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Abstract. The current large-scale parallel barrier of ocean
general circulation models (OGCMs) makes it difficult to
meet the computing demand of high resolution. Fully con-
sidering both the computational characteristics of OGCMs
and the heterogeneous many-core architecture of the new
Sunway supercomputer, swNEMO_v4.0, based on NEMO4
(Nucleus for European Modelling of the Ocean version 4), is
developed with ultrahigh scalability. Three innovations and
breakthroughs are shown in our work: (1) a highly adaptive,
efficient four-level parallelization framework for OGCMs is
proposed to release a new level of parallelism along the
compute-dependency column dimension. (2) A many-core
optimization method using blocking by remote memory ac-
cess (RMA) and a dynamic cache scheduling strategy is ap-
plied, effectively utilizing the temporal and spatial locality
of data. The test shows that the actual direct memory access
(DMA) bandwidth is greater than 90 % of the ideal band-
width after optimization, and the maximum is up to 95 %.
(3) A mixed-precision optimization method with half, sin-
gle and double precision is explored, which can effectively
improve the computation performance while maintaining the
simulated accuracy of OGCMs. The results demonstrate that
swNEMO_v4.0 has ultrahigh scalability, achieving up to
99.29 % parallel efficiency with a resolution of 500 m using

27 988 480 cores, reaching the peak performance with 1.97
PFLOPS.

1 Introduction

Ocean general circulation models (OGCMs) are numerical
models focusing on the properties of oceans based on the
Navier–Stokes equations on the rotating sphere with thermo-
dynamic terms for various energy sources (Chassignet et al.,
2019). OGCMs are the most powerful tools for predicting the
ocean and climate states. As shown in Fig. 1, recent studies
indicate that the horizontal resolution of OGCMs used for
ocean research has been improved from 5◦ (approximately
500 km) (Bryan et al., 1967; Bryan, 1969) to 1/48◦ (approxi-
mately 2 km) (Rocha et al., 2016; Viglione et al., 2018; Dong
et al., 2020; Qiu et al., 2018, 2020). However, the small-
scale processes in the ocean (Chassignet et al., 2019; Lel-
louche et al., 2018), which are critical for further reducing
the ocean simulation and prediction biases, still cannot be
resolved within a 2 km resolution. Therefore, improving the
spatial resolution is one of the most important directions of
OGCM development.
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Figure 1. Peak performance of the supercomputers (blue bar) and
the total number of OGCM grid points (red line) over the past
60 years.

The increase in OGCMs’ resolution results in an exponen-
tial increase in the demand for computing capabilities. With
the doubled horizontal resolution, the amount of calculation
increases about 10 times accordingly. However, the enhanced
performance of supercomputers makes it feasible to simulate
oceans at higher resolutions. Compared to homogeneous sys-
tems, which cannot afford the high-power cost of the tran-
sition from petaFLOPS supercomputers to exaFLOPS su-
percomputers, heterogeneous many-core systems reduce the
power loss from the perspective of system design, thus be-
coming mainstream.

In the last few years, heterogeneous architectures (i.e.,
CPU+GPU, Vazhkudai et al., 2018; CPU+FPGA, Putnam
et al., 2015; CPU+MIC, Liao et al., 2014; and MPE+CPE
(computing processing element), Fu et al., 2016) have been
widely applied to speed up model computation (Table 1).
GPUs are increasingly important in high-performance com-
puting due to their high-density computing. Using GPUs
to accelerate computing speed shows great potential for
the ocean and climate modeling. For example, based on
mpiPOM, Xu et al. (2015) developed a POM (Princeton
Ocean Model) GPU solution, which reduced power con-
sumption by a factor of 6.8 times and achieved the equiva-
lent performance of 408 Intel Westmere cores using four K20
GPUs (Xu et al., 2015). LICOM (LASG/IAP Climate system
Ocean Model) was successfully ported and optimized to run
on Nvidia and AMD GPUs, which showed great potential
compared with CPUs (Jiang et al., 2019; Wang et al., 2021).
Compared with GPUs, the results of ocean models published
with FPGA are relatively few, and most are in the program
porting stage.

On the platform of Sunway supercomputers, Zhang et
al. (2020) and Zeng et al. (2020) studied the porting of
the ocean component POP2 (Parallel Ocean Program ver-
sion 2) and successfully scaled it to 1 million and 4 million
cores, respectively, speeding up computation by a factor of
3 to 4. To use heterogeneous architectures, parallel program-
ming of MPI+OpenMP/CUDA/OpenACC/Athread was de-
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veloped to improve the parallel efficiency of the model using
finer-grained parallelism (Afzal et al., 2017). The coordina-
tion between the master and slave cores (involving master–
slave cores, slave–slave cores, memory bandwidth and regis-
ter communication) is the key to parallel efficiency.

Due to the limitation of memory bandwidth, large-scale
parallelism usually cannot maintain high efficiency (Lel-
louche et al., 2018; Ruston, 2019; Chassignet et al., 2019).
The classic parallelization method is the “longitude–latitude
2D decomposition based on the MPI of OGCMs. To further
improve parallelism, there are many efforts in parallel de-
composition schemes and algorithm improvements of physi-
cal processes. To achieve better load balance, several decom-
position schemes based on curve filling have been introduced
in OGCMs (POP, Smith et al., 2010 and NEMO (Nucleus for
European Modelling of the Ocean), Madec and the NEMO
team, 2016). The parallel scale can reachO (100 km) in prac-
tice with a resolution of O (10 km) (Hu et al., 2013; Yang et
al., 2021). However, due to the communication barrier, the
large-scale parallel efficiency is still below 50 %. Therefore,
we need to explore new schemes that can further improve the
scalability to the next level. At the current stage, developing a
large-scale parallel algorithm for the OGCMs is still in two-
dimensional parallelism along with the longitudinal and lat-
itudinal horizontal directions. Therefore, integrating the ver-
tical direction in the three-dimensional parallelism scheme is
still challenging.

As most emerging Exascale systems provide support for
mixed-precision arithmetic, a mixed-precision computing
scheme becomes an important step to reduce the computa-
tional and memory pressure further, as well as to improve the
computing performance. However, due to the weak support
of mixed precision from computer systems and the difficulty
of balancing computing precision and simulation accuracy,
many efforts are still at an early stage. Dawson and Düben
(2017) used a reduced-precision emulator (RPE) to study the
shallow water equation (SWE) model using mixed precision
and found that the error caused by iterations with low preci-
sion can be solved by mixed precision. Then, based on the
RPE, Tintó Prims et al. (2019) investigated the application of
a mixed scheme of double precision (DP) and single preci-
sion (SP) on NEMO and verified the feasibility of half pre-
cision (HP) in the regional ocean model of ROMS (Regional
Ocean Modeling System) (Tintó Prims et al., 2019). Previous
studies have shown that mixed precision can improve com-
putational efficiency. However, RPE can only verify the fea-
sibility of mixed precision in theoretical models. The new-
generation Sunway supercomputer, supporting HP, can lay a
solid foundation for applying mixed-precision OGCMs.

