Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5567-2022
https://doi.org/10.5194/gmd-15-5567-2022
Development and technical paper
 | 
20 Jul 2022
Development and technical paper |  | 20 Jul 2022

Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation

Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn

Related authors

JULES-BE: representation of bioenergy crops and harvesting in the Joint UK Land Environment Simulator vn5.1
Emma W. Littleton, Anna B. Harper, Naomi E. Vaughan, Rebecca J. Oliver, Maria Carolina Duran-Rojas, and Timothy M. Lenton
Geosci. Model Dev., 13, 1123–1136, https://doi.org/10.5194/gmd-13-1123-2020,https://doi.org/10.5194/gmd-13-1123-2020, 2020
Short summary
Technical note: A simple theoretical model framework to describe plant stomatal “sluggishness” in response to elevated ozone concentrations
Chris Huntingford, Rebecca J. Oliver, Lina M. Mercado, and Stephen Sitch
Biogeosciences, 15, 5415–5422, https://doi.org/10.5194/bg-15-5415-2018,https://doi.org/10.5194/bg-15-5415-2018, 2018
Short summary
Large but decreasing effect of ozone on the European carbon sink
Rebecca J. Oliver, Lina M. Mercado, Stephen Sitch, David Simpson, Belinda E. Medlyn, Yan-Shih Lin, and Gerd A. Folberth
Biogeosciences, 15, 4245–4269, https://doi.org/10.5194/bg-15-4245-2018,https://doi.org/10.5194/bg-15-4245-2018, 2018
Short summary
A study of the role of wetlands in defining spatial patterns of near-surface (top 1 m) soil carbon in the Northern Latitudes
E. M. Blyth, R. Oliver, and N. Gedney
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-17967-2014,https://doi.org/10.5194/bgd-11-17967-2014, 2014
Revised manuscript has not been submitted
Short summary

Related subject area

Biogeosciences
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024,https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024,https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Implementing a dynamic representation of fire and harvest including subgrid-scale heterogeneity in the tile-based land surface model CLASSIC v1.45
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024,https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Inferring the tree regeneration niche from inventory data using a dynamic forest model
Yannek Käber, Florian Hartig, and Harald Bugmann
Geosci. Model Dev., 17, 2727–2753, https://doi.org/10.5194/gmd-17-2727-2024,https://doi.org/10.5194/gmd-17-2727-2024, 2024
Short summary
Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024,https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary

Cited articles

Atkin, O. K., Evans, J. R., and Siebke, K.: Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment, Funct. Plant Biol., 25, 437–443, https://doi.org/10.1071/PP97159, 1998. 
Atkin, O. K., Evans, J. R., Ball, M. C., Lambers, H., and Pons, T. L.: Leaf Respiration of Snow Gum in the Light and Dark. Interactions between Temperature and Irradiance1, Plant Physiol., 122, 915–924, https://doi.org/10.1104/pp.122.3.915, 2000. 
Atkin, O. K., Scheurwater, I., and Pons, T. L.: High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric, Glob. Change Biol., 12, 500–515, https://doi.org/10.1111/j.1365-2486.2006.01114.x, 2006. 
Ball, M. C., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., Martinus Nijhoff Publishers, Dordrecht, the Netherlands, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987. 
Benomar, L., Lamhamedi, M. S., Pepin, S., Rainville, A., Lambert, M.-C., Margolis, H. A., Bousquet, J., and Beaulieu, J.: Thermal acclimation of photosynthesis and respiration of southern and northern white spruce seed sources tested along a regional climatic gradient indicates limited potential to cope with temperature warming, Ann. Bot.-London, 121, 443–457, https://doi.org/10.1093/aob/mcx174, 2017. 
Download
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.