Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6873-2022
https://doi.org/10.5194/gmd-15-6873-2022
Model evaluation paper
 | 
09 Sep 2022
Model evaluation paper |  | 09 Sep 2022

The bulk parameterizations of turbulent air–sea fluxes in NEMO4: the origin of sea surface temperature differences in a global model study

Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina

Related authors

Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023,https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021,https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary

Related subject area

Oceanography
Enhanced ocean wave modeling by including effect of breaking under both deep- and shallow-water conditions
Yue Xu and Xiping Yu
Geosci. Model Dev., 16, 2811–2831, https://doi.org/10.5194/gmd-16-2811-2023,https://doi.org/10.5194/gmd-16-2811-2023, 2023
Short summary
An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS)
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023,https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023,https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023,https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023,https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009. a
Barnier, B.: Forcing the Ocean, in: Ocean Modeling and Parameterization, edited by: Chassignet, E. P. and Verron, J., NATO Science Series, vol 516, Springer, 45–80, https://doi.org/10.1007/978-94-011-5096-5_2, 1998. a
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. a
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics, J. Phys. Oceanogr., 23, 1363–1388, 1993. a
Bonino, G.: The bulk parameterizations of turbulent air-sea fluxes in NEMO4: the origin of Sea Surface Temperature differences in a global model study, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6258085, 2022. a, b
Download
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.