Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5949-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5949-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product
Miguel Nogueira
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon,
1749-016 Lisbon, Portugal
Cervest, Canalot Studios, Studio 133, 222 Kensal Road, London W10 5BN, UK
Alexandra Hurduc
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon,
1749-016 Lisbon, Portugal
Sofia Ermida
Instituto Português do Mar e da Atmosfera, IPMA, 1749-077 Lisbon, Portugal
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon,
1749-016 Lisbon, Portugal
Daniela C. A. Lima
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon,
1749-016 Lisbon, Portugal
Pedro M. M. Soares
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon,
1749-016 Lisbon, Portugal
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon,
1749-016 Lisbon, Portugal
Emanuel Dutra
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon,
1749-016 Lisbon, Portugal
Instituto Português do Mar e da Atmosfera, IPMA, 1749-077 Lisbon, Portugal
Related authors
Miguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johannsen, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins, and Emanuel Dutra
Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, https://doi.org/10.5194/gmd-13-3975-2020, 2020
Short summary
Short summary
We used earth observations to evaluate and improve the representation of land surface temperature (LST) and vegetation coverage over Iberia in CHTESSEL and SURFEX land surface models. We demonstrate the added value of updating the vegetation types and fractions together with the representation of vegetation coverage seasonality. Results show a large reduction in daily maximum LST systematic error during warm months, with neutral impacts in other seasons.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio A. Bento, and Angelina Bushenkova
Geosci. Model Dev., 17, 229–259, https://doi.org/10.5194/gmd-17-229-2024, https://doi.org/10.5194/gmd-17-229-2024, 2024
Short summary
Short summary
This study uses deep learning (DL) to downscale global climate models for the Iberian Peninsula. Four DL architectures were evaluated and trained using historical climate data and then used to downscale future projections from the global models. These show agreement with the original models and reveal a warming of 2 ºC to 6 ºC, along with decreasing precipitation in western Iberia after 2040. This approach offers key regional climate change information for adaptation strategies in the region.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022, https://doi.org/10.5194/gmd-15-2635-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with a recent observational gridded dataset as a reference, covering the entire Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional climate models encouraged this study. For precipitation, most models reveal added value. The gains are even more evident for precipitation extremes, particularly at a more local scale.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2653–2671, https://doi.org/10.5194/gmd-15-2653-2022, https://doi.org/10.5194/gmd-15-2653-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with an observational gridded dataset as a reference covering the Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional models encouraged this study. For the max and min temperature, although most models reveal added value, some display losses. At more local scales, coastal sites display important gains, contrasting with the interior.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Manuel C. Almeida, Yurii Shevchuk, Georgiy Kirillin, Pedro M. M. Soares, Rita M. Cardoso, José P. Matos, Ricardo M. Rebelo, António C. Rodrigues, and Pedro S. Coelho
Geosci. Model Dev., 15, 173–197, https://doi.org/10.5194/gmd-15-173-2022, https://doi.org/10.5194/gmd-15-173-2022, 2022
Short summary
Short summary
In this study, we have evaluated the importance of the input of energy conveyed by river inflows into lakes and reservoirs when modeling surface water energy fluxes. Our results suggest that there is a strong correlation between water residence time and the surface water temperature prediction error and that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air–lake heat and moisture fluxes.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Miguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johannsen, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins, and Emanuel Dutra
Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, https://doi.org/10.5194/gmd-13-3975-2020, 2020
Short summary
Short summary
We used earth observations to evaluate and improve the representation of land surface temperature (LST) and vegetation coverage over Iberia in CHTESSEL and SURFEX land surface models. We demonstrate the added value of updating the vegetation types and fractions together with the representation of vegetation coverage seasonality. Results show a large reduction in daily maximum LST systematic error during warm months, with neutral impacts in other seasons.