The architecture of the new-generation of Sunway proces-
sors (SW26010 Pro) adopts a more advanced DDR4 com-
pared with the original SW26010. It not only expands the
capacity, but also greatly improves the direct memory ac-
cess (DMA) bandwidth of the processor. The upgrade of
the on-chip communication mechanism of many-core arrays

makes the interconnection between CPEs more convenient
and builds a more efficient global network on the entire su-
percomputer. The upgrade of these key technologies provides
a solid foundation for the parallelization of OGCMs on the
new generation of Sunway supercomputers. In this work,
we design and implement a four-level parallel algorithm
on three-dimensional space based on hardware–software co-
design. We also resolve the problem of memory bandwidth
through fine-grained data reuse technology, thus paving the
way for the ultrahigh scalability of NEMO. Furthermore,
based on Sunway’s heterogeneous many-core architecture, a
composite block algorithm and a dynamic scheduling algo-
rithm based on LDCache are proposed to fully exploit the
performance of many-core acceleration. Finally, half preci-
sion is introduced to further release the memory pressure of
NEMO under simulation with ultrahigh resolution. We de-
velop a highly scalable swNEMO_v4.0 based on the Nucleus
for European Modelling of the Ocean version 4 (NEMO4)
with the GYRE-PISCES benchmark (Madec and the NEMO
team, 2016), which is the benchmark abbreviation of the
Gyre Pelagic Interactions Scheme for Carbon and Ecosys-
tem Studies, where PISCES is short for Pelagic Interactions
Scheme for Carbon and Ecosystem Studies (Aumont et al.,
2015). The resolution is equivalent to the horizontal resolu-
tion of 500 m on a global scale.

The following section briefly introduces the new gener-
ation of Sunway heterogeneous many-core supercomputing
platforms. In Sect. 3, we briefly review the basics of NEMO4
and describe our optimization methods in detail. The perfor-
mance results are discussed in Sect. 4, and Sect. 5 concludes
this paper with discussions.

2 The new-generation heterogeneous many-core
supercomputing platform and NEMO4

Succeeded by the architecture of Sunway TaihuLight, the
new Sunway generation, as shown in Fig. 2, which is driven
by SW26010 Pro (Table 2), consists of six core groups, with
one management processing element (MPE) and one 8× 8
computing processing element (CPE) cluster in each. The
core groups are connected within the loop network. Data
can be transferred between CPEs via remote memory access
(RMA), which significantly increases the efficiency of CPE
co-working.

CPE is also based on the SW64 instruction set, with
the 512 bit single-instruction multiple-data (SIMD) vector,
where double precision, single precision, half precision and
integers are all supported. Furthermore, double and single
precision share the same computation speed, whereas half
precision performs twice faster. There are also a separate
instruction cache and a scratchpad memory (SPM) in each
CPE. The SPM allocates local data memory (LDM) for users,
part of which can be set as a local data cache, automati-
cally administrated by hardware. The data are transmitted
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Table 2. Basic information about SW26010 Pro. Note: CG refers to
core group.

CPU SW26010 Pro
Number of CGs 6
Number of processors of one CG 65 (1 MPE+ 64 CPE)
Programming language C/C++, Fortran, Python
Parallel programming environment MPI, Athread/OpenACC
Memory size 96 GB
Instruction set sw64
L1 instruction cache 32 KB
L1 data cache 32 KB
L2 data cache of MPE 512 KB
SIMD register of MPE 256 bit
SIMD register of CPE 512 bit
Precision support Double precision

Single precision
Half precision

Scratchpad memory 256 KB

between LDM and main memory via either direct memory
access (DMA) or the general load and store instructions.

3 Porting and optimizing NEMO4

NEMO is a state-of-the-art modeling framework for research
activities and forecasting services in the ocean and climate
sciences developed in a sustainable way by a European con-
sortium since 2008. It has been widely used in marine sci-
ence, climate change studies, ocean forecasting systems and
climate models. For ocean forecasting, NEMO has been ap-
plied by many operational forecasting systems, such as the
Mercator Ocean monitoring and forecasting systems (Lel-
louche et al., 2018), as well as the ocean forecasting sys-
tem in the National Marine Environmental Forecasting Cen-
ter of China with a 1/12◦ resolution (Wan, 2020). For the
climate simulation and projections, approximately one-third
of the climate models in the latest phase of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Eyring et
al., 2016) use the ocean component models of NEMO. The
breakthroughs made in this study are based on NEMO, and,
thus, this work provides useful methods and ideas that can
directly contribute to the NEMO community for optimizing
their models and improving their simulation speeds.

Fully considering the characteristics of the three-
dimensional spatial computation of OGCMs and the hetero-
geneous many-core architecture of the new-generation Sun-
way supercomputer, we develop a highly scalable NEMO4
named swNEMO_v4.0, with the following three major con-
tributions based on the concepts of hardware–software co-
design:

– A highly efficient four-level parallelization framework
is proposed for OGCMs to release a new level of paral-
lelism along the column dimension that was originally

not parallelism-friendly due to the computational de-
pendency.

– A raised many-core optimization method that uses an
effective dynamic cache scheduling strategy utilizes the
temporal and spatial locality of data effectively.

– A multi-level mixed-precision optimization method that
uses half, single and double precision is explored, which
can effectively improve the computation performance
while maintaining the same level of accuracy.

We then elaborate on the above algorithms in the following.

3.1 An adaptive four-level parallelization framework

To utilize the many heterogeneous cores of the new-
generation Sunway supercomputer, the load of the expanded
C-grid computation should be assigned in a balanced way.
Considering the characteristics of the three-dimensional spa-
tial computation of NEMO and the heterogeneous many-core
architecture of a new-generation Sunway supercomputer, we
propose an adaptive four-level parallel framework that can
realize computation load dispatching among different levels.
Figure 3 demonstrates our adaptive four-level parallel frame-
work.

3.1.1 Level 1: load-balanced longitude–latitude
decomposition among MPEs

With land grids eliminated in NEMO, keeping the horizon-
tal data in a traditional way benefits the load balance among
processes. The variables are stored as 3-D arrays, and the x,
y and z axes represent the longitude, latitude and depth, re-
spectively. Since the scales of the x axis and y axis are con-
siderably larger than the scale of the z axis, we decompose
the data along the x axis and y axis and dispatch each data
block to different MPI processes (first level of the four-level
parallelization framework). Our major strategy is to guaran-
tee that (a) the grid sizes of the subdomain in each process
are similar, achieving a good load balance; and (b) the x axis
and y axis dimension sizes are close to each other. The x
axis and y axis of each process are the closest in all options,
thus minimizing the halo areas that require communication
among processes.

