Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5739-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5739-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer
Yuejin Ye
National Supercomputing Center, Wuxi 214000, China
First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Zhenya Song
First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shengchang Zhou
First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
School of Software, Shandong University, Jinan 250101, China
Yao Liu
School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Bingzhuo Wang
CORRESPONDING AUTHOR
National Supercomputing Center, Wuxi 214000, China
Weiguo Liu
Laboratory for Regional Oceanography and Numerical Modeling,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
School of Software, Shandong University, Jinan 250101, China
Fangli Qiao
CORRESPONDING AUTHOR
First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Lanning Wang
CORRESPONDING AUTHOR
Laboratory for Regional Oceanography and Numerical Modeling,
Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
Related authors
No articles found.
Xiaole Li, Zhenya Song, Xiongbo Zheng, Zhanpeng Zhuang, Fangli Qiao, Haibin Zhou, and Mingze Ji
EGUsphere, https://doi.org/10.5194/egusphere-2025-2636, https://doi.org/10.5194/egusphere-2025-2636, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Based on the variable-limit integration method, this study developed a novel numerical approach for the thermohaline equations in ocean models. This method significantly enhances the simulation accuracy of temperature and salinity, improves model stability, and better simulates seawater overflow dynamics across steep ridges. The variable-limit integral method designed herein for thermohaline equations can be readily applied to other ocean numerical models.
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025, https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Short summary
High-performance computing limitations often hinder numerical model development. Traditional models use double precision for accuracy, which is computationally expensive. Lower precision reduces costs but can introduce errors. The quasi-double-precision (QDP) algorithm helps mitigate these errors. This study applies the QDP algorithm to the Model for Prediction Across Scales – Atmosphere, showing reduced errors and computational time, making it an efficient solution for large-scale simulations.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Xianwei Wu, Liang Hu, Lanning Wang, Haitian Lu, and Juepeng Zheng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-164, https://doi.org/10.5194/gmd-2023-164, 2023
Revised manuscript not accepted
Short summary
Short summary
In order to build an effective surrogate model for the community atmospheric model (CAM). We present a surrogate model-based parameter tuning framework for the CAM and apply it to improve the CAM5 precipitation performance and propose a multilevel surrogate model-based optimization method. We design a nonuniform parameter parameterization scheme and integrate the parameters using a parameter smoothing scheme, and the experimental results improve in four regions.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev., 16, 1755–1777, https://doi.org/10.5194/gmd-16-1755-2023, https://doi.org/10.5194/gmd-16-1755-2023, 2023
Short summary
Short summary
A new global surface-wave–tide–circulation coupled ocean model (FIO-COM32) with a resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are shown to be important contributors to the significant improvements in FIO-COM32 simulations. It is time to merge these separated model components (surface waves, tidal currents and ocean circulation) and start a new generation of ocean model development.
Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, Zhenya Song, Yeli Yuan, Chaojie Zhou, Xinhua Zhao, Ting Zhang, and Jing Xie
Geosci. Model Dev., 15, 7221–7241, https://doi.org/10.5194/gmd-15-7221-2022, https://doi.org/10.5194/gmd-15-7221-2022, 2022
Short summary
Short summary
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the Indian Ocean. The surface-wave-generated turbulent mixing is dominant if depth is < 30 m, while the internal-tide-induced mixing is larger than surface waves in the ocean interior from 40
to 130 m. The simulated thermal structure, mixed layer depth and surface current are all improved when the mixing schemes are jointly incorporated into the ocean model because of the strengthened vertical mixing.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-52, https://doi.org/10.5194/gmd-2022-52, 2022
Revised manuscript not accepted
Short summary
Short summary
A new global surface wave-tide-circulation coupled ocean model FIO-COM32 with resolution of 1/32° × 1/32° is developed and validated. Both the promotion of the horizontal resolution and included physical processes are proved to be important contributors to the significant improvements of FIO-COM32 simulations. It should be the time to merge these separated model components (surface wave, tidal current and ocean circulation) for new generation ocean model development.