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020, https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
Cited articles
Balsamo, G., Agusti-Panareda, A., Albergel, C., Arduini, G., Beljaars, A.,
Bidlot, J., Blyth, E., Bousserez, N., Boussetta, S., Brown, A., Buizza, R.,
Buontempo, C., Chevallier, F., Choulga, M., Cloke, H., Cronin, M. F.,
Dahoui, M., De Rosnay, P., Dirmeyer, P. A., Drusch, M., Dutra, E., Ek, M.
B., Gentine, P., Hewitt, H., Keeley, S. P. E., Kerr, Y., Kumar, S., Lupu,
C., Mahfouf, J.-F., McNorton, J., Mecklenburg, S., Mogensen, K.,
Muñoz-Sabater, J., Orth, R., Rabier, F., Reichle, R., Ruston, B.,
Pappenberger, F., Sandu, I., Seneviratne, S. I., Tietsche, S., Trigo, I. F.,
Uijlenhoet, R., Wedi, N., Woolway, R. I., and Zeng, X.: Satellite and In Situ
Observations for Advancing Global Earth Surface Modelling: A Review, Remote
Sens., 10, 2038, https://doi.org/10.3390/rs10122038, 2018.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019.
Beljaars, A. C. M., Viterbo, P., Miller, M. J., and Betts, A. K.: The
Anomalous Rainfall over the United States during July 1993: Sensitivity to
Land Surface Parameterization and Soil Moisture Anomalies, Mon. Weather
Rev., 124, 362–383, https://doi.org/10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2, 1996.
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019.
Broadbent, A. M., Coutts, A. M., Tapper, N. J., and Demuzere, M.: The
cooling effect of irrigation on urban microclimate during heatwave
conditions, Urban Clim., 23, 309–329, https://doi.org/10.1016/j.uclim.2017.05.002, 2018.
Broadbent, M. A., Krayenhoff, S. E., and Georgescu, M.: The motley drivers
of heat and cold exposure in 21st century US cities, P.
Natl. Acad. Sci. USA, 117, 21108–21117,
https://doi.org/10.1073/pnas.2005492117, 2020.
Calvet, J.-C., Noilhan, J., Roujean, J.-L., Bessemoulin, P., Cabelguenne,
M., Olioso, A., and Wigneron, J.-P.: An interactive vegetation SVAT model
tested against data from six contrasting sites, Agric. For. Meteorol., 92,
73–95, https://doi.org/10.1016/S0168-1923(98)00091-4, 1998.
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B.,
Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S.,
Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki,
A. A., and Zhang, C.: The integrated WRF/urban modelling system:
development, evaluation, and applications to urban environmental problems,
Int. J. Climatol., 31, 273–288, https://doi.org/10.1002/joc.2158, 2011.
Clinton, N. and Gong, P.: MODIS detected surface urban heat islands and
sinks: Global locations and controls, Remote Sens. Environ., 134,
294–304, https://doi.org/10.1016/j.rse.2013.03.008, 2013.
CNRM: Open-SURFEX code package, SURFEX website [code], available at: https://www.umrcnrm.fr/surfex/spip.php?article387, last access: July 2022, 2016.
Conlon, K., Monaghan, A., Hayden, M., and Wilhelmi, O.: Potential Impacts of
Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston,
Texas, PLoS One, 11, 1–19, https://doi.org/10.1371/journal.pone.0148890, 2016.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS), https://cds.climate.copernicus.eu/ (last access: 13 December 2021), 2019.
Daniel, M., Lemonsu, A., and Viguié, V.: Role of watering practices in
large-scale urban planning strategies to face the heat-wave risk in future
climate, Urban Clim., 23, 287–308, https://doi.org/10.1016/j.uclim.2016.11.001, 2018.
Daniel, M., Lemonsu, A., Déqué, M., Somot, S., Alias, A., and
Masson, V.: Benefits of explicit urban parameterization in regional climate
modeling to study climate and city interactions, Clim. Dynam., 52,
2745–2764, https://doi.org/10.1007/s00382-018-4289-x, 2019.