3.1.2 Level 2: asynchronous parallelization between a
MPE and a CPE cluster

Gu et al. (2022) proposed a multi-level optimization method
to use the heterogeneous architecture. In the first level of
the method, they designed pre-communication, communica-
tion and post-communication in the code based on MPE–
CPE asynchronous parallelism architecture. As the default
barotropic solver in NEMO4 is an explicit method with a
small time step, which is more accurate and more suitable
for high resolution without a filter, instead of implicit or
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Figure 2. Architecture of the new-generation Sunway supercomputer.

Figure 3. The adaptive four-level parallel framework, where x,
y and z axes indicate latitude, longitude and depth, respectively.
Level 1 is the load-balanced longitude–latitude decomposition
among MPEs, level 2 is the asynchronous parallel between a MPE
and a CPE cluster, level 3 is the latitude–depth decomposition in a
CPE clusters and level 4 is the vector reconstruction in a CPE.

split-explicit methods (e.g., preconditioned conjugate gradi-
ents – PCGs), there is no global communication. Therefore,
it is only necessary to update the information of the halo re-
gion between different processes. Moreover, in the explicit
method, most boundary information exchanges are indepen-
dent of the partition data in the process and can be used
for asynchronous parallelization. So boundary data exchange
can be parallelized aside from the computation. Considering
that MPE is asynchronous with a CPE cluster, we propose an
asynchronous parallelization design between the MPE and
the CPE cluster using efficient DMA (second level of the
four-level parallelization framework). The MPE is in charge
of the boundary data exchange, I/O and a small amount of

computation, while the CPE cluster performs the computa-
tion of most kernels. Such an asynchronous communication
pattern can make full use of the asynchronous parallelism
between the MPE and the CPE cluster, thus improving the
parallel efficiency.

3.1.3 Level 3: “latitude–depth” decomposition in the
CPE cluster

Furthermore, we design the third level of parallelism in the
CPE cluster by utilizing the fine-grained data-sharing fea-
tures within the CPE cluster, releasing a new level of paral-
lelism along the column dimension that was originally not
parallelism-friendly due to the computational dependency.
RMA is a unique on-chip communication mechanism on the
new-generation Sunway supercomputer, which enables high-
speed communication among CPEs. We realize the latitude–
depth decomposition with LDM and the data exchange with
RMA. By utilizing the row and column communication fea-
tures of RMA to achieve fine-grained data sharing among the
CPE threads, we can accomplish an efficient parallelization
on the column (i.e., the depth) dimension and release a new
level of parallelism for the underlying hardware.

In the data structure of swNEMO, data items along the
longitude axis are stored in a continuous way. Following such
a memory layout, we divide the data block along the latitude
and depth into smaller blocks and copy them into the LDM.
More details are shown in Sect. 3.2.
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3.1.4 Level 4: data layout reconstruction for
vectorization

To further improve the computational efficiency within each
CPE, we design the fourth level of parallelism for vec-
torization. SW26010 Pro has a 512 bit SIMD instruction
set, one of which can compute eight double-precision dig-
its simultaneously. To adapt our computation pattern for the
SIMD instruction, we perform a data layout reconstruction to
achieve the most suitable vectorization arrangement. More-
over, methods such as instruction rearrangement, branch pre-
diction and cycle expansion are adopted to improve the exe-
cution efficiency of the instruction pipeline.

3.2 Performance optimization for the many-core
architecture

3.2.1 A composite blocking algorithm based on RMA

To further improve the parallel scale and efficiency, we
implement the fine-grained latitude–depth decomposition.
There are many stencils and temporal dependency compu-
tations existing in NEMO, which results in high demand
for DMA bandwidth. A stencil computation is a class of al-
gorithms that updates elements in a multidimensional grid
based on neighboring values using a fixed pattern (hereafter
called stencil). In a stencil operation, each point in a multi-
dimensional grid is updated with the weighted contributions
from a subset of its neighbors in both time and space, thereby
representing the coefficients of the partial differential equa-
tion (PDE) for that data element. Therefore, we take advan-
tage of the RMA provided by SW26010 Pro to relieve the
pressure of the DMA bandwidth. RMA is an on-chip com-
munication mechanism with superior bisection bandwidth
within a CPE cluster. RMA enables direct remote LDM ac-
cess among different CPEs within one CPE cluster. The ef-
ficient batch communication mechanism of RMA is highly
adaptable for solving typical x pointer problems. For exam-
ple, in the diffusion process of the tracer in NEMO, upstream
points are needed for data exchange, which includes horizon-
tal unidirectional grid information exchange (three-pointer
stencil) and grid information exchange along with longitude
and latitude directions (five-pointer stencil). Figure 4 repre-
sents the grid communication process between CPE #0 and
CPE #1. Each point represents a multidimensional tensor
composed of different variables that are irrelevant to each
other. When updating A(u), variables v and w from the sur-
rounding eight points are required to participate in the calcu-
lation. We first send v and w required by adjacent CPEs to
the buffer in the corresponding CPEs while updating the lo-
cal variables whose surrounding points are on the same CPE.
After all the needed variables in the halo are transferred into
the buffer, the remaining variables in the points located at the
edge of the CPE can be updated.

Figure 4. Tensor distribution in different CPEs (a) and data trans-
portation between CPEs (b).

Based on RMA, we design different parallel blocking al-
gorithms for computing kernels with different characteristics
to maintain an efficient performance in various application
scenarios. In the following, α1, β1 and β2 are only the coef-
ficient, f is the mathematical formula for the loop segment
and x means the x axis (longitude axis) in the coordinate sys-
tem.

– Temporal dependency in computing along the z axis. We
suppose uiter

i,j,k−1 is an original value of grid (i,j,k− 1)
in the coordinate system (x,y,z) (where the x axis is
the most continuous one, and the z axis is the least), and
uiter
i,j,k is computed as follows:


uiter
i,j,k = f (u

iter
i,j,k−1)

f = α1× u
iter
i,j,k−1+β1

×(uiter
i±1,j,k + u

iter
i,j±1,k),

(1)

where 0< i < nx , 0< j < ny and 1< k < nk . In this
equation, α1 and β1 are coefficients that indicate the lin-
ear characteristic of this mapping f . To fully utilize the
DMA bandwidth, we decompose data along the y axis
and send them into different CPEs. Then, continuous
data along the x axis are copied into the LDM at one
time.
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– Temporal dependency in computation along the y axis.
In this case, the computation is as follows:
uiter
i,j,k = f (u

iter
i,j−1,k)

f = α2× u
iter
i,j−1,k +β2

×(uiter
i±1,j,k + u

iter
i,j,k±1).

