Articles | Volume 15, issue 11
Geosci. Model Dev., 15, 4297–4311, 2022
https://doi.org/10.5194/gmd-15-4297-2022
Geosci. Model Dev., 15, 4297–4311, 2022
https://doi.org/10.5194/gmd-15-4297-2022
Development and technical paper
02 Jun 2022
Development and technical paper | 02 Jun 2022

ROMSPath v1.0: offline particle tracking for the Regional Ocean Modeling System (ROMS)

Elias J. Hunter et al.

Related authors

Estimating the seasonal impact of optically significant water constituents on surface heating rates in the Western Baltic Sea
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2022-1121,https://doi.org/10.5194/egusphere-2022-1121, 2022
Short summary
Doppio – a ROMS (v3.6)-based circulation model for the Mid-Atlantic Bight and Gulf of Maine: configuration and comparison to integrated coastal observing network observations
Alexander G. López, John L. Wilkin, and Julia C. Levin
Geosci. Model Dev., 13, 3709–3729, https://doi.org/10.5194/gmd-13-3709-2020,https://doi.org/10.5194/gmd-13-3709-2020, 2020
Short summary

Related subject area

Oceanography
The tidal effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023,https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
HIDRA2: deep-learning ensemble sea level and storm tide forecasting in the presence of seiches – the case of the northern Adriatic
Marko Rus, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 16, 271–288, https://doi.org/10.5194/gmd-16-271-2023,https://doi.org/10.5194/gmd-16-271-2023, 2023
Short summary
Moana Ocean Hindcast – a  > 25-year simulation for New Zealand waters using the Regional Ocean Modeling System (ROMS) v3.9 model
Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 211–231, https://doi.org/10.5194/gmd-16-211-2023,https://doi.org/10.5194/gmd-16-211-2023, 2023
Short summary
A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation
Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen
Geosci. Model Dev., 16, 109–133, https://doi.org/10.5194/gmd-16-109-2023,https://doi.org/10.5194/gmd-16-109-2023, 2023
Short summary
How does 4DVar data assimilation affect the vertical representation of mesoscale eddies? A case study with observing system simulation experiments (OSSEs) using ROMS v3.9
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023,https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary

Cited articles

Ai, B., Jia, M., Xu, H., Xu, J., Wen, Z., Li, B., and Zhang, D.: Coverage path planning for maritime search and rescue using reinforcement learning, Ocean Eng., 241, 110098, https://doi.org/10.1016/j.oceaneng.2021.110098, 2021. 
Banas, N. S., McDonald, P. S., and Armstrong, D. A.: Green Crab Larval Retention in Willapa Bay, Washington: An Intensive Lagrangian Modeling Approach, Estuar. Coast., 32, 893–905, https://doi.org/10.1007/s12237-009-9175-7, 2009. 
Beegle-Krause, J.: General Noaa Oil Modeling Environment (Gnome): A New Spill Trajectory Model, International Oil Spill Conference Proceedings, 2001​​​​​​​, 865–871, https://doi.org/10.7901/2169-3358-2001-2-865​​​​​​​, 2001. 
Beron-Vera, F. J. and LaCasce, J. H.: Statistics of Simulated and Observed Pair Separations in the Gulf of Mexico, J. Phys. Oceanogr., 46, 2183–2199, https://doi.org/10.1175/JPO-D-15-0127.1, 2016. 
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res.-Oceans, 104, 7649–7666, https://doi.org/10.1029/98jc02622, 1999. 
Download
Short summary
ROMSPath is an offline particle tracking model tailored for use with output from Regional Ocean Modeling System (ROMS) simulations. It is an update to an established system, the Lagrangian TRANSport (LTRANS) model, including a number of improvements. These include a modification of the model coordinate system which improved accuracy and numerical efficiency, and added functionality for nested grids and Stokes drift.