Davin, E. L., Rechid, D., Breil, M., Cardoso, R. M., Coppola, E., Hoffmann, P., Jach, L. L., Katragkou, E., de Noblet-Ducoudré, N., Radtke, K., Raffa, M., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Tölle, M. H., Warrach-Sagi, K., and Wulfmeyer, V.: Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison, Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011.
Deilami, K., Kamruzzaman, M., and Liu, Y.: Urban heat island effect: A
systematic review of spatio-temporal factors, data, methods, and mitigation
measures, Int. J. Appl. Earth Obs., 67, 30–42, https://doi.org/10.1016/j.jag.2017.12.009, 2018.
de Munck, C., Pigeon, G., Masson, V., Meunier, F., Bousquet, P.,
Tréméac, B., Merchat, M., Poeuf, P., and Marchadier, C.: How much
can air conditioning increase air temperatures for a city like Paris,
France?, Int. J. Climatol., 33, 210–227, https://doi.org/10.1002/joc.3415, 2013.
DOC/NOAA/NESDIS/NCDC National Climatic Data Center, NESDIS, NOAA, U.S. Department
of Commerce: Global Surface Summary of the Day, National Centers for Environmental
Information website,https://www.ncei.noaa.gov/access/metadata/landingpage/bin/iso?id=gov.noaa.ncdc:C00516, last access: July 2022.
Ermida, S. L., Trigo, I. F., DaCamara, C. C., Jiménez, C., and Prigent,
C.: Quantifying the Clear-Sky Bias of Satellite Land Surface Temperature
Using Microwave-Based Estimates, J. Geophys. Res.-Atmos., 124, 844–857, https://doi.org/10.1029/2018JD029354, 2019.
Freitas, S. C., Trigo, I. F., Bioucas-Dias, J. M., and Gottsche, F.-M.:
Quantifying the Uncertainty of Land Surface Temperature Retrievals From
SEVIRI/Meteosat, IEEE T. Geosci. Remote, 48,
523–534, https://doi.org/10.1109/TGRS.2009.2027697, 2010.
Garuma, G. F.: Review of urban surface parameterizations for numerical
climate models, Urban Climate, 24, 830–851, https://doi.org/10.1016/j.uclim.2017.10.006, 2018.
Georgescu, M., Morefield, E. P., Bierwagen, G. B., and Weaver, P. C.: Urban
adaptation can roll back warming of emerging megapolitan regions,
P. Natl. Acad. Sci. USA, 111, 2909–2914,
https://doi.org/10.1073/pnas.1322280111, 2014.
Gibelin, A.-L., Calvet, J.-C., Roujean, J.-L., Jarlan, L., and Los, S. O.:
Ability of the land surface model ISBA-A-gs to simulate leaf area index at
the global scale: Comparison with satellites products, J.
Geophys. Res.-Atmos., 111, D18102, https://doi.org/10.1029/2005JD006691, 2006.
Hamdi, R., Degrauwe, D., and Termonia, P.: Coupling the Town Energy Balance
(TEB) Scheme to an Operational Limited-Area NWP Model: Evaluation for a
Highly Urbanized Area in Belgium, Weather Forecast., 27, 323–344,
https://doi.org/10.1175/WAF-D-11-00064.1, 2012.
Hamdi, R., Giot, O., Troch, R. D., Deckmyn, A., and Termonia, P.: Future
climate of Brussels and Paris for the 2050s under the A1B scenario, Urban
Climate, 12, 160–182, https://doi.org/10.1016/j.uclim.2015.03.003, 2015.
Hamdi, R., Kusaka, H., Doan, Q.-V., Cai, P., He, H., Luo, G., Kuang, W.,
Caluwaerts, S., Duchêne, F., Van Schaeybroek, B., and Termonia, P.: The
State-of-the-Art of Urban Climate Change Modeling and Observations, Earth
Syst. Environ., 4, 631–646, https://doi.org/10.1007/s41748-020-00193-3, 2020.
