
Supplement of Geosci. Model Dev., 15, 5107–5126, 2022
https://doi.org/10.5194/gmd-15-5107-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Supplement of

The impact of hurricane disturbances on a tropical forest: implementing
a palm plant functional type and hurricane disturbance module in ED2-
HuDi V1.0
Jiaying Zhang et al.

Correspondence to: Jiaying Zhang (jiaying.zhang@gatech.edu) and Rafael L. Bras (rlbras@gatech.edu)

The copyright of individual parts of the supplement might differ from the article licence.



1 

 

S1: Outliers of the Height-DBH pairs 1 

To estimate the height-DBH relationship, we chose the height-DBH pairs of stems in the pre-Hugo 1989 census and 2 

height-DBH pairs of stems from other censuses with no damage reported to height, based on the census data at Bisley 3 

Experimental Watersheds between 1989 and 2014 (Zhang et al. 2022a). Previous studies have shown that using raw 4 

data can result in biases in allometric parameters due to the preponderance of small diameter stems and have proposed 5 

the use of binned data to give equal weights to each diameter bin (Brown et al. 1989, Duncanson et al. 2015, Jucker 6 

et al. 2017). However, we found that the binned data increase the weights for bins with few height-diameter data pairs, 7 

such as those in >50cm-diameter bins in Figure S16. Moreover, we found that biases in the height-diameter allometry 8 

come from outliers that significantly deviate from the means and are not probable. Therefore, we consider height-9 

diameter data pairs that are outside the plus or minus 1.5 times the standard deviation range, of both the expected 10 

height of the diameter bin and the expected diameter of the height bin, as outliers (Figure S16). Specifically, to identify 11 

outliers of height-diameter pairs, we divided diameter and height into bins at intervals of 5 cm and 5 m, respectively. 12 

For each diameter bin, we first get all the height data in the bin. If there are enough samples (≥10), then we calculate 13 

the mean μ and the standard deviation σ of the samples, the points that are outside of the μ±1.5σ range are treated as 14 

outliers of height in the diameter bin (green dots). We repeated the same process for the height bins (blue dots). Finally, 15 

if a sample point is considered as an outlier in both the diameter bin and the height bin, then this point is considered 16 

as an outlier of the height-diameter pairs (red dots) (Figure S16). If there are less than 10 samples in either a height or 17 

a diameter bin, then all the data related to those bins are considered insufficient to be used in the estimation of the 18 

allometric relationship.  19 

S2: Estimation of hurricane wind speed at BEW  20 

Hurricane wind field can be reconstructed using the HURRECON model, which estimates sustained wind speed, peak 21 

gust, and wind direction at a given point using the information of the track, size, and intensity of a hurricane and the 22 

cover type (land or water) of the point (Boose et al. 1994; Boose et al. 2004). The sustained wind speed (Vs; m s-1) at 23 

any point P in the northern hemisphere are estimated as 24 

𝑉𝑠 = 𝐹 [𝑉𝑚 −
1

2
𝑆(1 − sin(𝑇))𝑉ℎ ] × √(

𝑅𝑚

𝑅
)

𝐵

exp (1 − (
𝑅𝑚

𝑅
)

𝐵

) , 

(S1) 

where F is the scaling parameter for friction (F = 1 if point P is on water, 0.8 otherwise), S is the scaling parameter 25 

for hurricane asymmetry (1.0), Vm is the maximum overwater sustained wind speed (m s-1) of the hurricane, T is the 26 

clockwise angle (degree) between the direction of the hurricane movement and the direction from hurricane center to 27 

point P, Vh is the velocity (m s-1) of the hurricane movement, R is the distance (km) from hurricane center to point P, 28 

