Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of hurricane disturbances on a tropical forest: implementing a palm plant functional type and hurricane disturbance module in ED2-HuDi V1.0
School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA, United States
Rafael L. Bras
CORRESPONDING AUTHOR
School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA, United States
Marcos Longo
Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
CA, United States
Climate and Ecosystem Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA, United States
Tamara Heartsill Scalley
USDA Forest Service, International Institute of Tropical Forestry, Río
Piedras, PR, United States
Related authors
No articles found.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci., 26, 1407–1423, https://doi.org/10.5194/hess-26-1407-2022, https://doi.org/10.5194/hess-26-1407-2022, 2022
Short summary
Short summary
The water balance on river basin scales depends on a number of soil physical processes. Gaining information on these quantities using observations is a key step toward improving the skill of land surface hydrology models. In this study, we use data from the Gravity Recovery and Climate Experiment (NASA-GRACE) to inform and constrain these hydrologic processes. We show that our model is able to simulate the land hydrologic cycle for a watershed in the Amazon from January 2003 to December 2012.
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Cited articles
Albani, M, Medvigy, D., Hurtt, G. C., and Moorcroft, P. R.: The
contributions of land-use change, CO2 fertilization, and climate
variability to the Eastern US carbon sink, Global Change Biol., 12,
2370–2390, 2006.
Baraloto, C., Timothy Paine, C. E., Poorter, L., Beauchene, J., Bonal, D., Domenach, A. M., Hérault, B., Patiño, S., Roggy, J. C., and Chave, J.: Decoupled leaf and stem economics in rain forest trees,
Ecol. Lett., 13, 1338–1347, 2010.
Beven, K. and Binley, A.: The future of distribution models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
1992.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty
estimation in mechanistic modelling of complex environmental systems using
the GLUE methodology, J. Hydrol., 249, 11–29, 2001.
Binley, A. M. and Beven, K. J.: Physically-based modelling of catchment
hydrology: a likelihood approach to reducing predictive uncertainty, in:
Computer Modelling in the Environmental Sciences, edited by: Farmer, D. G.
and Rycroft, M. J., Clarendon Press, Oxford, 75–88, 1991.
Boose, E. R., Foster, D. R., and Fluet, M.: Hurricane Impacts of tropical
and temperate forest landscapes, Ecol. Monogr., 64, 369–400, 1994.
Boose, E. R., Serrano, M. I., and Foster, D. R.: Landscape and regional
impacts of hurricanes in Puerto Rico, Ecol. Monogr., 74, 335–352,
2004.
Brokaw, N. V. L.: Cecropia schreberiana in the Luquillo Mountains of Puerto Rico, Bot.
Rev., 64, 91–120, 1998.
Chambers, J. Q., Fisher, J. I., Zeng, H., Chapman, E. L., Baker, D. B., and
Hurtt, G. C.: Hurricane Katrina's carbon footprint on U.S. Gulf Coast
forests, Science, 318, 1107, https://doi.org/10.1126/science.1148913, 2007.
Chen, J. and Black, T.: Foliage area and architecture of plant canopies from
sunfleck size distributions, Agric. For. Meteorol., 60,
249–266, 1992.
Cole, L. E. S., Bhagwat, S. A., and Willis, K. J.: Recovery and resilience
of tropical forests after disturbance, Nat. Commun., 5, 3906, https://doi.org/10.1038/ncomms4906, 2014.
Computational and Information Systems Laboratory: Cheyenne: HPE/SGI ICE XA System (University Community Computing). Boulder, CO. National Center for Atmospheric Research. https://doi.org/10.5065/D6RX99HX, 2019.
Curran, T. J., Gersbach, L. N., Edwards, W., and Krockenberger, A. K.: Wood
density predicts plant damage and vegetative recovery rates caused by
cyclone disturbance in tropical rainforest tree species of North Queensland,
Australia, Austral Ecol., 33, 442–450, 2008.
di Porcia e Brugnera, M., Meunier, F., Longo, M., Krishna Moorthy, S. M., De Deurwaerder, H., Schnitzer, S. A., Bonal, D., Faybishenko, B., and Verbeeck, H.: Modeling the impact of liana infestation on
the demography and carbon cycle of tropical forests, Global Change Biol.,
25, 3767–3780, 2019.
Everham III, M. E. and Brokaw, N. V. L.: Forest damage and recovery from
catastrophic wind, Bot. Rev., 62, 113–185, 1996.