He, B.-J., Wang, J., Liu, H., and Ulpiani, G.: Localized synergies between
heat waves and urban heat islands: Implications on human thermal comfort and
urban heat management., Environ. Res., 193, 110584, https://doi.org/10.1016/j.envres.2020.110584, 2021.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hong, J.-W., Hong, J., Kwon, E. E., and Yoon, D. K.: Temporal dynamics of
urban heat island correlated with the socio-economic development over the
past half-century in Seoul, Korea, Environ. Pollut., 254, 112934,
https://doi.org/10.1016/j.envpol.2019.07.102, 2019.
Imhoff, M. L., Zhang, P., Wolfe, R. E., and Bounoua, L.: Remote sensing of
the urban heat island effect across biomes in the continental USA, Remote
Sens. Environ., 114, 504–513, https://doi.org/10.1016/j.rse.2009.10.008, 2010.
IPCC: Climate Change 2013 – The Physical Science Basis: Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, https://doi.org/10.1017/CBO9781107415324, 2014.
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda,
M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A.,
Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin, E.
L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M.
A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K.,
Gómez-Navarro, J. J., Alemán, J. J. G., Gutiérrez, C.,
Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S.,
Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E.,
Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P.,
Montávez, J. P., Navarra, A., Nikulin, G., de Noblet-Ducoudré, N.,
Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen,
J.-P., Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R.,
Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L.,
Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate downscaling over Europe: perspectives
from the EURO-CORDEX community, Reg. Environ. Change, 20, 51,
https://doi.org/10.1007/s10113-020-01606-9, 2020.
Johannsen, F., Ermida, S., Martins, J. P. A., Trigo, I. F., Nogueira, M.,
and Dutra, E.: Cold Bias of ERA5 Summertime Daily Maximum Land Surface
Temperature over Iberian Peninsula, Remote Sens., 11, https://doi.org/10.3390/rs11212570, 2019.
Kaloustian, N. and Diab, Y.: Effects of urbanization on the urban heat
island in Beirut, Urban Climate, 14, 154–165, https://doi.org/10.1016/j.uclim.2015.06.004, 2015.
Konstantinov, P., Varentsov, M., and Esau, I.: A high density urban
temperature network deployed in several cities of Eurasian Artic,
Environ. Res. Lett., 13, https://doi.org/10.1088/1748-9326/aacb84, 2018.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P.,
Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H.,
Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K.,
Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and
Yamada, T.: Regions of strong coupling between soil moisture and
precipitation, Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217, 2004.
Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V., and
Georgescu, M.: Diurnal interaction between urban expansion, climate change
and adaptation in US cities, Nat. Clim. Change, 8, 1097–1103,
https://doi.org/10.1038/s41558-018-0320-9, 2018.
Kusaka, H., Hara, M., and Takane, Y.: Urban Climate Projection by the WRF
Model at 3-km Horizontal Grid Increment: Dynamical Downscaling and
Predicting Heat Stress in the 2070's August for Tokyo, Osaka, and Nagoya
Metropolises, J. Meteorol. Soc. Japan Ser. II, 90B,
47–63, https://doi.org/10.2151/jmsj.2012-B04, 2012.
Langendijk, G. S., Rechid, D., and Jacob, D.: Urban Areas and Urban–Rural
Contrasts under Climate Change: What Does the EURO-CORDEX Ensemble Tell
Us? – Investigating near Surface Humidity in Berlin and Its Surroundings,
Atmosphere, 10, 730, https://doi.org/10.3390/atmos10120730, 2019.
Le Moigne, P. (Ed.): SURFEX Scientific Documentation, V8.1, http://www.umr-cnrm.fr/surfex/IMG/pdf/surfex_scidoc_v8.1.pdf (last access: 21 December 2021), 2018.
Lemonsu, A., Kounkou-Arnaud, R., Desplat, J., Salagnac, J.-L., and Masson,
V.: Evolution of the Parisian urban climate under a global changing climate,
Clim. Change, 116, 679–692, https://doi.org/10.1007/s10584-012-0521-6, 2013.
Lemonsu, A., Beaulant, A. L., Somot, S., and Masson, V.: Evolution of heat wave
occurrence over the Paris basin (France) in the 21st century, Clim. Res., 61,
75–91, https://doi.org/10.3354/cr01235, 2014.