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021, https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
Chao Sun, Li Liu, Ruizhe Li, Xinzhu Yu, Hao Yu, Biao Zhao, Guansuo Wang, Juanjuan Liu, Fangli Qiao, and Bin Wang
Geosci. Model Dev., 14, 2635–2657, https://doi.org/10.5194/gmd-14-2635-2021, https://doi.org/10.5194/gmd-14-2635-2021, 2021
Short summary
Short summary
Data assimilation (DA) provides better initial states of model runs by combining observations and models. This work focuses on the technical challenges in developing a coupled ensemble-based DA system and proposes a new DA framework DAFCC1 based on C-Coupler2. DAFCC1 enables users to conveniently integrate a DA method into a model with automatic and efficient data exchanges. A sample DA system that combines GSI/EnKF and FIO-AOW demonstrates the effectiveness of DAFCC1.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238, https://doi.org/10.5194/gmd-14-223-2021, https://doi.org/10.5194/gmd-14-223-2021, 2021
Short summary
Short summary
Few studies have investigated the effects of initial conditions on the simulation or prediction of PM2.5 concentrations. Here, sensitivity experiments are used to explore the effects of three initial mechanisms (clean, restart, and continuous) and emissions in Xi’an in December 2016. According to this work, if the restart mechanism cannot be used due to computing resource and storage space limitations when forecasting PM2.5 concentrations, a spin-up time of at least 27 h is needed.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Cited articles
Afzal, A., Ansari, Z., Faizabadi, A. R., and Ramis, M.: Parallelization strategies for computational fluid dynamics software: state of the art review, Arch. Computat. Methods Eng., 24, 337–363, https://doi.org/10.1007/s11831-016-9165-4, 2017. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Baker, A. H., Hu, Y., Hammerling, D. M., Tseng, Y.-H., Xu, H., Huang, X., Bryan, F. O., and Yang, G.: Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0), Geosci. Model Dev., 9, 2391–2406, https://doi.org/10.5194/gmd-9-2391-2016, 2016. a
Bryan, K.: A numerical method for the study of the circulation of the world ocean, J. Comput. Phys., 4, 347–376, 1969. a
Bryan, K. and Cox, M. D.: A numerical investigation of the oceanic general circulation, Tellus, 19, 54–80, https://doi.org/10.1111/j.2153-3490.1967.tb01459.x, 1967. a
Chassignet, E. P., LeSommer, J., and Wallcraft, A. J.: Generalcirculation models, in: Encyclopedia of Ocean Sciences, 3rd Edn., edited by: Cochran, K. J., Bokuniewicz, H. J., and Yager, P. L., Elsevier, 5, 486–490, https://doi.org/10.1016/B978-0-12-409548-9.11410-1, 2019. a, b, c
Dawson, A. and Düben, P. D.: rpe v5: an emulator for reduced floating-point precision in large numerical simulations, Geosci. Model Dev., 10, 2221–2230, https://doi.org/10.5194/gmd-10-2221-2017, 2017. a, b
Dong, J., Fox-Kemper, B., Zhang, H., and Dong, C.: The seasonality of submesoscale energy production, content, and cascade, Geophys. Res. Lett., 7, e2020GL087388, https://doi.org/10.1029/2020GL087388, 2020. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W., Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou, C., and Yang, G.: The sunway taihulight supercomputer: system and applications, Sci. China Inform. Sci., 59, 1–16, https://doi.org/10.1007/s11432-016-5588-7, 2016. a
Gu, J., Feng, F., Hao, X., Fang, T., Zhao, C., An, H., Chen, J., Xu, M., Li, J., Han, W., Yang, C., Li, F., and Chen, D.: Establishing a non-hydrostatic global atmospheric modeling system at 3-km horizontal resolution with aerosol feedbacks on the Sunway supercomputer of China, Sci. Bull., 67, 1170–1181, https://doi.org/10.1016/j.scib.2022.03.009, 2022. a
Hu, Y., Huang, X., Wang, X., Fu, H., Xu, S., Ruan, H., Xue, W., and Yang, G.: A scalable barotropic mode solver for the parallel ocean program, in: European Conference on Parallel Processing, edited by: Wolf, F., Mohr, B., and Mey, D., Springer, 739–750, https://doi.org/10.1007/978-3-642-40047-6_74, 2013. a
Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y., Wang, W., and Zhang, L.: Porting LASG/IAP climate system ocean model to GPUs using OpenAcc, IEEE Access, 7, 154490–154501, https://doi.org/10.1109/ACCESS.2019.2932443, 2019. a
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time ∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018. a, b, c
Liao, X., Xiao, L., Yang, C., and Lu, Y.: Milkyway-2 supercomputer: system and application, Front. Comput. Sci., 8, 345–356, https://doi.org/10.1007/s11704-014-3501-3, 2014. a
Madec, G. and the NEMO team: NEMO ocean engine, Zenodo, https://doi.org/10.5281/zenodo.3248739, 2016. a, b, c
Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constantinides, K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G. P., Gray, J., Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong, J., Xiao, P. Y., and Burger, D.: A reconfigurable fabric for accelerating large-scale datacenter services, IEEE Micro., 35, 10–22, https://doi.org/10.1109/MM.2015.42, 2015. a
Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L. L., and Menemenlis, D.: Seasonality in transition scale from balanced to unbalanced motions in the world ocean, J. Phys. Oceanogr., 48, 591–605, https://doi.org/10.1175/JPO-D-17-0169.1, 2018. a
Qiu, B., Chen, S., Klein, P., Torres, H., Wang, J., Fu, L. L., and Menemenlis, D.: Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion, J. Phys. Oceanogr., 50, 55–79, https://doi.org/10.1175/JPO-D-19-0172.1, 2020. a
Rocha, C. B., Gille, S. T., Chereskin, T. K., and Menemenlis, D.: Seasonality of submesoscale dynamics in the kuroshio extension, Geophys. Res. Lett., 43, 11–304, https://doi.org/10.1002/2016GL071349, 2016. a
Ruston, B.: Validation test report for the dtic, https://apps.dtic.mil/sti/pdfs/AD1090615.pdf (last access: 13 July 2022), 2019. a
Smith, R., Jones, P., Briegleb, B.,Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The parallel ocean program (pop) reference manual ocean component of the community climate system model (ccsm) and community earth system model (cesm), LAUR-01853, 141, 1–140, https://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf (last access: 13 July 2022), 2010. a
Tintó Prims, O., Acosta, M. C., Moore, A. M., Castrillo, M., Serradell, K., Cortés, A., and Doblas-Reyes, F. J.: How to use mixed precision in ocean models: exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6, Geosci. Model Dev., 12, 3135–3148, https://doi.org/10.5194/gmd-12-3135-2019, 2019. a, b
Vazhkudai, S. S., deSupinski, B. R., Bland, A. S., Geist, A., Sexton, J., Kahle, J., Zimmer, C. J., Atchley, S., Oral, S., Maxwell, D. E., Vergara Larrea, V. G., Bertsch, A., Goldstone, R., Joubert, W., Chambreau, C., Appelhans, D., Blackmore, R., Casses, B., Chochia, G., Davision, G., Ezell, M. A., Gooding, T., Gonsiorowski, E., Grinberg, L., Hanson, B., Hartner, B., Karlin, I., Leininger, M. L., Leverman, D., Marroquin, C., Moody, A., Ohmacht, M., Pankajakshan, R., Pizzano, F., Rogers, J. H., Rosenburg, B., Schmidt, D., Shankar, M., Wang, F., Watson, P., Walkup, B., Weems, L. D., and Yin, J.: The design, deployment, and evaluation of the coral pre-exascale systems, in: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, IEEE, 661–672, https://doi.org/10.1109/SC.2018.00055, 2018.
a
Viglione, G. A., Thompson, A. F., Flexas, M. M., Sprintall, J., and Swart, S.: Abrupt transitions in submesoscale structure in southern drake passage: Glider observations and model results, J. Phys. Oceanogr., 48, 2011–2027, https://doi.org/10.1175/JPO-D-17-0192.1, 2018. a
Wan, L.: The high resolution global ocean forecasting system in the nmefc and its intercomparison with the godae oceanview iv-tt class 4 metrics,
https://www.godae.org/$∼$godae-data/OceanView/Events/DA-OSEval-TT-2017/2.3-NMEFC-High-Resolution-Global-Ocean-Forecasting-System-and-Validation_v3.pdf (last access: 13 July 2022), 2020. a
Wang, P., Jiang, J., Lin, P., Ding, M., Wei, J., Zhang, F., Zhao, L., Li, Y., Yu, Z., Zheng, W., Yu, Y., Chi, X., and Liu, H.: The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for portability (HIP) framework and its large-scale application , Geosci. Model Dev., 14, 2781–2799, https://doi.org/10.5194/gmd-14-2781-2021, 2021. a
Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model, Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015, 2015. a, b
Yang, X., Zhou, S., Zhou, S., Song, Z., and Liu, W.: A barotropic solver for high-resolution ocean general circulation models, J. Mar. Sci. Eng., 9, 421, https://doi.org/10.3390/jmse9040421, 2021. a
Ye, Y., Song, Z., Zhou, S., Liu, Y., Shu, Q., Wang, B., Liu, W., Qiao, F., and Wang, L.: swNEMO(4.0), Zenodo [code], https://doi.org/10.5281/zenodo.5976033, 2022a. a
Ye, Y., Song, Z., Zhou, S., Liu, Y., Shu, Q., Wang, B., Liu, W., Qiao, F., and Wang, L.: Data for swNEMO_v4.0 in GMD, Zenodo [data set], https://doi.org/10.5281/zenodo.6834799, 2022b. a
Zeng, Y., Wang, L., Zhang, J., Zhu, G., Zhuang, Y., and Guo, Q.: Redistributing and optimizing high-resolution ocean model pop2 to million sunway cores, in: International Conference on Algorithms and Architectures for Parallel Processing, edited by: Qiu, M., Springer, https://doi.org/10.1007/978-3-030-60245-1_19, 2020. a
Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. a
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of...