Articles | Volume 15, issue 11
https://doi.org/10.5194/gmd-15-4297-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4297-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ROMSPath v1.0: offline particle tracking for the Regional Ocean Modeling System (ROMS)
Elias J. Hunter
CORRESPONDING AUTHOR
Department of Marine and Coastal Sciences, Rutgers, The State
University of New Jersey, New Brunswick, New Jersey, USA
Heidi L. Fuchs
Department of Marine and Coastal Sciences, Rutgers, The State
University of New Jersey, New Brunswick, New Jersey, USA
John L. Wilkin
Department of Marine and Coastal Sciences, Rutgers, The State
University of New Jersey, New Brunswick, New Jersey, USA
Gregory P. Gerbi
School of Marine Sciences, University of Maine, Orono, Maine, USA
Robert J. Chant
Department of Marine and Coastal Sciences, Rutgers, The State
University of New Jersey, New Brunswick, New Jersey, USA
Jessica C. Garwood
Department of Marine and Coastal Sciences, Rutgers, The State
University of New Jersey, New Brunswick, New Jersey, USA
Related authors
No articles found.
Solène Jousset, Sandrine Mulet, Eric Greiner, John Wilkin, Lien Vidar, Léon Chafik, Roshin Raj, Antonio Bonaduce, Nicolas Picot, and Gérald Dibarboure
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-429, https://doi.org/10.5194/essd-2025-429, 2025
Preprint under review for ESSD
Short summary
Short summary
Satellite altimetry has revolutionized ocean observation, making it possible to track sea level with very good spatio-temporal coverage. However, only sea level anomalies are retrieved; to monitor the entire ocean signal, mean dynamic topography (MDT) must be added to these anomalies. In this study, an evaluation of new NES-CLS22 MDT shows significant improvements in the Arctic. Over the globe, this new solution is better than its predecessor, although the two solutions remain close.
Pascal Matte, John Wilkin, and Joanna Staneva
State Planet, 5-opsr, 19, https://doi.org/10.5194/sp-5-opsr-19-2025, https://doi.org/10.5194/sp-5-opsr-19-2025, 2025
Short summary
Short summary
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and biogeochemical contributions and influencing processes like upwelling and mixing. This paper reviews methods to represent river runoff in operational ocean forecasting systems, from coarse-resolution models to coastal coupling approaches. It discusses river data sources and examines how river forcing is treated in global to coastal operational systems, highlighting challenges and future directions.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Cited articles
Ai, B., Jia, M., Xu, H., Xu, J., Wen, Z., Li, B., and Zhang, D.: Coverage
path planning for maritime search and rescue using reinforcement learning,
Ocean Eng., 241, 110098, https://doi.org/10.1016/j.oceaneng.2021.110098, 2021.
Banas, N. S., McDonald, P. S., and Armstrong, D. A.: Green Crab Larval
Retention in Willapa Bay, Washington: An Intensive Lagrangian Modeling
Approach, Estuar. Coast., 32, 893–905, https://doi.org/10.1007/s12237-009-9175-7,
2009.
Beegle-Krause, J.: General Noaa Oil Modeling Environment (Gnome): A New
Spill Trajectory Model, International Oil Spill Conference Proceedings,
2001, 865–871, https://doi.org/10.7901/2169-3358-2001-2-865, 2001.
Beron-Vera, F. J. and LaCasce, J. H.: Statistics of Simulated and Observed
Pair Separations in the Gulf of Mexico, J. Phys. Oceanogr.,
46, 2183–2199, https://doi.org/10.1175/JPO-D-15-0127.1, 2016.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model
for coastal regions: 1. Model description and validation, J.
Geophys. Res.-Oceans, 104, 7649–7666, https://doi.org/10.1029/98jc02622, 1999.
Cassiani, M., Stohl, A., Olivié, D., Seland, Ø., Bethke, I., Pisso, I., and Iversen, T.: The offline Lagrangian particle model FLEXPART–NorESM/CAM (v1): model description and comparisons with the online NorESM transport scheme and with the reference FLEXPART model, Geosci. Model Dev., 9, 4029–4048, https://doi.org/10.5194/gmd-9-4029-2016, 2016.
Chu, P. C., Ivanov, L. M., Kantha, L. H., Margolina, T. M., Melnichenko, O. V., and Poberezhny, Y. A.: Lagrangian predictability of high-resolution regional models: the special case of the Gulf of Mexico, Nonlin. Processes Geophys., 11, 47–66, https://doi.org/10.5194/npg-11-47-2004, 2004.