Feng, X., Uriarte, M., González, G., Reed, S., Thompson, J., Zimmerman, J. K., and Murphy, L.: Improving predictions of tropical forest response to
climate change through integration of field studies and ecosystem modeling,
Global Change Biol., 24, e213–e232, 2018.
Fisher, R. A. and Koven, C. D.: Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems,
J. Adv. Model. Earth Sy., 12, e2018MS001453, https://doi.org/10.1029/2018MS001453, 2020.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System Models: A
review of progress and priorities, Global Change Biol., 24, 35–54, 2018.
Francis, J. K. and Gillespie, A. J. R.: Relating gust speed to tree damage
in hurricane Hugo, 1989, J. Arboriculture, 19, 368–373, 1993.
Freer, J., Beven, K., and Ambriose, B.: Bayesian estimation of uncertainty
in runoff prediction and the value of data: An application of the GLUE
approach, Water Resour. Res., 32, 2161–2173, 1996.
Gill, R. A. and Jackson, R. B.: Global patterns of root turnover for
terrestrial ecosystems, New Phytologist, 147, 13–31, 2000.
González, G.: Luquillo Mountains meteorological and ceilometer data, Fort Collins, CO, Forest Service Research Data Archive [data set], https://doi.org/10.2737/RDS-2017-0023, 2017.
Gregory, A. A. and Sabat, A. M.: The effect of hurricane disturbance on the
fecundity of Sierra palms (Prestoea montana), Bios, 67, 135–139, 1996.
Hall, J., Muscarella, R., Quebbeman, A., Arellano, G., Thompson, J.,
Zimmerman, J. K., and Uriarte, M.: Hurricane-induced rainfall is a stronger
predictor of tropical forest damage in Puerto Rico than maximum wind speeds,
Sci. Rep.-UK, 10, 4318, https://doi.org/10.1038/s41598-020-61164-2, 2020.
He, L., Chen, J. M., Pisek, J., Schaaf, C. B., and Strahler, A. H.: Global
clumping index map derived from the MODIS BRDF product, Remote Sens.
Environ., 119, 118–130, 2012.
Heartsill Scalley, T.: Insights on forest structure and composition from
long-term research in the Luquillo mountains, Forests, 8, 204, https://doi.org/10.3390/f8060204, 2017.
Heartsill Scalley, T., Scatena, F. N., Lugo, A. E., Moya, S., and Estrada,
C. R.: Changes in structure, composition, and nutrients during 15 years of
hurricane-induced succession in a subtropical wet forest in Puerto Rico,
Biotropica, 42, 455–463, 2010.
IPCC: Climate Change 2021: The physical science basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi,O., Yu, R., and Zhou, B. , Cambridge
University Press, in press, https://doi.org/10.1017/9781009157896, 2021.
Jorgensen, S. E.: Overview of the model types available for development of
ecological models, Ecol. Model., 215, 3–9, 2008.
Kammesheidt, L.: Some autecological characteristics of early to late
successional tree species in Venezuela, Acta Oecol., 21, 37–48,
https://doi.org/10.1016/S1146-609X(00)00108-9, 2000.
Keenan, T. F. and Niinemets, U.: Global leaf trait estimates biased due to
plasticity in the shade, Nature Plants, 3, 16201, https://doi.org/10.1038/nplants.2016.201, 2017.
King, D. A., Davies, S. J., Tan, S., and Noor, N. S. M.: The role of wood
density and stem support costs in the growth and mortality of tropical
trees, Journal of Ecology, 94, 670–680, 2006.
LeBauer, D. S., Wang, D., Richter, K. T., Davidson, C. C., and Dietze, M.
C.: Facilitating feedbacks between field measurements and ecosystem models,
Ecol. Monogr., 83, 133–154, 2013.
Leitold, V., Morton, D. C., Martinuzzi, S., Paynter, I., Uriarte, M., Keller, M., Ferraz, A., Cook, B. D., Corp, L. A., and González, G.: Tracking the rates and mechanisms of canopy damage and
recovery following hurricane Maria using multitemporal Lidar data,
Ecosystems, https://doi.org/10.1007/s10021-021-00688-8, 2021.
Lewis, R. J. and Bannar-Martin, K. H.: The impact of cyclone Fanele on a
tropical dry forest in Madagascar, Biotropica, 44, 135–140, 2011.
Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B., Baker, T. R., Brand, W. A., Hilke, I., Gielmann, H., Raessler, M., Luizão, F. J., Martinelli, L. A., and Mercado, L. M.: Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees, Biogeosciences, 7, 1833–1859, https://doi.org/10.5194/bg-7-1833-2010, 2010.
Longo, M., Knox, R. G., Levine, N. M., Swann, A. L. S., Medvigy, D. M., Dietze, M. C., Kim, Y., Zhang, K., Bonal, D., Burban, B., Camargo, P. B., Hayek, M. N., Saleska, S. R., da Silva, R., Bras, R. L., Wofsy, S. C., and Moorcroft, P. R.: The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America, Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019, 2019a.
Longo, M., Knox, R. G., Medvigy, D. M., Levine, N. M., Dietze, M. C., Kim, Y., Swann, A. L. S., Zhang, K., Rollinson, C. R., Bras, R. L., Wofsy, S. C., and Moorcroft, P. R.: The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description, Geosci. Model Dev., 12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, 2019b.
Lugo, A. E. and Rivera Batlle, C. T.: Leaf production, growth rate, and age
of the palm Prestoea montana in the Luquillo Experimental Forest, Puerto
Rico, J. Trop. Ecol., 3, 151–161, 1987.
Lugo, A. E., Francis, J. K., and Frangi, J. L.: Prestoea montana (R. Graham)
Nichols. Sierra palm. Palmaceae. Palm family, Tech. Rep. SO-ITF-SM-82, US
Department of Agriculture, Forest Service, International Institute of
Tropical Forestry, Rio Piedras, Puerto Rico, https://www.fs.usda.gov/treesearch/pubs/30213 (last access: 27 June 2022), 1998.
Ma, R.-Y., Zhang, J.-L., Cavaleri, M. A., Sterck, F., Strijk, J. S., and
Cao, K.-F.: Convergent evolution towards high net carbon gain efficiency
contributes to the shade tolerance of palms (Arecaceae), PLoS ONE, 10,
e0140384, https://doi.org/10.1371/journal.pone.0140384, 2015.
Massoud, E. C., Xu, C., Fisher, R. A., Knox, R. G., Walker, A. P., Serbin, S. P., Christoffersen, B. O., Holm, J. A., Kueppers, L. M., Ricciuto, D. M., Wei, L., Johnson, D. J., Chambers, J. Q., Koven, C. D., McDowell, N. G., and Vrugt, J. A.: Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES), Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, 2019.
Medlyn, B. E., Robinson, A. P., Clement, R., and McMurtrie, R. E.: On the
validation of models of forest CO2 exchange using eddy covariance data: some
perils and pitfalls, Tree Physiol., 25, 839–857, 2005.
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft,
P. R.: Mechanistic scaling of ecosystem function and dynamics in space and
time: Ecosystem Demography model version 2, J. Geophys. Res.,
114, G01002, https://doi.org/10.1029/2008JG000812, 2009.
Medvigy, D., Clark, K. L., Skowronski, N. S., and Schafer, K. V. R.:
Simulated impacts of insect defoliation on forest carbon dynamics,
Environ. Res. Lett., 7, 045703, https://doi.org/10.1088/1748-9326/7/4/045703, 2012.
Meunier, F., Verbeeck, H., Cowdery, B., Schnitzer, S. A., Smith-Martin, C. M., Powers, J. S., Xu, X., Slot, M., De Deurwaerder, H. P. T., Detto, M., Bonal, D., Longo, M., Santiago, L. S., and Dietze, M.: Unraveling the relative role of light and water
competition between lianas and trees in tropical forests: A vegetation model
analysis, J. Ecol., 109, 519–540, 2021.
Meunier, F., Visser, M. D., Shiklomanov, A., Dietze, M. C., Guzmán Q., J. A., Sanchez-Azofeifa, G. A., De Deurwaerder, H. P. T., Krishna Moorthy, S. M., Schnitzer, S. A., Marvin, D. C., Longo, M., Liu, C., Broadbent, E. N., Almeyda Zambrano, A. M., Muller-Landau, H. C., Detto, M., and Verbeeck, H.: Liana optical traits increase tropical forest albedo and
reduce ecosystem productivity, Global Change Biol., 28, 227–244, 2022.
Miller, A. D., Dietze, M. C., DeLucia, E. H., and Anderson-Teixeira, K. J.:
Alteration of forest succession and carbon cycling under elevated CO2,
Global Change Biol., 22, 351–363, 2016.