(2)

Here α2 and β2 are also coefficients that indicate the
linear characteristic of this mapping f . Restricted by
the size of the LDM, we decompose data along the z
axis and then decompose data along the y axis into the
proper sizem and dispatch each data block into different
CPEs as follows:

m=
size(LDM)

size(x)
. (3)

Therefore, blocks on the same z layer are dispatched to
the same CPE one by one.

– Nontemporal dependency in computation. In this case,
we decompose the data along with the z axis and y axis.
Due to the elaborate design of size (x), each block can
be copied into LDM at once to reduce redundant halo
transfer and improve the asynchronous parallel of sten-
cil calculations.

To increase the utility of the RMA bandwidth, we pack
the data before sending them for better utilization of the
bandwidth in an aggregated manner. While sending, CPEs
compute, and in this way, we can realize the overlap be-
tween RMA communication and computation and, thus,
make efficient utilization of the bandwidth by reducing re-
dundant DMA references. By utilizing RMA and the com-
posite blocking strategy, for nontemporal-dependency and
temporal-dependency computation, we finally achieve over
90 % effective utilization of the RMA bandwidth and over
80 % utilization of the DDR4 memory bandwidth. With such
an efficient memory scheme, the average speedup of most
computing kernels (comparing the performance of a CPE
cluster to an MPE) can be up to 40 times.

3.2.2 A dynamic LDCache scheduling algorithm

To access discrete data items in swNEMO, the traditional
global load/global store (gld/gst) method becomes a major
performance hindrance. LDCache, provided by SW26010
Pro, stores data with a cache_line of 256 bytes in CPE. In
one CPE, LDM and LDCache share an SPM with a total ca-
pacity of 256 KB, and the size of LDM and LDCache can be
manually adjusted. Since the amount of data required for a
round of computation in different kernels in NEMO is var-
ied, if the cache space is fixed, the utilization of the LDM
becomes less efficient. Therefore, we design a dynamic LD-
Cache scheduling algorithm that can realize efficient and
fine-grained memory access. One feature of this algorithm
is to dynamically adjust the size of LDCache to achieve a

Figure 5. Time-division refresh technology for LDM.

balance between LDM and LDCache. Furthermore, the algo-
rithm has a time-division update technique since LDCache
cannot guarantee data consistency with memory. We regu-
larly update the stored data and eliminate the outdated data
in the LDM simultaneously. As shown in Fig. 5, the data
that need to be refreshed are packed on the CPE and sent
to the designated buffer of the MPE. The MPE then uses the
MPE–CPE message mechanism to find the buffers that need
to be updated in a round-robin way and update them, while
the CPE eliminates the corresponding data in the cache. By
applying the dynamic LDCache scheduling algorithm with
both an adjustable cache and a manual time-division update
technique, we can improve the memory bandwidth utiliza-
tion rate to approximately 88.7 % for DDR4, with a speedup
of 88 times (comparing the performance of a CPE cluster to
an MPE) for most computing kernels, which is a substantial
improvement compared with the speedup of 5.1 times when
using the traditional gld/gst method.

3.3 Mixed-precision optimization

Because the NEMO, as one of the OGCMs, is memory-
intensive, the memory bandwidth limits the computational
efficiency of NEMO to a large extent. A reduced-precision
method can be a promising solution. However, using low-
precision data is a double-edged sword. On the one hand,
it can effectively resolve the performance obstacles; on the
other hand, the reduced precision brings errors and un-
certainties. According to Dawson and Düben (2017), 95 %
of NEMO variables support the single-precision floating-
point format (SP). Therefore, we specifically reconstruct
the data structure and introduce a new three-level mixed
precision scheme in NEMO. To achieve a higher perfor-
mance (Fig. 6), we reconstruct two “half-precision+ single-
precision” (HP+SP) computing kernels tracer_fct and
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Figure 6. Data reconstruction for three-level mixed precision.

tracer_iso of NEMO on CPE, which account for 50 % of the
hotspot runtime in total. As HP is only supported on the CPEs
of SW26010 Pro, we store HP data in the format of char or
short types of memory on the MPE and use HP format to read
them to LDM by DMA to ensure the correctness on the CPE.

By analyzing the calculation characteristics of NEMO, we
find that the HP format subtracts operations between adja-
cent grids, which makes the final results diverge due to the
round error of low precision. Therefore, a high-precision for-
mat must be used when calculating adjacent grids. Based on
the above analysis in other calculations, we adopt the SP
floating-point format for calculations between adjacent grids
and the HP floating-point format with BF16 (consisting of 1
sign bit, 8 exponent bits and 7 mantissa bits). After optimiza-
tion, we achieve a speedup of close to 2 times compared with
NEMO using DP, while the maximum biases of temperature,
salinity and velocity are within 0.05 % (figures not shown).
Therefore, utilizing mixed precision can effectively increase
the computational intensity and improve the scalability while
maintaining the simulated accuracy of NEMO.

In order to validate the results of optimized
swNEMO_v4.0, we carried out the perturbation experi-
ments for the temperature results and analyzed the RMSZ
(root-mean-square Z score) proposed by Baker et al. (2016).
The experimental sample set can be represented as an en-
semble E = {X1,X2,X3, . . .,Xm}, m= 1,2, . . .101, where
each sample Xm(j) represents a series of results at a given
point j in all months. µ(j) and δ(j) represent the mean and
standard deviations of this series at the given point j .

RMSZ(X)=

√√√√1
n

n∑
j=1

(
X(j)−µ(j)

δ(j)

)2

(4)

Since the experiment in this work is the ocean basin bench-
mark, it is not feasible to directly compare with observed
values. Hence random disturbance conditions for the ini-
tial temperature are configured within the NEMO program.

At the same time, we also selected 101 sets of data as ex-
perimental simulation results to validate the results of opti-
mized NEMO_v4.0, of which 100 sets are temperature re-
sults with perturbation conditions, and the remaining one is
the mixed-precision temperature field experimental results of
swNEMO_v4.0.

At first, the perturbation coefficient is selected as
O(10−14). However, we found that the RMSZ obtained
by mixed-precision simulation was completely out of the
shadow area formed by 100 simulations with double pre-
cision (Fig. 7a). Therefore, we increased the perturbation
coefficient, and the mixed-precision Z score gradually ap-
proached the shadow area. We found that the disturbance had
a greater influence in the first few years, then gradually de-
creased and tended to be stable after several years (Fig. 7a
and b). As shown in Fig. 7b, when the perturbation coeffi-
cient isO(10−11), the Z score of mixed-precision simulation
falls partially in the region formed by double-precision simu-
lations. When the perturbation coefficient equals O(10−10),
the Z score completely falls in the shadow area (Fig. 7c),
which indicates that the effects of mixed precision are similar
to these of the perturbation coefficient ofO(10−10). It shows
that the mixed-precision affects the results, but the effects are
small (the perturbation coefficient is around O(10−10)) and
can be accepted (Fig. 7c).