Lemonsu, A., Viguié, V., Daniel, M., and Masson, V.: Vulnerability to heat
waves: Impact of urban expansion scenarios on urban heat island and heat
stress in Paris (France), Urban Climate, 14, 586–605, https://doi.org/10.1016/j.uclim.2015.10.007, 2015.
Le Roy, B., Lemonsu, A., Kounkou-Arnaud, R., Brion, D., and Masson, V.: Long
time series spatialized data for urban climatological studies: A case study
of Paris, France, Int. J. Climatol., 40, 3567–3584,
https://doi.org/10.1002/joc.6414, 2020.
Li, Y., Sun, Y., Li, J., and Gao, C.: Socioeconomic drivers of urban heat
island effect: Empirical evidence from major Chinese cities, Sustain.
Cities Soc., 63, 102425, https://doi.org/10.1016/j.scs.2020.102425, 2020.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and
Sobrino, J. A.: Satellite-derived land surface temperature: Current status
and perspectives, Remote Sens. Environ., 131, 14–37, https://doi.org/10.1016/j.rse.2012.12.008, 2013.
LSA SAF: Land Surface Temperature Climate Data Record – MSG, EUMETSAT SAF on Land
Surface Analysis, LSA SAF [data set], https://doi.org/10.15770/EUM_SAF_LSA_0001, 2019.
Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T. W., Meili,
N., Burlando, P., Katul, G. G., and Bou-Zeid, E.: Magnitude of urban heat
islands largely explained by climate and population, Nature, 573, 55–60,
https://doi.org/10.1038/s41586-019-1512-9, 2019.
Masson, V.: A Physically-Based Scheme For The Urban Energy Budget In
Atmospheric Models, Bound.-Lay. Meteorol., 94, 357–397, https://doi.org/10.1023/A:1002463829265, 2000.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Masson, V., Lemonsu, A., Hidalgo, J., and Voogt, J.: Urban Climates and
Climate Change, Annu. Rev. Environ. Resour., 45, 411–444, https://doi.org/10.1146/annurev-environ-012320-083623, 2020.
McNorton, J. R., Arduini, G., Bousserez, N., Agustí-Panareda, A.,
Balsamo, G., Boussetta, S., Choulga, M., Hadade, I., and Hogan, R. J.: An
Urban Scheme for the ECMWF Integrated Forecasting System: Single-Column and
Global Offline Application, J. Adv. Model. Earth Sy.,
13, e2020MS002375, https://doi.org/10.1029/2020MS002375, 2021.
Muller, C. L., Chapman, L., Grimmond, C. S. B., Young, D. T., and Cai, X.:
Sensors and the city: a review of urban meteorological networks,
Int. J. Climatol., 33, 1585–1600, https://doi.org/10.1002/joc.3678, 2013.
Nogueira, M.: Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over
the last 40 years: Process-based analysis of systematic and random
differences, J. Hydrology, 583, 124632, https://doi.org/10.1016/j.jhydrol.2020.124632, 2020.
Nogueira, M. and Soares, P. M. M.: A surface modelling approach for
attribution and disentanglement of the effects of global warming from
urbanization in temperature extremes: application to Lisbon, Environ. Res. Lett., 14, 114023,
https://doi.org/10.1088/1748-9326/ab465f, 2019.
Nogueira, M., Albergel, C., Boussetta, S., Johannsen, F., Trigo, I. F., Ermida, S. L., Martins, J. P. A., and Dutra, E.: Role of vegetation in representing land surface temperature in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8.1) land surface models: a case study over Iberia, Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, 2020a.
Nogueira, M., Lima, D. C. A., and Soares, P. M. M.: An integrated approach
to project the future urban climate response: Changes to Lisbon's urban heat
island and temperature extremes, Urban Climate, 34, 100683, https://doi.org/10.1016/j.uclim.2020.100683, 2020b.