Rm is the radius of maximum winds (20-80 km), and B is the scaling parameter controlling the shape of the wind 29 

profile curve (1.2-1.5). 30 
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We estimate the tropical cyclones (39 mph ≤ sustained wind < 73 mph) that passed near BEW within 100 31 

km or hurricanes (≥ 74 mph) that passed within 150 km of BEW between 1989 and 2017 (the period of the BEW 32 

censuses) using the HURRECON model. The hurricane best track data HURDAT2 (Landsea and Franklin 2013) are 33 

used for parameters F, S, Vm, T, Vh, and R; and we assume that the maximum wind radius Rm = 30 km and the scale 34 

parameter of the shape of the wind profile curve B = 1.5 for all tropical storms (cyclones and hurricanes) for 35 

convenience. 36 

S3: Estimation of non-photosynthetic vegetation at BEW 37 

Non-photosynthetic vegetation (NPV) data derived from satellite remote sensing retrievals are used to quantify the 38 

forest damage from hurricane disturbances. NPV includes exposed wood and surface litter and represents dead 39 

vegetation. NPV, together with photosynthetic vegetation (PV, also called green vegetation) and bare soil (BS) are the 40 

three main ground cover types. NPV, PV, and BS have distinct spectral reflectance at visible and infrared spectrums, 41 

and thus they can be distinguished by satellite sensors with multiple spectral bands. However, satellites cannot 42 

distinguish different ground cover types when a grid pixel is a mixture of the three. For each grid pixel, the spectral 43 

reflectance measured by satellites (Rλ) is the average of the spectral reflectance of each ground cover type (Mtype, λ), 44 

weighted by their fractional cover (ftype): 45 

𝑅𝜆 = 𝑓𝑁𝑃𝑉𝑀𝑁𝑃𝑉, 𝜆 + 𝑓𝑃𝑉𝑀𝑃𝑉, 𝜆 + 𝑓𝐵𝑆𝑀𝐵𝑆, 𝜆 , (S2) 

where λ is the wavelength band at which satellite detects signals. The fractional cover of each ground cover type is 46 

bounded by two constraints: 1) non-negativity constraint ftype ≥ 0, and 2) sum-to-one constraint fNPV + fPV + fBS = 1. 47 

To obtain the fractional cover of each ground cover type, we use the surface reflectance data (Rλ) from 48 

Landsat satellites from USGS (https://landsat.gsfc.nasa.gov/). Landsat 4 and 5 satellites provide natural color images 49 

and surface reflectance at six wavelength bands—three in visible spectrum (0.45-0.52 µm, 0.52-0.60 µm, and 0.63-50 

0.69 µm), one in near infrared spectrum (0.76-0.90 µm), and two in short-wavelength infrared spectrum (1.55-1.75 51 

µm and 2.08-2.35 µm)—from 1982 to 1992 (Landsat 5 continued to operate until 2012 but no data available). Landsat 52 

7 provides the same information since 1999. Landsat 8 (launched in 2013) provides the same information since 2015 53 

but with slightly narrower ranges of each band (0.45-0.515 µm, 0.525-0.60 µm, 0.63-0.68 µm, 0.845-0.885 µm, 1.56-54 

1.66 µm, and 2.1-2.3 µm). The surface reflectance data have a 30-m spatial resolution and a 16-day temporal 55 

resolution, but cloud cover significantly reduces the availability of high-quality surface reflectance data. 56 

The spectral reflectance of the three ground covers (Mtype, λ) are derived from the satellite surface reflectance 57 

at each spectral band for three boxed areas in Puerto Rico on June 6 and October 12, 2017 (Figure S17). The three 58 

boxed areas correspond to dense forest, disturbed forest, and bare ground according to the natural color images from 59 

Landsat satellites (Figure S17) and thus represent the ground cover types of PV, NPV, and BS, respectively. The 60 

spectral reflectance of the three ground cover types generally agrees with previous results (Yang et al. 2012; Li et al. 61 

2017). It shows that bare soil has the largest reflectance at all the six wavelength bands compared with NPV and PV. 62 

PV has a large reflectance on the near infrared (~0.84μm) band but small reflectance on visible (0.4–0.7μm) and short-63 

wavelength infrared (~1.65μm and ~2.21μm) bands.  64 
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To obtain the fractional cover of each type (ftype), we use the bounded variable least square method following 65 

Lawson and Hanson (1974) and Guerschman et al. (2015). Equation (S2) changes to 66 