4 Performance results

We choose the benchmark named GYRE-PISCES to test
the swNEMO_v4.0 performance. The domain geometry is a
closed rectangular basin on the β plane centered at ∼ 30◦ N
and rotated by 45◦, 3180 km long, 2120 km wide and 4 km
deep. The circulation is forced by analytical profiles of wind
and buoyancy fluxes. This benchmark represents an ideal-
ized North Atlantic or North Pacific basin (Madec and the
NEMO team, 2016). In addition, the east–west periodic con-
ditions and the North Pole folding of the global ocean with
a tripolar grid have a large impact on performance. There-
fore, we activate the BENCH option to include these period-
icity conditions and reproduce the communication pattern of
the global ocean with a tripolar grid between two North Pole
subdomains. It is equivalent to a global ocean with a tripolar
grid with the same number of grid points from the perspec-
tive of computational cost and computational characteristics,
although the physical meaning is limited. In the following
content, the resolution of the benchmark is equivalent to that
of the global ocean.

In this part, we have added a more specific description.
We designed three groups of experiments with different res-
olutions of 2 km, 1 km and 500 m for strong expansibility. In
addition, we also carried out weak-scalability experiments.
The corresponding relationship among resolution, comput-
ing grid points and data scale of weak scalability can also
be seen from the information in Table 3. The speedup is
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Figure 7. RMSZ biases of the sea surface temperature in ensemble experiments (gray lines) with perturbation coefficient of (a) O(10−14),
(b) O(10−11) and (c) O(10−10) and in the mixed-precision experiment (red line).

equal to the clock time in different scales divided by the
baseline record of the minimum scale with 2 129 920 cores.
For the weak-scalability analysis, we design the experiment
with eight resolutions (Table 3). All experiments are run for
1 model day without I/O. We adopt the following methods
to perform real-time statistics and floating points to ensure
measurement accuracy.

– For time statistics, we use two methods to proofread:

– We use the MPI_Wtime() function provided by
MPI to obtain the wall-clock time.

– We use the assembly instructions to count the cycle
time.

– Similarly, two methods are used in the statistics of
floating-point operations:

– We use the loader to count the floating-point oper-
ation of the program when submitting the job.

– We use performance interface functions to perform
the program instrumentation to count the opera-
tions.

4.1 Parallel-working performance on a many-core
architecture

The cycle time and speedup ratio of the hotspots are shown
in Fig. 8, where different parallel methods are applied for
comparison with the original method. While the CPEs paral-
lel method (level 3 of four-level parallel framework), which
introduces all 64 slave kernels to help with acceleration, is
12 times faster than the original method, we find the master–
slave asynchronous parallelization mode (MPE–CPE multi-
level parallel, level 2 of four-level parallel framework) shows
quite satisfying results with a speedup of 65 times. The four-
level parallel framework fits well in Sunway architecture, and
the master–slave asynchronous parallelization strategy com-
bines data parallelism with task parallelism. By making great

Table 3. Eight different scales used in weak scalability, with the
conversion between resolution in degrees and resolution in kilome-
ters. The total number of computed grid points used in weak scala-
bility is also shown.

Scales in weak Resolution Resolution Computed grid
scalability (cores) (◦) (km) points (horizontal)

2 129 920 1/12 9.0 13 515 004
4 259 840 1/16 7.0 24 020 004
8 519 680 1/24 4.5 54 030 004
12 779 520 1/32 3.5 96 040 004
17 039 360 1/44 2.5 181 555 004
21 299 200 1/64 2.0 384 080 004
25 559 040 1/96 1.2 864 120 004
27 988 480 1/116 1.0 1 261 645 004

use of the Sunway architecture, this parallelization strategy
overlaps the computation part with the communication and
I/O part, thus considerably improving hotspot efficiency.

The Sunway architecture suggests storing data in slave
kernels before further computation. Therefore, the perfor-
mance of the many-core architecture is related to the actual
amount of memory access, the bandwidth of DMA and the
FLOPS performance of slave kernels. We assume the total
amount of time of the hotspot part in slave kernels is rep-
resented by T = Tc

′
+ Tl

′, where Tc
′ is the time cost of the

actual floating-point operation in this part, and Tl
′ is the time

cost of direct memory access. To speed up the many-core ar-
chitecture, we can seek methods for both DMA optimization
and floating-point operation optimization.

For stencil computation, due to the low ratio of compu-
tation to memory access, we have Tc

′ < Tl
′. We can mini-

mize Tc
′ using computation–communication overlap, yet Tl

′

is related to the actual amount of memory access and the
bandwidth of DMA Tl

′
≥

M
BW′DMA

, where BWDMA is the the-
oretical value of DMA bandwidth, and M is the total valid
amount of memory access. In the real NEMO4 case, we
have Tc

′
� Tl

′. Assuming the following equation holds true,
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Figure 8. Performance of MPE–CPE asynchronous parallelization.

BW′DMA =
M

Tc
′
+Tl
′ , then the ratio of actual DMA bandwidth

to theoretical bandwidth should be

α =

M
Tc
′
+Tl
′

BWDMA
=

M

(Tc
′
+ Tl

′)BWDMA
. (5)

The theoretical time cost of DMA when M is fixed is T =
M

BWDMA
. Since Tl

′ is affected by the frequency and size of
DMA, T < Tl

′ and T < Tc
′
+ Tl

′ hold. Therefore, we have

α =
M

(Tc
′
+ Tl

′)BWDMA
=

T

Tc
′
+ Tl

′
< 1 (6)

when Tc
′
→ 0 or Tc

′
→ T , α→ 1. The more the ratio of ac-

tual memory bandwidth to theoretical bandwidth approaches
1, the faster the whole architecture works and, thus, the better
the performance becomes.

To analyze the performance of the algorithm mentioned
in Sect. 3.2.1, we use five kernels to simulate the test, with
49× 65× 128 grids on average per kernel. The five kernels
are the most time-consuming chunks, which are only a frac-
tion of the physical process. However, they are all specific
implementations of Stencil computing. We calculate the av-
erage clock cycle of running one simulation, and the results
are shown in Fig. 9 (see the Appendix for the detailed codes
of Algorithms A1–A5), where the red bars are the original
results, and the blue bars are the optimized results using this
algorithm. It is clearly shown that the time cost is largely re-
duced via this method, as with the third kernel, the clock cy-
cle is reduced from 61× 10−3 to 0.6× 10−3 s, which means
the result becomes 70.9 times faster. Meanwhile, according
to the simulation test, this algorithm raises the ratio of actual

Figure 9. The performance of the five-kernel simulation test and the
five kernels are shown in the Appendix.

DMA bandwidth to theoretical bandwidth up to above 92 %,
as shown in the third kernel, and even reaches the theoretical
limit of 95 % as a whole.

