Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5271-2022
https://doi.org/10.5194/gmd-15-5271-2022
Methods for assessment of models
 | 
08 Jul 2022
Methods for assessment of models |  | 08 Jul 2022

A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories

Philippe Thunis, Alain Clappier, Enrico Pisoni, Bertrand Bessagnet, Jeroen Kuenen, Marc Guevara, and Susana Lopez-Aparicio

Related authors

A new set of indicators for model evaluation complementing to FAIRMODE’s MQO
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3690,https://doi.org/10.5194/egusphere-2024-3690, 2025
Short summary
Emission ensemble approach to improve the development of multi-scale emission inventories
Philippe Thunis, Jeroen Kuenen, Enrico Pisoni, Bertrand Bessagnet, Manjola Banja, Lech Gawuc, Karol Szymankiewicz, Diego Guizardi, Monica Crippa, Susana Lopez-Aparicio, Marc Guevara, Alexander De Meij, Sabine Schindlbacher, and Alain Clappier
Geosci. Model Dev., 17, 3631–3643, https://doi.org/10.5194/gmd-17-3631-2024,https://doi.org/10.5194/gmd-17-3631-2024, 2024
Short summary
Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, Enrico Pisoni, and Bertrand Bessagnet
Geosci. Model Dev., 17, 587–606, https://doi.org/10.5194/gmd-17-587-2024,https://doi.org/10.5194/gmd-17-587-2024, 2024
Short summary
A standardized methodology for the validation of air quality forecast applications (F-MQO): lessons learnt from its application across Europe
Lina Vitali, Kees Cuvelier, Antonio Piersanti, Alexandra Monteiro, Mario Adani, Roberta Amorati, Agnieszka Bartocha, Alessandro D'Ausilio, Paweł Durka, Carla Gama, Giulia Giovannini, Stijn Janssen, Tomasz Przybyła, Michele Stortini, Stijn Vranckx, and Philippe Thunis
Geosci. Model Dev., 16, 6029–6047, https://doi.org/10.5194/gmd-16-6029-2023,https://doi.org/10.5194/gmd-16-6029-2023, 2023
Short summary
Why is the city's responsibility for its air pollution often underestimated? A focus on PM2.5
Philippe Thunis, Alain Clappier, Alexander de Meij, Enrico Pisoni, Bertrand Bessagnet, and Leonor Tarrason
Atmos. Chem. Phys., 21, 18195–18212, https://doi.org/10.5194/acp-21-18195-2021,https://doi.org/10.5194/acp-21-18195-2021, 2021
Short summary

Related subject area

Atmospheric sciences
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025,https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025,https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Quantifying the analysis uncertainty for nowcasting application
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025,https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary

Cited articles

Britz, W. and Witzke, P.: CAPRI Model Documentation 2014, https://www.capri-model.org/dokuwiki_help/ (last access: 1 July 2022), 2015. 
Clappier, A. and Thunis, P.: A probabilistic approach to screen and improve emission inventories, Atmos. Environ., 242, 117831, https://doi.org/10.1016/j.atmosenv.2020.117831, 2020. 
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018. 
de Meij, A., Gzella, A., Cuvelier, C., Thunis, P., Bessagnet, B., Vinuesa, J. F., Menut, L., and Kelder, H. M.: The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations, Atmos. Chem. Phys., 9, 6611–6632, https://doi.org/10.5194/acp-9-6611-2009, 2009. 
Download
Short summary
In this work, we propose a screening method to improve the quality of emission inventories, which are responsible for large uncertainties in air-quality modeling. The first step of screening consists of keeping only emission contributions that are relevant enough. In a second step, the method identifies large differences that provide evidence of methodological divergence or errors. We used the approach to compare two versions of the CAMS-REG European-scale inventory over 150 European cities.
Share