[𝑹, 𝛿] = 𝒇[𝑴, 𝛿𝟏𝑚] , (S3) 

where R is a 1 × n dimensional vector of satellite reflectance and n is number of wavelength bands (n=6), f is a 1 × m 67 

dimensional vector of the fractional cover and m is the number of ground cover types (m=3), M is an m × n dimensional 68 

matrix of the spectral reflectance of each ground cover type, and δ is a weighting for the sum-to-one constraint and 1m 69 

is the m × 1 vector with all elements being 1. The value of δ is set to 0.2 following Guerschman et al. (2015). Then 70 

the fractional cover f is obtained as  71 

𝒇 = min
𝒇

‖𝒇[𝑴, 𝛿𝟏𝑚] − [𝑹, 𝛿]‖2
2 , where 𝒇 ≥ 0 , (S4) 

using the embedded function lsqnonneg in MATLAB. Thus, the fractional cover of NPV (fNPV) for Puerto Rico is 72 

obtained whenever surface reflectance data are available. 73 

ΔNPV is calculated as the difference of NPV between two dates, one before a hurricane and one after the 74 

hurricane. The revisit time of Landsat satellites is 16 days, but not all data are available or with high quality because 75 

of heavy cloud coverage. Therefore, the pre-hurricane and post-hurricane dates are those closest to the hurricane with 76 

high-quality Landsat satellite data (Table S2). The pre-hurricane and post-hurricane dates are usually within a month 77 

of the hurricane, and some are three or four months apart. Note that the pre-Hugo date (November 1988) is 10 months 78 

before hurricane Hugo (September 1989), the post-Earl date (April 2011) is eight months after hurricane Earl (August 79 

2010), and the dates for hurricanes Marilyn (1995), Bertha (1996), and Georges (1998) are not available because there 80 

were no Landsat data available between September 1992 and August 1999. The ΔNPV calculated from two dates, pre- 81 

and post-hurricane dates, that are several months apart may be biased and may not reflect the accurate change of NPV 82 

from the hurricane due to the seasonal variation of the NPV. Nevertheless, ΔNPV of a hurricane estimated here 83 

provides preliminary and approximate information of the mortality of the hurricane.  84 

Figure S18 shows ΔNPV after each hurricane since 1989 with a trajectory close to BEW. Due to heavy cloud 85 

coverage, the ΔNPV in many grid pixels is not available. The figure shows that consecutive hurricanes in the same 86 

year (i.e., hurricanes Jose and Lenny in 1999, hurricanes Irma and Maria in 2017) caused severer damages (higher 87 

ΔNPVs) than a single hurricane. Note that the ΔNPV of hurricane Irene is negative for most of the pixels, indicating 88 

decrease of NPV and thus increase of greenness, which is possibly not reflecting the true ΔNPV directly caused by 89 

the hurricane. The pre-hurricane date for Irene is April 11 (Table S2), green vegetation could accumulate in the 90 

growing season and the fractional coverage of NPV would decrease when hurricane Irene hits on August 22, 2011. 91 

Therefore, the NPV before hurricane Irene was possibly overestimated and thus the ΔNPV underestimated.  92 

S4: The relationship between forest mortality and hurricane wind speed 93 

The relationship between the rate of forest mortality and local hurricane wind speed has been studied through an 94 

intermediate variable: the fractional coverage of non-photosynthetic vegetation (NPV). The difference of NPV 95 

(ΔNPV) before and after a hurricane is indicative of tree mortality. Specifically, negative value indicates decrease of 96 

NPV and thus the increase of greenness, positive value indicates increase of NPV and thus mortality, and higher 97 
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positive ΔNPV indicates higher mortality (Chambers et al. 2007; Negrón-Juárez et al. 2010; Negrón-Juárez et al. 98 

2014). However, the relationship between ΔNPV and wind speed is site sensitive (Chambers et al. 2007; Zeng et al. 99 

2009; Negrón-Juárez et al. 2010; Negrón-Juárez et al. 2014). Therefore, we use ΔNPV to qualitatively represent the 100 

forest mortality after hurricane disturbances at BEW.  101 

Figure S19 shows the scatter plot of the average ΔNPV over the 40km × 40km area centered at BEW (blue 102 

boxes in Figure S18) after each hurricane against the corresponding wind speed at BEW. It shows ΔNPV is 103 

approximately 0.3 after hurricane Hugo and approximately 0.6 after consecutive hurricanes Irma and Maria. Hurricane 104 

Irma did not cause direct mortality to the forest, but it removed a significant amount of foliage (Uriarte et al. 2019) 105 

and saturated the soils and loosened the roots (Hall et al. 2020), making trees more vulnerable when hurricane Maria 106 

came. Thus, we believe the mortality caused by Maria was aggravated because of hurricane Irma. The ΔNPV is around 107 

zero for all other hurricanes, which means that those hurricanes do not significantly change the fractional cover of 108 

NPV. Therefore, a binary relationship between ΔNPV and local wind speed is suggested: 109 

Δ𝑁𝑃𝑉 = {
0,   𝑉 < 𝑉0

Δ𝑁𝑃𝑉0,   𝑉 ≥ 𝑉0
 . 