4.2 Mixed-precision optimization

Introducing low-precision format data helps reduce memory
use. Since the LDM in the slave kernel has limited stor-
age, lowering the data precision could better use the given
space and accelerate communication with the same actual
DMA bandwidth. In terms of NEMO, due to its memory con-
straint, DMA data communication contributes to greater than
95 % of the total running time on the many-core architecture,
and, as a result, we can enhance the overall performance by
lowering the time cost of data communication. Focusing on
tracer_fct in NEMO, we simulate a four-kernel test with a
49× 65× 128 s grid on average per kernel, and the results,
which include the optimizations of four-level parallelization
framework and mixed-precision approaches, are shown in
Fig. 10, where the red and orange bars represent the aver-
age wall time of SP and SP+HP in one simulation. Since
NEMO is sensitive to precision, we cannot use HP only. We
can see that the SP+HP method shortens the total time by
half compared to the original DP method. To further explore
this topic, we simulate another test comparing the bandwidth
usage and the ratio in both SP and SP+HP precision, which
is shown in Fig. 11. The result shows that both methods sur-
pass the 90 % ratio threshold, with the fourth kernel perform-
ing best with a ratio of 95 %.
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Figure 10. Time cost of the tracer_fct process.

Figure 11. Bandwidth ratio of the tracer_fct process.

4.3 Strong scaling

Figure 12 shows the results of strong scaling. We conduct
experiments with resolutions of 2 km, 1 km and 500 m, in-
creasing the number of cores from 2 129 920 to 27 988 480.
The numbers of grids at resolutions of 2 km, 1 km and
500 m are 24 002× 16 002× 128, 43 502× 29 002× 128
and 82 502× 55 002× 128, respectively. We set 2 129 920
cores as the baseline of strong scaling, and the final parallel
efficiencies are 74.18 %, 83.40 % and 99.29 %, respectively.

When the number of cores is 2 129 920, the average com-
puting task of each process (i.e., CG) is approximately
325× 432, including a halo in the horizontal direction and
128 grids in the vertical direction. The mixed-precision opti-
mization proposed in this paper considerably speeds up com-
putations and reduces memory overhead. However, to guar-
antee the accuracy of the results, there are still some un-
avoidable double-precision floating-point arithmetics in the
key steps in swNEMO_v4.0. During computing, the size of
a four-dimensional variable with double precision has ex-
ceeded 1 GB. To maintain a reasonable efficiency of the
memory system, we select 2 129 920 cores as the minimum
available baseline.

Figure 12. The strong scalability results, scaling from 2 129 920 to
27 988 480 cores with 2 km, 1 km and 500 m resolutions.

For two-dimensional stencil computations, a grid with
similar sizes of the x axis and y axis can effectively re-
duce the amount of communication and speed up the sten-
cil computation. When the grid sizes of the x axis and the
y axis are the same, the amount of communication touches
the bottom. According to the four-level parallel architecture,
the process-level task assignment does not involve grid par-
titioning in the vertical direction. For the strong scalability
test, with a resolution of 500 m, the size of the horizontal
grid is 82 502× 55 002, and the size of the vertical grid is
128. When using 21 299 200 cores, the process division in
the horizontal direction is 640× 512. At this time, each pro-
cess (i.e. CG) computes 128× 108 grids, and the grid sizes
of the x axis and the y axis of each process are the closest in
all options. Therefore, the best parallel efficiency, 104 %, is
achieved when the number of cores is 21 299 200.

In summary, the strong scalability of the three resolutions
has always maintained high performance with 10 million
cores, and the speedup is still nearly linear at an ultra-large
scale. Using 27 988 480 cores, swNEMO_v4.0 achieves up to
99.29 % parallel efficiency with a high resolution of 500 m.

4.4 Weak scaling

The choice of resolution of the GYRE needs to be followed
with strict discipline. Therefore, to ensure that the workload
in a single process is fixed, the number of grids of the x axis
and y axis is proportional to the number of cores, and the au-
tomatic scheme of domain decomposition in swNEMO_v4.0
is replaced with a manual scheme at the same time, which is
shown in Fig. 13 and Table 3.

As we build roofline models on NEMO, we find that when
the horizontal grid surpasses 49×65 and the vertical grid sur-
passes 128, the computation efficiency of the floating point
for a single core group performs the best. Therefore, our fol-
lowing experiments on weak scaling are conducted on a sin-
gle core group with 49× 65× 128 grid size each. Based on
the above-mentioned principle, we choose resolutions of 9,
7, 4.5, 3.5, 2.5, 2.0, 1.2 and 1.0 km. According to the expan-
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Figure 13. The weak-scalability results, scaling from 299 520 to
27 988 480 cores with eight different resolutions.

Figure 14. The peak performance results for simulations with 1 km
resolution. Numbers along the graph line are the peak performances
for simulations with different cores. The peak performance with
27 988 480 cores reaches 1.973 PFLOPS.

sion of the workload of each process (i.e., CG), the number of
cores increases from 299 520 to 27 988 480. With a resolution
of 1.0 km, the total number of grids is 43 502× 29 002× 128.
As shown in Fig. 13, the performance is stable with differ-
ent resolutions, and the computation efficiency of the float-
ing point is still 1.99 ‰ at a resolution of 1 km, which is very
close to the baseline. The nearly linear trend indicates that
the model has good weak scalability.

4.5 Peak performance

Figure 14 shows the peak performance of swNEMO_v4.0
with a resolution of 1 km. When the total grid size is
43 502× 29 002× 128, the number of cores increases from
2 129 920 to 27 988 480. It is obvious that the optimal per-
formance is 1.97 PFLOPS using 27 988 480 cores, and the
performance of the optimized version is 10.25 times faster
than that of the original version.

In swNEMO_v4.0, we fully parallelize 70.58 % of the
hotspots according to the performance profiling tools. The
remaining 29.42 % of hotspots are mainly serial, which can

Figure 15. The computing throughput results using 27 988 480
cores. The SYPD (simulated years per day) increases from 0.19 to
1.43 with the 1 km resolution. The optimized performance is 7.53
times better than that of the original version.

hardly be parallelized. Therefore, mixed-precision optimiza-
tion is used to optimize the serial part. According to Am-
dahl’s law,

Speedup =
1

(1−P)+P/N
, (7)

where the theoretical speedup is approximately by a factor of
6.8.

Combining the breakthroughs in an adaptive four-level
parallelization design, CPE cluster optimization and mixed-
precision optimization, the performance of our optimized
version surpasses the theoretical values after further refac-
toring the code to reduce conditional judgment, instruction
branching and the complexity of the code.

Additionally, as shown in Fig. 15, 1.43 SYPD (simulated
years per day) with a resolution of 1 km using 27 988 480
cores is achieved, which is 7.53 times better compared with
0.19 SYPD of the original version, exceeding the ideal-
performance upper bound.