Clark, S., Hubbard, K. A., McGillicuddy, D. J., Ralston, D. K., and Shankar,
S.: Investigating Pseudo-nitzschia australis introduction to the Gulf of
Maine with observations and models, Cont. Shelf Res., 228, 104493,
https://doi.org/10.1016/j.csr.2021.104493, 2021.
Dagestad, K.-F., Röhrs, J., Breivik, Ø., and Ådlandsvik, B.: OpenDrift v1.0: a generic framework for trajectory modelling, Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018, 2018.
Döös, K., Jönsson, B., and Kjellsson, J.: Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0, Geosci. Model Dev., 10, 1733–1749, https://doi.org/10.5194/gmd-10-1733-2017, 2017.
Drévillon, M., Bourdallé-Badie, R., Derval, C., Lellouche, J. M.,
Rémy, E., Tranchant, B., Benkiran, M., Greiner, E., Guinehut, S.,
Verbrugge, N., Garric, G., Testut, C. E., Laborie, M., Nouel, L., Bahurel,
P., Bricaud, C., Crosnier, L., Dombrowsky, E., Durand, E., Ferry, N.,
Hernandez, F., Le Galloudec, O., Messal, F., and Parent, L.: The
GODAE/Mercator-Ocean global ocean forecasting system: results, applications
and prospects, J. Oper. Oceanogr., 1, 51–57,
https://doi.org/10.1080/1755876x.2008.11020095, 2014.
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:Eimobo>2.0.Co;2, 2002.
Feng, M., Caputi, N., Penn, J., Slawinski, D., de Lestang, S., Weller, E.,
Pearce, A., and Brickman, D.: Ocean circulation, Stokes drift, and
connectivity of western rock lobster (Panulirus cygnus) population, Can.
J. Fish. Aquat. Sci., 68, 1182–1196, https://doi.org/10.1139/f2011-065,
2011.
Fuchs, H. L., Gerbi, G. P., Hunter, E. J., and Christman, A. J.: Waves cue
distinct behaviors and differentiate transport of congeneric snail larvae
from sheltered versus wavy habitats, P. Natl. Acad. Sci. USA, 115,
E7532–E7540, https://doi.org/10.1073/pnas.1804558115, 2018.
Garvine, R. W.: Subtidal frequency estuary-shelf interaction: Observations
near Delaware Bay, J. Geophys. Res., 96, 7049–7064, https://doi.org/10.1029/91jc00079,
1991.
Garwood, J. C., Fuchs, H. L., Gerbi, G. P., Hunter, E. J., Chant, R. J., and
Wilkin, J. L.: Estuarine retention of larvae: Contrasting effects of
behavioral responses to turbulence and waves, Limnol. Oceanogr.,
67, 992–1005, https://doi.org/10.1002/lno.12052, 2022.
Gerbi, G. P., Kastner, S. E., and Brett, G.: The Role of Whitecapping in
Thickening the Ocean Surface Boundary Layer, J. Phys.
Oceanogr., 45, 2006–2024, https://doi.org/10.1175/JPO-D-14-0234.1, 2015.
Gerbi, G. P., Hunter, E., Wilkin, J. L., Chant, R., Fuchs, H. L., and Garwood, J. C.: SWAN configuration of a nested model of the Mid-Atlantic Bight and Delaware Bay, Zenodo [data set], https://doi.org/10.5281/zenodo.6081147, 2022a.
Gerbi, G. P., Hunter, E., Wilkin, J. L., Chant, R., Fuchs, H. L., and Garwood, J. C.: ROMS configuration of a two-way nested model of the Mid-Atlantic Bight and Delaware Bay, Zenodo [data set], https://doi.org/10.5281/zenodo.6090300, 2022b.
Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A.,
Malanotte-Rizzoli, P., and Shchepetkin, A. F.: Model evaluation experiments
in the North Atlantic Basin: simulations in nonlinear terrain-following
coordinates, Dynam. Atmos. Oceans, 32, 239–281,
https://doi.org/10.1016/s0377-0265(00)00049-x, 2000.
Hunter, E. J.: ROMSPath First Release (v1.0.0), Zenodo
[code], https://doi.org/10.5281/zenodo.4457931, 2021a.
Hunter, E.: ROMSPath Second Release (v1.0.1), Zenodo
[code], https://doi.org/10.5281/zenodo.5597732, 2021b.
Hunter, J. R., Craig, P. D., and Phillips, H. E.: On the use of random walk
models with spatially variable diffusivity, J. Comput.