(S5) 

ΔNPV0 varies with forest state and other factors. The threshold V0 is set to 41 m s-1 because, based on census data and 110 

meteorological records, the largest local wind speed that caused no mortality in BEW is 40 m s-1 corresponding to 111 

hurricane Georges and the smallest wind speed that caused mortality in the forest is 42 m s-1 corresponding to hurricane 112 

Maria. Since ΔNPV is indicative of forest mortality (Chambers et al. 2007; Negrón-Juárez et al. 2010; Negrón-Juárez 113 

et al. 2014), we assume that hurricane strength has the same binary effect on forest mortality.  114 

  115 



5 

 

Supplementary Tables 116 

Table S1. Values of allometric parameters for each PFT. 117 

Parameter Name Units Early Mid Late Palm 

H-DBH scale parameter (a in Eq. (1)) m cm-1 1.6388 2.2054 2.3833 0.1628 

H-DBH shape parameter (b in Eq. (1)) - 0.80 0.64 0.59 1.47 

Allocation to reproduction proportion 0.3 0.3 0.3 1 

Reproduction min. height m 18 18 18 18 

Minimum height m 1.5 1.5 1.5 4.8 

 118 

 119 

Table S2. The pre- and post-hurricane dates that are used for calculating ΔNPV for each hurricane. The pre- and post-hurricane 120 
dates for Marilyn, Bertha, and Georges are not available because there were no Landsat data in those years. For some hurricanes, 121 
the pre- (post-) hurricane dates are months before (after) the hurricane date because there were no high-quality satellite data 122 
available for closer dates due to heavy cloud coverage.  123 

Hurricane Name 
Hurricane Date 

(yyyy-mm-dd) 
Pre-hurricane date Post-hurricane date 

Hugo 1989-09-18 1988-11-05 1989-10-07 

Marilyn 1995-09-16 --- --- 

Bertha 1996-07-08 --- --- 

Georges 1998-09-21 --- --- 

Jose & Lenny 
1999-10-21 

1999-11-17 
1999-09-17 2000-03-27 

Debby 2000-08-22 2000-08-02 2001-01-09 

Dean 2001-08-22 2001-07-20 2002-04-02 

Jeanne 2004-09-15 2004-08-29 2004-10-16 

Olga 2007-12-11 2007-09-23 2008-02-14 

Earl 2010-08-31 2010-05-10 2011-04-11 

Irene 2011-08-22 2011-04-11 2011-09-02 

Irma & Maria 
2017-09-07 

2017-09-20 
2017-06-06 2017-10-12 

 124 

  125 
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Supplementary Figures 126 

  127 

Figure S1. The ED2 model default allometries for each PFT (Early, Mid, and Late tropical successional trees). (a) Leaf biomass-128 
DBH allometry, (b) structural biomass-DBH allometry, and (c) crown area-DBH allometry. The allometries for Palm PFT are 129 
assumed to be the same as those for Early PFT. 130 

  131 
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 132 

Figure S2. Time series of (a) stem density, (b) basal area, (c) aboveground biomass, and (d) leaf area index for different values of 133 
the parameter leaf clumping factor. (e)-(h) The values of the variables at the first, third, and sixth simulation years.  134 

 135 

 136 

Figure S3. Same as Figure 4, except that the optimal simulations are obtained by training 10 years (1989–1999) instead of 25 years 137 
(1989–2014). 138 
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 139 

Figure S4. Same as Figure 4, except that the optimal simulations are obtained by training 15 years (1989–2004) instead of 25 140 
years (1989–2014).  141 