5 Conclusions and discussions

This paper presents a successful solution for global ocean
simulations with ultrahigh resolution using NEMO on a new-
generation Sunway supercomputer. Three breakthroughs, in-
cluding an adaptive four-level parallelization design, many-
core optimization and mixed-precision optimization, are de-
signed and tested. The simulations achieve 71.48 %, 83.40 %
and 99.29 % parallel efficiency with resolutions of 2 km,
1 km and 500 m using 27 988 480 cores, respectively.

Current resolutions of ocean models in ocean forecasting
systems and climate models cannot resolve the mesoscale
and sub-mesoscale eddies in the real ocean well, not to men-
tion the other smaller-scale processes such as internal waves.
However, these sub-mesoscale and small-scale processes are
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not only important to navigation safety in themselves, but
also have notable influences on the large-scale simulations
of the global/regional ocean and circulations through inter-
acting with different scales. Improving resolution is one of
the best ways to resolve these processes and improve simula-
tions, forecasts and predictions. The highest resolution used
in this study is 500 m, and this resolution can resolve the sub-
mesoscale eddies well and partly resolve the internal waves,
which are very important for the safety of offshore struc-
tures. Therefore, the breakthroughs made in this study make
the direct simulations of these important sub-mesoscale and
small-scale processes at the global scale possible. This will
substantially improve the forecast and prediction accuracy of
the ocean and climate while strongly supporting the key out-
come of a predicted ocean of the UN Ocean Decade.

This study is conducted in the new generation of Sunway
supercomputers. The breakthroughs in this paper, such as the
four-level parallelization design and the method for efficient
data transportation inside CPEs, provide novel ideas for other
applications in this series of Sunway supercomputers. More-
over, the proposed new optimization approaches, such as a
four-level parallel framework with longitude–latitude–depth
decomposition, a multi-level mixed-precision optimization
method that uses half, single and double precision, are the
methods of general applicability. We test these optimization
approaches in the NEMO, but these can be incorporated into
other global/regional ocean general circulation models (e.g.,
MOM, POP and ROMS). Moreover, the optimizations on the
stencil computation can be applied to any model with stencil
computations.

High-resolution ocean simulations are crucial for naviga-
tion safety, weather forecasting and global climate change
prediction. We believe that these approaches are also suitable
for other OGCMs and supercomputers. In this paper, three in-
novative algorithms proposed based on the new generation of
Sunway supercomputers provide an important reference for
ultrahigh-resolution ocean circulation forecasting. However,
only benchmarks are tested in the work, and real applica-
tion data have not been used. In the future, we will build an
ultrahigh-resolution ocean circulation forecasting model un-
der real scenarios and conduct in-depth research to provide
efficient solutions to predict ocean circulation and climate
change accurately.

From the view of software and hardware co-design, the
following should be focused on in the future. The first is
the decomposition and load balance. For the model design,
we should find the proper decomposition scheme to uti-
lize the computer architecture fully. Besides the time di-
mension, solving an ocean general circulation model is a
3-dimensional problem, with longitude, latitude and depth.
Usually, only the longitude–latitude domain is decomposed.
In our work, driven by the RMA technology, we achieved
the decomposition of the longitude–latitude–depth domain,
which enables better large-scale scalability. Meanwhile,
keeping a good load balance is also important for scalabil-

ity. For the computer design, the RMA technology is a good
example, which enables the decomposition of the longitude–
latitude–depth domain. In other words, the high communica-
tion bandwidth between different cores or nodes will help
achieve large-scale scalability. The second is communica-
tions. With the increasing processes used for model simula-
tion, the ratio of communication time to computational time
will increase. For the model design, the first thing is to avoid
the global operator, such as ALLREDUCE and BCAST,
which will take more time with an increase in processes. Oth-
erwise, it will be the crucial bottleneck. Meanwhile, we also
should pack the exchanged data between different processes
as much as possible. For the computer design, the low latency
will help in saving the communication time. The third is re-
duced precision. Our work’s results demonstrate that there
is a great potential to save computational time by incorpo-
rating the mixed double, single and half precision into the
model. For the model design, we should understand the mini-
mum computational precision requirements essential for suc-
cessful ocean simulations and then revise or develop arith-
metic. For the computer design, the support for half precision
should be considered in the future.

Overall, the above are only several examples for further
improving the performance of ocean modeling from perspec-
tives of model development and computer design. Further-
more, other aspects such as I/O efficiency and the trade-off
between precision and energy consumption should also be
considered. Moreover, it should be noted that these sugges-
tions are from different aspects of the model and computer
development and need to be considered based on the soft-
ware and hardware co-design ideology.

Appendix A: Supplementary code in Fortran format

The following five chunks of code correspond to the five ker-
nels stated in our previous experimental section. The codes
listed below are exactly from NEMO for experimental vali-
dation.
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Algorithm A1

DO jk = 2,jpkm1
DO jj = 2,jpjm1

DO ji = f s_2,f s_jpim1
zmsku= wmask(ji,jj,jk)/MAX(umask(ji,jj,jk− 1)+ umask(ji− 1,jj,jk)
&+ umask(ji− 1,jj,jk− 1)+ umask(ji,jj,jk),1.0)
zmskv = wmask(ji,jj,jk)/MAX(vmask(ji,jj,jk− 1)+ vmask(ji,jj − 1,jk)
&+ vmask(ji,jj − 1,jk− 1)+ vmask(ji,jj,jk),1.0)
zahu_w = (pahu(ji,jj,jk− 1)+pahu(ji− 1,jj,jk)
&+pahu(ji− 1,jj,jk− 1)+pahu(ji,jj,jk)) ∗ zmsku
zahv_w = (pahv(ji,jj,jk− 1)+pahv(ji,jj − 1,jk)
&+pahv(ji,jj − 1,jk− 1)+pahv(ji,jj,jk)) ∗ zmskv
ah_wslp2(j i,jj,jk)= zahu_w ∗wslpi(j i,jj,jk) ∗wslpi(j i,jj,jk)
&+ zahv_w ∗wslpj (ji,jj,jk) ∗wslpj (ji,jj,jk)

END DO
END DO

END DO

Algorithm A2

DO jj = 2,jpjm1
DO ji = f s_2,f s_jpim1
pta(ji,jj,1)= e3t_b(ji,jj,1) ∗ptb(ji,jj,1)+p2dt ∗ e3t_n(ji,jj,1) ∗pta(ji,jj,1)

END DO
END DO
DO jk = 2,jpkm1

DO jj = 2,jpjm1
DO ji = f s_2,f s_jpim1
zrhs = e3t_b(ji,jj,jk) ∗ptb(ji,jj,jk,jn)+p2dt ∗ e3t_n(ji,jj,jk) ∗pta(ji,jj,jk)
pta(j i,jj,jk)= zrhs− zwi(j i,jj,jk)/zwt(j i,jj,jk− 1) ∗pta(ji,jj,jk− 1)

