Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6873-2022
https://doi.org/10.5194/gmd-15-6873-2022
Model evaluation paper
 | 
09 Sep 2022
Model evaluation paper |  | 09 Sep 2022

The bulk parameterizations of turbulent air–sea fluxes in NEMO4: the origin of sea surface temperature differences in a global model study

Giulia Bonino, Doroteaciro Iovino, Laurent Brodeau, and Simona Masina

Related authors

Forecasting the Mediterranean Sea Marine Heatwave of summer 2022
Ronan McAdam, Giulia Bonino, Emanuela Clementi, and Simona Masina
State Planet Discuss., https://doi.org/10.5194/sp-2023-22,https://doi.org/10.5194/sp-2023-22, 2023
Revised manuscript accepted for SP
Short summary
The role of air-sea heat fluxes for marine heatwaves in the Mediterranean Sea
Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki
State Planet Discuss., https://doi.org/10.5194/sp-2023-24,https://doi.org/10.5194/sp-2023-24, 2023
Preprint under review for SP
Short summary
Machine learning methods to predict Sea Surface Temperature and Marine Heatwave occurrence: a case study of the Mediterranean Sea
Giulia Bonino, Giuliano Galimberti, Simona Masina, Ronan McAdam, and Emanuela Clementi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1847,https://doi.org/10.5194/egusphere-2023-1847, 2023
Short summary
Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023,https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021,https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary

Related subject area

Oceanography
Great Lakes wave forecast system on high-resolution unstructured meshes
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024,https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary
Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2)
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024,https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0)
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023,https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
A flexible z-layers approach for the accurate representation of free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023,https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 1: Evolution of ecosystem composition under limited light and nutrient conditions
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023,https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009. a
Barnier, B.: Forcing the Ocean, in: Ocean Modeling and Parameterization, edited by: Chassignet, E. P. and Verron, J., NATO Science Series, vol 516, Springer, 45–80, https://doi.org/10.1007/978-94-011-5096-5_2, 1998. a
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. a
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics, J. Phys. Oceanogr., 23, 1363–1388, 1993. a
Bonino, G.: The bulk parameterizations of turbulent air-sea fluxes in NEMO4: the origin of Sea Surface Temperature differences in a global model study, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6258085, 2022. a, b
Download
Short summary
The sea surface temperature (SST) is highly influenced by the transfer of energy driven by turbulent air–sea fluxes (TASFs). In the NEMO ocean general circulation model, TASFs are computed by means of bulk formulas. Bulk formulas require the choice of a given bulk parameterization, which influences the magnitudes of the TASFs. Our results show that parameterization-related SST differences are primarily sensitive to the wind stress differences across parameterizations.