Nogueira, M., Boussetta, S., Balsamo, G., Albergel, C., Trigo, I. F.,
Johannsen, F., Miralles, D. G., and Dutra, E.: Upgrading Land-Cover and
Vegetation Seasonality in the ECMWF Coupled System: Verification With
FLUXNET Sites, METEOSAT Satellite Land Surface Temperatures, and ERA5
Atmospheric Reanalysis, J. Geophys. Res.-Atmos., 126,
e2020JD034163, https://doi.org/10.1029/2020JD034163, 2021a.
Nogueira, M., Hurduc, A., Ermida, S., Lima, D. C., Soares, P. M., Johannsen,
F., and Dutra, E.: Assessment of the Paris urban heat island in ERA5 and
offline SURFEX-TEB (v8.1) simulations using METEOSAT land surface
temperature product (Version 1), Zenodo [data set],
https://doi.org/10.5281/zenodo.5780448, 2021b.
Oke, T. R.: City size and the urban heat island, Atmos. Environ., 7, 769–779, https://doi.org/10.1016/0004-6981(73)90140-6, 1973.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor. Soc., 108, 1–24, https://doi.org/10.1002/qj.49710845502, 1982.
Oke, T. R.: Boundary layer climates, 2nd ed, Q. J. Roy.
Meteor. Soc., 114, 484, https://doi.org/10.1002/qj.49711448412, 1987.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates,
Cambridge University Press, Cambridge, https://doi.org/10.1017/9781139016476, 2017.
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon,
F.-M., Nan, H., Zhou, L., and Myneni, R. B.: Surface Urban Heat Island
Across 419 Global Big Cities, Environ. Sci. Technol., 46, 696–703,
https://doi.org/10.1021/es2030438, 2012.
Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.: Evaluation
of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum
Temperature, and Precipitation over Australia Using Probability Density
Functions, J. Climate, 20, 4356–4376, https://doi.org/10.1175/JCLI4253.1, 2007.
Roth, M., Oke, T. R., and Emery, W. J.: Satellite-derived urban heat islands
from three coastal cities and the utilization of such data in urban
climatology, Int. J. Remote Sens., 10, 1699–1720,
https://doi.org/10.1080/01431168908904002, 1989.
Salamanca, F., Krpo, A., Martilli, A., and Clappier, A.: A new building
energy model coupled with an urban canopy parameterization for urban climate
simulations – part I. formulation, verification, and sensitivity analysis of
the model, Theor. Appl. Climatol., 99, 331,
https://doi.org/10.1007/s00704-009-0142-9, 2009.
Salamanca, F., Martilli, A., Tewari, M., and Chen, F.: A Study of the Urban
Boundary Layer Using Different Urban Parameterizations and High-Resolution
Urban Canopy Parameters with WRF, J. Appl. Meteorol.
Climatol., 50, 1107–1128, https://doi.org/10.1175/2010JAMC2538.1, 2011.
Sarkar, A. and De Ridder, K.: The Urban Heat Island Intensity of Paris: A
Case Study Based on a Simple Urban Surface Parametrization, Bound.-Lay.
Meteorol., 138, 511–520, https://doi.org/10.1007/s10546-010-9568-y, 2011.
Schoetter, R., Kwok, Y. T., de Munck, C., Lau, K. K. L., Wong, W. K., and Masson, V.: Multi-layer coupling between SURFEX-TEB-v9.0 and Meso-NH-v5.3 for modelling the urban climate of high-rise cities, Geosci. Model Dev., 13, 5609–5643, https://doi.org/10.5194/gmd-13-5609-2020, 2020.
Schwarz, N., Lautenbach, S., and Seppelt, R.: Exploring indicators for
quantifying surface urban heat islands of European cities with MODIS land
surface temperatures, Remote Sens. Environ., 115, 3175–3186,
https://doi.org/10.1016/j.rse.2011.07.003, 2011.
Stewart, I. D.: A systematic review and scientific critique of methodology
in modern urban heat island literature, Int. J.
Climatol., 31, 200–217, https://doi.org/10.1002/joc.2141,
2011.