 142 

 143 

Figure S5. Same as Figure 5, but for K=6. 144 

 145 
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 146 

Figure S6. Same as Figure 5, but for K=10. 147 

 148 

149 
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 150 

Figure S7. Mortality for each PFT. (a) The time series of the simulated and observed overall mortality for the four PFTs: Early, 151 
Mid, Late, and Palm. The simulated mortality from (b) aging, (c) competition, and (d) disturbance for each cohort in year 1991. X-152 
axes are the DBH of the cohort, the color of the circle represents the PFT of the cohort, and the size of the circle is proportional to 153 
the density of the cohort (individuals m-2). (e)-(g) are the same as (b)-(d), but for year 2009. 154 

 155 

 156 

Figure S8. Same as Figure 4, but the model results are from the simulation with the aging mortality of Palm set to zero. 157 

  158 
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 159 

Figure S9. Same as Figure 4, but the optimal simulation is shown in black, and colored lines show experiments with 0 aging 160 
mortality and different seedling densities of Palm. 161 

 162 

 163 

Figure S10. Same as Figure 5, but the optimal simulation is shown in black, and colored lines show the top 20 parameter sensitivity 164 
experiments with smaller MSE than the optimal simulation. 165 

 166 
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 167 

Figure S11. Time series of the distribution of DBHs for the stem density of each PFT from the three experiments. 168 

 169 
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 170 

Figure S12. Time series of the distribution of DBHs for AGB of each PFT from the three experiments. 171 

 172 

 173 

Figure S13. Same as Figure 10, except for the percent change of the 30-year moving average of the variables. The black dashed 174 
lines are the −1% and 1% thresholds.  175 



14 

 

 176 

 177 

Figure S14. Time series of the maximum DBH and the density of the largest DBH class (DBH ≥ 100 cm for Early, Mid, and Late 178 
PFTs, and 20 ≤ DBH < 25 cm for Palm) for each PFT from the three experiments. 179 

  180 
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 181 

Figure S15. Same as Figure 4, except that the sample size for GLUE is 20,000. 182 

  183 
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 184 

Figure S16. Finding outliers of Height-diameter (DBH) pairs for (a) Early, (b) Mid, (c) Late, and (d) Palm PFTs. 185 

DBH and Height were divided into bins with intervals 5 cm and 5 m, respectively. For each DBH (Height) bin, we 186 

first get all the Height (DBH) data in the bin. If there are more than 10 samples, then we calculate the mean μ and 187 

the standard deviation σ of the samples, get the μ±1.5σ range and mark it as a green (blue) line, and mark the points 188 

that are outside of the μ±1.5σ range as outliers with green (blue) dots. If there are less than 10 samples, then all the 189 

samples are considered as outliers for this DBH (Height) bin. Finally, if a sample point is marked as an outlier for 190 

both the DBH and the Height bins, then this point is considered as an outlier (red dots). 191 

  192 
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  193 

Figure S17. Reflectance of each ground cover type (NPV, PV, and BS) at six wavelengths in the visible and infrared spectrum. 194 
The left two panels are the natural color images of two dates. The right panels show the spectral reflectance of the three landcovers. 195 
The spectral reflectance of NPV is obtained from the reflectance of a 500m-by-500m spatial domain (about 200 pixels) on October 196 
12, 2017 (green box in the upper left panel), and the those of PV and BS are from the same sized domain on June 6, 2017 (red and 197 
blue boxes on the lower left panel).  198 

 199 
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  200 

Figure S18. The spatial distribution of ΔNPV over northeastern Puerto Rico for each hurricane. The name of each hurricane and 201 
the corresponding maximum wind speed at BEW are shown on the upper left of each panel. The second and the last panels show 202 
ΔNPV after two consecutive hurricanes and the wind speed of the stronger one is given in the parenthesis. Pixels over water or 203 
covered by clouds are shown in white. The black circle indicates the location of BEW (-65.7449 W; 18.3144 N), and the blue box 204 
is a 4km-4km area centered at BEW. The number of pixels inside the box that have ΔNPV value and the mean value of ΔNPV 205 
inside the box are shown for each panel.  206 

 207 

 208 

Figure S19. Scatter plot of ΔNPV against the corresponding wind speed at BEW for each hurricane shown in Figure S18. 209 

  210 
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