an estimate of the
weather risk variability, including additional uncertainties.

Note that in general, global uncertainty and sensitivity
analyses as discussed in this paper apply only to determin-
istic computer codes, i.e. models for which a specific set of
input values always results in the same output (Saltelli et al.,
2008; Marrel et al., 2012). CLIMADA is such a deterministic
computer code. In order to describe truly stochastic models,
we would have to use other techniques, for instance, tech-
niques that allow us to consider correlations between input
parameters, or which are directly built for probabilistic com-
puter codes (Ehre et al., 2020; Étoré et al., 2020; Zhu and
Sudret, 2021).
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Figure D1. Population distribution obtained by combining population density layer and nightlight satellite imagery (cf. Litpop method,
Eberenz et al., 2020) for all combinations of the nightlight and population exponents m and n considered in the uncertainty analysis (cf.
Table 1). From left to right, m,n = (0, 0.75); (0, 1); (0, 1.25); (0.5, 0.75); (0.5, 1); (0.5, 1.25); (1, 0.75); (1, 1); (1, 1.25), with (0, 1) the
original case study value.

Figure D2. Impact function uncertainty, with a threshold shift of the flood depth above which all people are affected varying between 0.5
and 3 m (cf. Table 1). The original impact function is given in black.

Figure D3. Samples for the uncertainty analysis of the risk assessment in Sect. 3.2.2 for the input parameters drawn from the distributions
described in Table 1 using the sequence. The input parameters are T : total population, L: population L: population distribution, S: impact
function threshold shift, and H : hazard events bootstrapping.
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Figure D4. Samples for the uncertainty analysis of the adaptation options appraisal in Sect. 3.2.2 for the input parameters drawn from the
distributions described in Table 1 using the Sobol′ sequence. The input parameters are H : hazard events bootstrapping, T : total population,
L: population distribution, S: impact function intensity threshold shift, C: cost of adaptation options, I : hazard intensity change, F : hazard
frequency change, and G: population growth.

Figure D5. (a) Annual average impact averaged over all exposure points in millions (M) of affected people as a function of the impact
function threshold shift uncertainty (S) in metres (m), and (b) storm surge intensity in metres (m) of all events at each location (centroid)
from the original case study. A nonlinear change in intensity at ∼ 1.85 m is indicated by a dashed line.
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Figure D6. Second-order Sobol′ sensitivity indices (S2) for different storm surge risk metrics: average annual impact aggregated over all
exposure points (aai_agg), impact for return periods (rp) 5,10,20,50,100,250 years and the total exposure value (tot_value). The input
parameters (cf. Table 1) are T : total population, L: population distribution, S: impact function intensity threshold shift, andH : hazard events
bootstrapping.
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Figure D7. Uncertainty distribution (histogram bars) for the ratio of cost to benefit of the three adaptation options (a) mangroves, (b) sea
dykes, and (c) gabions. In addition, (d) the total-order Sobol′ sensitivity indices (ST) for the three adaptation options. Panels of cost to benefit
ratios include the original case study value (vertical dotted green line), average (vertical dashed orange line), standard deviation (horizontal
solid black line), and kernel density estimation to guide the eye (solid dark-blue The total-order Sobol’ sensitivities are shown with a black
bar bar indicating the 95th percentile confidence interval. The input parameters (cf. Table 1) are H : hazard events bootstrapping, T : total
population, L: population distribution, S: impact function intensity threshold shift, C: cost of adaptation options, I : hazard intensity change,
F : hazard frequency change, and G: population growth.

Figure D8. Histogram of the number of storm surge events in the probabilistic set by their impact (in thousands (K) of affected people) in
Vietnam for present climate conditions (2020) for (a) the original case study probabilistic set, and (b) union of the probabilistic sets for all
samples of input parameters considered in Sect. 3.2.4 (cf. Fig. D3). Note the logarithmic scale of the vertical axes.
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Code availability. CLIMADA is openly available at GitHub https:
//github.com/CLIMADA-project/climada_python (last access:
30 August 2022), and https://doi.org/10.5281/zenodo.5947271
(Kropf et al., 2022a) under the GNU GPL license (GNU operating
system, 2007). The documentation is hosted on Read the Docs
https://climada-python.readthedocs.io/en/stable/ (last access:
30 August 2022) and includes a link to the interactive tutorial of
CLIMADA. In this publication, CLIMADA v3.1.0, deposited on
Zenodo (Kropf et al., 2022a) was used.).