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature
Studies, B. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Trigo, I. F., Dacamara, C. C., Viterbo, P., Roujean, J.-L., Olesen, F., Barroso, C., Camacho-de-
Coca, F., Carrer, D., Freitas, S. C., García-Haro, J., Geiger, B., Gellens-Meulenberghs, F.,
Ghilain, N., Meliá, J., Pessanha, L., Siljamo, N., and Arboleda, A.: The Satellite Application
Facility for Land Surface Analysis, Int. J. Remote Sens., 32, 2725–2744,
https://doi.org/10.1080/01431161003743199, 2011.
Trigo, I. F., Boussetta, S., Viterbo, P., Balsamo, G., Beljaars, A., and
Sandu, I.: Comparison of model land skin temperature with remotely sensed
estimates and assessment of surface-atmosphere coupling, J. Geophys. Res.-Atmos., 120, 12096–12111,
https://doi.org/10.1002/2015JD023812, 2015.
Trusilova, K., Schubert, S., Wouters, H., Früh, B., Grossman-Clarke, S.,
Demuzere, M., and Becker, P.: The urban land use in the COSMO-CLM model: a
comparison of three parameterizations for Berlin, Meteorol. Z., 25, 231–244,
https://doi.org/10.1127/metz/2015/0587, 2016.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar,
F., and Sanz-Garcia, A.: Evaluation of global horizontal irradiance
estimates from ERA5 and COSMO-REA6 reanalyses using ground and
satellite-based data, Solar Energ., 164, 339–354, https://doi.org/10.1016/j.solener.2018.02.059, 2018.
Viguié, V., Lemonsu, A., Hallegatte, S., Beaulant, A.-L., Marchadier,
C., Masson, V., Pigeon, G., and Salagnac, J.-L.: Early adaptation to heat
waves and future reduction of air-conditioning energy use in Paris, Environ. Res. Lett., 15,
075006, https://doi.org/10.1088/1748-9326/ab6a24, 2020.
World Health Organization: Global status report on alcohol and health 2018,
World Health Organization, Geneva, edited by: Poznyak, V. and Rekve, D., ISBN 978-92-4-156563-9, 2018.
Zhao, L., Lee, X., Smith, R. B., and Oleson, K.: Strong contributions of
local background climate to urban heat islands, Nature, 511, 216–219,
https://doi.org/10.1038/nature13462, 2014.
Zhao, L., Oleson, K., Bou-Zeid, E., Krayenhoff, E. S., Bray, A., Zhu, Q.,
Zheng, Z., Chen, C., and Oppenheimer, M.: Global multi-model projections of
local urban climates, Nat. Clim. Change, 11, 152–157, https://doi.org/10.1038/s41558-020-00958-8, 2021.
Zhou, B., Rybski, D., and Kropp, J. P.: On the statistics of urban heat
island intensity, Geophys. Res. Lett., 40, 5486–5491, https://doi.org/10.1002/2013GL057320, 2013.
Zhou, B., Rybski, D., and Kropp, J. P.: The role of city size and urban form
in the surface urban heat island, Sci. Rep.-UK, 7, 4791, https://doi.org/10.1038/s41598-017-04242-2, 2017.
Zhou, J., Yu, B., and Qin, J.: Multi-Level Spatial Analysis for Change
Detection of Urban Vegetation at Individual Tree Scale, Remote Sens.,
6, 9086–9103, https://doi.org/10.3390/rs6099086, 2014.
Short summary
We evaluated the quality of the ERA5 reanalysis representation of the urban heat island (UHI) over the city of Paris and performed a set of offline runs using the SURFEX land surface model. They were compared with observations (satellite and in situ). The SURFEX-TEB runs showed the best performance in representing the UHI, reducing its bias significantly. We demonstrate the ability of the SURFEX-TEB framework to simulate urban climate, which is crucial for studying climate change in cities.
We evaluated the quality of the ERA5 reanalysis representation of the urban heat island (UHI)...