Mirzaei, M., Huang, Y. F., El-Shafie, A., and Shatirah, A.: Application of
the generalized likelihood uncertainty estimation (GLUE) approach for
assessing uncertainty in hydrological models: A review, Stoch.
Env. Res. Risk A., 29, 1265–1273, 2015.
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling
vegetation dynamics: The ecosystem demography model (ED), Ecol.
Monogr., 71, 557–586, 2001.
Muscarella, R., Uriarte, M., Forero-Montaña, J., Comita, L. S., Swenson, N. G., Thompson, J., Nytch, C. J., Jonckheere, I., and Zimmerman, J. K.: Life-history trade-offs during the seed-to-seedling
transition in a subtropical wet forest community, J. Ecol., 101,
171–182, 2013.
Muscarella, R., Emilio, T., Phillips, O. L., et al.: The global abundance of tree palms, Global Ecol. Biogeogr., 29, 1495–1514, 2020.
Parker, G., Martínez-Yrízar, A., Álvarez-Yépiz, J. C., Maass, M., and Araiza, S.: Effects of hurricane disturbance on a tropical dry forest
canopy in western Mexico, Forest Ecol. Manag., 426, 39–52, 2018.
Paz, H., Vega-Ramos, F., and Arreola-Villa, F.: Understanding hurricane
resistance and resilience in tropical dry forest trees: A functional traits
approach, Forest Ecol. Manag., 426, 115–122, 2018.
Royo, A. A., Heartsill Scalley T., Moya, S., and Scatena, F. N.:
Non-arborescent vegetation trajectories following repeated hurricane
disturbance: ephemeral versus enduring responses, Ecosphere, 27, 77, https://doi.org/10.1890/ES11-00118.1, 2011.
Rutledge, B. T., Cannon, J. B., McIntyre, R. K., Holland, A. M., and Jack,
S. B.: Tree, stand, and landscape factors contributing to hurricane damage
in a coastal plain forest: post-hurricane assessment in a longleaf pine
landscape, Forest Ecol. Manag., 481, 118724, https://doi.org/10.1016/j.foreco.2020.118724, 2021.
Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., Joshi, J., and Thonicke, K.: Resilience of Amazon forests emerges from plant
trait diversity, Nat. Clim. Change, 6, 1032–1036, 2016.
Scatena, F. N., Silver, W., Siccama, T., Johnson, A., and Sanchez, M. J.:
Biomass and nutrient content of the Bisley Experimental Watersheds, Luquillo
Experimental Forest, Puerto Rico, before and after hurricane Hugo, 1989,
Biotropica, 25, 15–27, 1993.
Schowalter, T. D. and Ganio, L. M.: Invertebrate communities in a tropical
rain forest canopy in Puerto Rico after hurricane Hugo, Ecol. Entomol., 24,
191–201, 1999.
Shiklomanov, A. N., Dietze, M. C., Fer, I., Viskari, T., and Serbin, S. P.: Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance, Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021, 2021.
Stein, M.: Large sample properties of simulations using Latin Hypercube
sampling, Technometrics, 29, 143–151, 1987.
Swenson, N. G. and Umana, M. N.: Data from: Interspecific functional
convergence and divergence and intraspecific negative density dependence
underlie the seed-to-seedling transition in tropical trees, Dryad [data set],
https://doi.org/10.5061/dryad.j2r53. 2015.
Trugman, A. T., Fenton, N. J., Bergeron, Y., Xu, X., Welp, L. R., and
Medvigy, D.: Climate, soil organic layer, and nitrogen jointly drive forest
development after fire in the North American boreal zone, J.
Adv. Model. Earth Sy., 8, 1180–1209, 2016.
Uriarte, M., Canham, C. D., Thompson, J., Zimmerman, J. K., and Brokaw, N.
Seedling recruitment in a hurricane-driven tropical forest: light
limitation, density-dependence and the spatial distribution of parent trees,
J. Ecol., 93, 291–304, 2005.
Uriarte, M., Canham, C. D., Thompson, J., Zimmerman, J. K., Murphy, L., Sabat, A. M., Fetcher, N., and Haines, B. L.: Natural disturbance and human land use as determinants
of tropical forest dynamics: Results from a forest simulator, Ecol.
Monogr., 79, 423–443, 2009.