Data availability. All data have been generated using CLIMADA
(the LitPop exposures, the impact function, the storm surge haz-
ard, the adaptation measures, all impact and cost–benefit values,
the uncertainty distributions, and the sensitivity indices). Detailed
tutorials are available at https://climada-python.readthedocs.io/en/
v3.1.1/ (last access: 30 August 2022) (version 3.1.) and at https:
//climada-python.readthedocs.io/en/stable/ (last access: 30 Au-
gust 2022) (latest stable version). For generating the storm surge
hazard in 2020 and 2050, a digital elevation model (DEM) was
used which is not included in CLIMADA. The hazards have
been made available under the DOI https://doi.org/10.3929/ethz-
b-000566528 (Kropf et al., 2022b). The scripts to reproduce
all other data in this paper are available at https://github.com/
CLIMADA-project/climada_papers (a frozen version was de-
posited at https://doi.org/10.3929/ethz-b-000566528).
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son, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., Vander-
Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,
Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H.,
Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python, Nat. Methods, 17,
261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.

Wagenaar, D. J., de Bruijn, K. M., Bouwer, L. M., and de Moel,
H.: Uncertainty in flood damage estimates and its potential effect
on investment decisions, Nat. Hazards Earth Syst. Sci., 16, 1–14,
https://doi.org/10.5194/nhess-16-1-2016, 2016.

Wagener, T., Reinecke, R., and Pianosi, F.: On the Evaluation of
Climate Change Impact Models, WIREs Clim. Change, 13, e772,
https://doi.org/10.1002/wcc.772, 2022.

Wilby, R. L. and Dessai, S.: Robust Adaptation to Climate Change,
Weather, 65, 180–185, https://doi.org/10.1002/wea.543, 2010.

Zhu, X. and Sudret, B.: Global Sensitivity Analysis for
Stochastic Simulators Based on Generalized Lambda Sur-
rogate Models, Reliab. Eng. Syst. Safe., 214, 107815,
https://doi.org/10.1016/j.ress.2021.107815, 2021.

https://doi.org/10.5194/gmd-15-7177-2022 Geosci. Model Dev., 15, 7177–7201, 2022

https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1016/j.ejor.2012.11.047
https://doi.org/10.21203/rs.3.rs-1050224/v1
https://doi.org/10.1016/S0010-4655(02)00280-1
https://doi.org/10.1002/9780470725184
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1504/IJFIP.2013.058610
https://doi.org/10.1016/j.envsoft.2019.01.012
https://doi.org/10.1016/j.envsoft.2016.02.005
https://doi.org/10.1002/2015WR018198
https://doi.org/10.1007/s10584-018-2317-9
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/j.matcom.2009.01.023
https://www.kfw-entwicklungsbank.de/PDF/Download-Center/Materialien/2016_No6_Guidebook_Economics-of-Climate-Adaptation_EN.pdf
https://www.kfw-entwicklungsbank.de/PDF/Download-Center/Materialien/2016_No6_Guidebook_Economics-of-Climate-Adaptation_EN.pdf
https://www.kfw-entwicklungsbank.de/PDF/Download-Center/Materialien/2016_No6_Guidebook_Economics-of-Climate-Adaptation_EN.pdf
https://doi.org/10.1016/j.ress.2007.04.002
https://population.un.org/wpp/
https://doi.org/10.1016/j.envsoft.2014.09.017
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5194/nhess-16-1-2016
https://doi.org/10.1002/wcc.772
https://doi.org/10.1002/wea.543
https://doi.org/10.1016/j.ress.2021.107815

	Abstract
	Introduction
	Uncertainty and sensitivity analyses in the climate-risk modelling platform CLIMADA
	Brief introduction to CLIMADA
	Uncertainty and sensitivity quantification (unsequa) module overview
	Detailed workflow of unsequa module
	Input variables and parameters
	Samples
	Model output: risk assessment and appraisal of adaptation options
	Uncertainty visualization and statistics
	Sensitivity indices
	Sensitivity visualization and statistics


	Illustration with a case study on tropical cyclones storm surges in Vietnam
	Case study description
	Risk assessment
	Input variables and parameters
	Samples
	Model output
	Uncertainty visualization and statistics
	Sensitivity indices
	Sensitivity visualization and statistics

	Appraisal of adaptation options
	Input variables and parameters
	Samples
	Model output
	Uncertainty visualization and statistics
	Sensitivity indices
	Sensitivity visualization and statistics

	Summary of the case study

	Discussion and outlook
	Appendix A: Sampling algorithms
	Appendix B: Helper methods
	Appendix C: Case study details
	Appendix D: Event uncertainty
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