END DO
END DO

END DO

Algorithm A3

DO jj = 2,jpjm1
DO ji = f s_2,f s_jpim1
zwt(j i,jj,1)= zwd(ji,jj,1)

END DO
END DO
DO jk = 2,jpkm1

DO jj = 2,jpjm1
DO ji = f s_2,f s_jpim1
zwt(j i,jj,jk)= zwd(ji,jj,jk)− zwi(j i,jj,jk) ∗ zws(ji,jj,jk− 1)/zwt(j i,jj,jk− 1)

END DO
END DO

END DO
DO jk = 1,jpkm1

DO jj = 2,jpjm1
DO ji = f s_2,f s_jpim1
zwi(j i,jj,jk)=−p2dt ∗ zwt(j i,jj,jk)/e3w_n(ji,jj,jk)
zws(ji,jj,jk)=−p2dt ∗ zwt(j i,jj,jk+ 1)/e3w_n(ji,jj,jk+ 1)
zwd(ji,jj,jk)= e3t_a(ji,jj,jk)− zwi(j i,jj,jk)− zws(ji,jj,jk)

END DO
END DO

END DO
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Algorithm A4

DO jk = 1,jpkm1
DO jj = 1,jpjm1

DO ji = 1,f s_jpim1
zdit (j i,jj,jk)= (ptb(j i+ 1,jj,jk)−ptb(ji,jj,jk)) ∗ umask(ji,jj,jk)
zdj t (j i,jj,jk)= (ptb(j i,jj + 1,jk)−ptb(ji,jj,jk)) ∗ vmask(ji,jj,jk)

END DO
END DO

END DO
DO jk = 1,jpkm1
zdk1t (:, :)= (ptb(:, :,jk)−ptb(:, :,jk+ 1)) ∗wmask(:, :,jk+ 1)
IF jk == 1 THEN zdkt (:, :)= zdk1t (:, :)
ELSE

DO jj = 1,jpj
DO ji = 1,jpi
zdkt (j i,jj)= (ptb(j i,jj,jk− 1)−ptb(ji,jj,jk)) ∗wmask(ji,jj,jk)

END DO
END DO

END IF
DO jj = 1,jpjm1

DO ji = 1,f s_jpim1
zabe1= pahu(ji,jj,jk) ∗ e2_e1u(ji,jj) ∗ e3u_n(ji,jj,jk)
zabe2= pahv(ji,jj,jk) ∗ e1_e2v(ji,jj) ∗ e3v_n(ji,jj,jk)
zmsku= 1./MAX(wmask(ji+ 1,jj,jk)+wmask(ji,jj,jk+ 1)
&+wmask(ji+ 1,jj,jk+ 1)+wmask(ji,jj,jk),1.)
zmskv = 1./MAX(wmask(ji,jj + 1,jk)+wmask(ji,jj,jk+ 1)
&+wmask(ji,jj + 1,jk+ 1)+wmask(ji,jj,jk),1.)
zcof 1=−pahu(ji,jj,jk) ∗ e2u(ji,jj) ∗ uslp(ji,jj,jk) ∗ zmsku
zcof 2=−pahv(ji,jj,jk) ∗ e1v(ji,jj) ∗ vslp(ji,jj,jk) ∗ zmskv
zf tu(ji,jj,jk)= (zabe1 ∗ zdit (j i,jj,jk)
&+ zcof 1 ∗ (zdkt (j i+ 1,jj)+ zdk1t (j i,jj)
&+ zdk1t (j i+ 1,jj)+ zdkt (j i,jj))) ∗ umask(ji,jj,jk)
zf tv(j i,jj,jk)= (zabe2 ∗ zdj t (j i,jj,jk)
&+ zcof 2 ∗ (zdkt (j i,jj + 1)+ zdk1t (j i,jj)
&+ zdk1t (j i,jj + 1)+ zdkt (j i,jj))) ∗ vmask(ji,jj,jk)

END DO
END DO
DO jj = 2,jpjm1

DO ji = f s_2,f s_jpim1
pta(ji,jj,jk,jn)= pta(ji,jj,jk,jn)+ zsign ∗ (zf tu(j i,jj,jk)− zf tu(ji− 1,jj,jk)
&+ zf tv(j i,jj,jk)− zf tv(j i,jj − 1,jk))
& ∗ r1_e1e2t (j i,jj)/e3t_n(ji,jj,jk)

END DO
END DO

END DO
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Algorithm A5

DO jk = 2,jpkm1
DO jj = 2,jpjm1

DO ji = f s_2,f s_jpim1
zmsku= wmask(ji,jj,jk)/MAX(umask(ji,jj,jk− 1)+ umask(ji− 1,jj,jk)
&+ umask(ji− 1,jj,jk− 1)+ umask(ji,jj,jk),1.0)
zmskv = wmask(ji,jj,jk)/MAX(vmask(ji,jj,jk− 1)+ vmask(ji,jj − 1,jk)
&+ vmask(ji,jj − 1,jk− 1)+ vmask(ji,jj,jk),1.0)
zahu_w = (pahu(ji,jj,jk− 1)+pahu(ji− 1,jj,jk)
&+pahu(ji− 1,jj,jk− 1)+pahu(ji,jj,jk)) ∗ zmsku
zahv_w = (pahv(ji,jj,jk− 1)+pahv(ji,jj − 1,jk)
&+pahv(ji,jj − 1,jk− 1)+pahv(ji,jj,jk)) ∗ zmskv
zcoef 3=−zahu_w ∗ e2t (j i,jj) ∗ zmsku ∗wslpi(j i,jj,jk)
zcoef 4=−zahv_w ∗ e1t (j i,jj) ∗ zmskv ∗wslpj (ji,jj,jk)
ztfw(ji,jj,jk)= zcoef 3 ∗ (zdit (j i,jj,jk− 1)+ zdit (j i− 1,jj,jk)
&+ zdit (j i− 1,jj,jk− 1)+ zdit (j i,jj,jk))
&+ zcoef 4 ∗ (zdj t (j i,jj,jk− 1)+ zdj t (j i,jj − 1,jk)
&+ zdj t (j i,jj − 1,jk− 1)+ zdj t (j i,jj,jk))
ztfw(ji,jj,jk)= ztfw(ji,jj,jk)+ e1e2t (j i,jj)/e3w_n(ji,jj,jk) ∗wmask(ji,jj,jk)
& ∗ (ah_wslp2(j i,jj,jk)− akz(j i,jj,jk))
& ∗ (ptb(j i,jj,jk− 1)−ptb(ji,jj,jk)

END DO
END DO

END DO
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