Uriarte, M., Clark, J. S., Zimmerman, J. K., Comita, L. S., Forero-Montana,
J., and Thompson, J.: Multidimensional trade-offs in species responses to
disturbance: implications for diversity in a subtropical forest, Ecology,
93, 191–205, 2012.
Uriarte, M., Thompson, J., and Zimmerman, J. K.: Hurricane Maria tripled
stem breaks and doubled tree mortality relative to other major storms,
Nat. Commun., 10, 1362, https://doi.org/10.1038/s41467-019-09319-2, 2019.
Walker, L. R.: Tree damage and recovery from hurricane Hugo in Luquillo
Experimental Forest, Puerto Rico. Part A. special issue: ecosystem, plant,
and animal responses to hurricanes in the Caribbean, Biotropica, 23,
379–385, 1991.
Walker, L. R., Voltzow, J., Ackerman, J. D., Fernandez, D. S., and Fetcher,
N.: Immediate impact of hurricane Hugo on a Puerto Rico rain forest,
Ecology, 73, 691–694, 1992.
Wang, D., LeBauer, D. and Dietze, M.: Predicting yields of short-rotation
hybrid poplar (Populus spp.) for the United States through model-data
synthesis, Ecol. Appl., 23, 944–958, 2013.
Wang, G. and Eltahir, E. A. B.: Biosphere-atmosphere interactions over West
Africa. II: Multiple climate equilibria, Q. J. Roy.
Meteor. Soc., 126, 1261–1280, 2000.
Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao X., and Song, J.:
Long-time-series global land surface satellite leaf area index product
derived from MODIS and AVHRR surface reflectance, IEEE T.
Geosci. Remote, 54, 5301–5318, 2016.
Xiao, Z., Liang, S., and Jiang, B.: Evaluation of four long time-series
global leaf area index products, Agric. For. Meteorol., 246,
218–230, 2017.
Xu, X. and Trugman, A. T.: trait-based modeling of terrestrial ecosystems:
Advances and challenges under global change, Curr. Clim. Change Rep.,
7, 1–13, 2021.
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity
in plant hydraulic traits explains seasonal and inter-annual variations of
vegetation dynamics in seasonally dry tropical forests, New Phytologist,
212, 80–95, 2016.
Zhang, J., Bras, R. L., and Heartsill Scalley, T.: Tree census at Bisley
Experimental Watersheds three months after hurricane Maria, Fort Collins,
CO, Forest Service Research Data Archive [data set],
https://doi.org/10.2737/RDS-2020-0012, 2020.
Zhang, J., Bras, R. L., Longo, M., and Heartsill Scalley, T.: ED2 model with hurricane disturbance and a new tropical palm PFT (ED2-HuDi v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5565063, 2021.
Zhang, J., Bras, R. L., and Heartsill Scalley, T.: Tree census at Bisley
Experimental Watersheds before and after Hurricane Hugo, Fort Collins, CO,
Forest Service Research Data Archive [data set], https://doi.org/10.2737/RDS-2022-0025,
2022a.
Zhang, J., Heartsill Scalley, T., and Bras, R. L.: Forest structure and
composition are critical to hurricane mortality, Forests, 13, 202, https://doi.org/10.3390/f13020202, 2022b.
Zhang, K., de Almeida Castanho, A. D., Galbraith, D. R., Moghim, S., Levine, N. M., Bras, R. L., Coe, M. T., Costa, M. H., Malhi, Y., Longo, M., Knox, R. G., McKnight, S., Wang, J., and Moorcroft, P. R.: The fate of Amazonian ecosystems over the coming century
arising from changes in climate, atmospheric CO2 and land-use, Global Change
Biol., 21, 2569–2587, 2015.
Zimmerman, J, K., Everham, E. M., Waide, R. B., Lodge, D. J., Taylor, C. M., and Brokaw, N. V. L.: Responses of tree species to hurricane winds in
subtropical wet forest in Puerto Rico: Implications for tropical tree life
histories, J. Ecol., 82, 911–922, 1994.
Short summary
We implemented hurricane disturbance in a vegetation dynamics model and calibrated the model with observations of a tropical forest. We used the model to study forest recovery from hurricane disturbance and found that a single hurricane disturbance enhances AGB and BA in the long term compared with a no-hurricane situation. The model developed and results presented in this study can be utilized to understand the impact of hurricane disturbances on forest recovery under the changing climate.
We implemented hurricane disturbance in a vegetation dynamics model and calibrated the model...