Phys., 106, 366–376, https://doi.org/10.1016/S0021-9991(83)71114-9, 1993.
Janjic, Z., Black, T., Pyle, M., Rogers, E., Chuang, H. Y., and DiMego, G.: High
resolution applications of the WRF NMM, 21st Conference onWeather Analysis
and Forecasting/17th Conference on Numerical Weather Prediction, Washington DC, 5 August 2005, Abstract 16A.4, 2005.
Kumar, N. and Feddersen, F.: The Effect of Stokes Drift and Transient Rip
Currents on the Inner Shelf. Part II: With Stratification, J.
Phys. Oceanogr., 47, 243–260, https://doi.org/10.1175/jpo-d-16-0077.1, 2017a.
Kumar, N. and Feddersen, F.: The Effect of Stokes Drift and Transient Rip
Currents on the Inner Shelf. Part I: No Stratification, J. Phys.
Oceanogr., 47, 227–241, https://doi.org/10.1175/jpo-d-16-0076.1, 2017b.
LaCasce, J. H.: Statistics from Lagrangian observations, Prog.
Oceanogr., 77, 1–29, https://doi.org/10.1016/j.pocean.2008.02.002, 2008.
Lange, M. and van Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age, Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, 2017.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time ∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P., and
Blanke, B.: A Lagrangian tool for modelling ichthyoplankton dynamics,
Environ. Modell. Softw., 23, 1210–1214,
https://doi.org/10.1016/j.envsoft.2008.02.005, 2008.
Levin, J., Arango, H. G., Laughlin, B., Wilkin, J., and Moore, A. M.: The
impact of remote sensing observations on cross-shelf transport estimates
from 4D-Var analyses of the Mid-Atlantic Bight, Adv. Space Res., 68, 553–570,
https://doi.org/10.1016/j.asr.2019.09.012, 2019.
Liubartseva, S., Coppini, G., Lecci, R., and Clementi, E.: Tracking plastics
in the Mediterranean: 2D Lagrangian model, Mar. Pollut. Bull., 129, 151–162,
https://doi.org/10.1016/j.marpolbul.2018.02.019, 2018.
López, A. G., Wilkin, J. L., and Levin, J. C.: Doppio – a ROMS (v3.6)-based circulation model for the Mid-Atlantic Bight and Gulf of Maine: configuration and comparison to integrated coastal observing network observations, Geosci. Model Dev., 13, 3709–3729, https://doi.org/10.5194/gmd-13-3709-2020, 2020.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys., 20, 851–875,
https://doi.org/10.1029/RG020i004p00851, 1982.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G.,
Parrish, D., and Shi, W.: North American Regional Reanalysis, B.
Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/bams-87-3-343,
2006.
Monismith, S. G. and Fong, D. A.: A note on the potential transport of
scalars and organisms by surface waves, Limnol. Oceanogr., 49,
1214–1217, https://doi.org/10.4319/lo.2004.49.4.1214, 2004.
North, E., Schlag, Z., Hood, R., Li, M., Zhong, L., Gross, T., and Kennedy,
V.: Vertical swimming behavior influences the dispersal of simulated oyster
larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake
Bay, Mar. Ecol. Prog. Ser., 359, 99–115, https://doi.org/10.3354/meps07317, 2008.
Pareja-Roman, L. F., Chant, R. J., and Ralston, D. K.: Effects of Locally
Generated Wind Waves on the Momentum Budget and Subtidal Exchange in a
Coastal Plain Estuary, J. Geophys. Res.-Oceans, 124,
1005–1028, https://doi.org/10.1029/2018JC014585, 2019.
Phillips, O. M.: The Dynamics of the Upper Ocean, 2nd edn., Cambridge University
Press, ISBN 10 0521298016, ISBN 13 9780521298018, 1966.
Pratt, L. J., Rypina, I. I., Pullen, J., Levin, J., and Gordon, A. L.:
Chaotic Advection in an Archipelago, J. Phys. Oceanogr., 40,
1988–2006, https://doi.org/10.1175/2010jpo4336.1, 2010.
Révelard, A., Reyes, E., Mourre, B., Hernández-Carrasco, I., Rubio,
A., Lorente, P., Fernández, C. D. L., Mader, J., Álvarez-Fanjul, E.,
and Tintoré, J.: Sensitivity of Skill Score Metric to Validate
Lagrangian Simulations in Coastal Areas: Recommendations for Search and
Rescue Applications, Frontiers in Marine Science, 8, 191,
https://doi.org/10.3389/fmars.2021.630388, 2021.
Ris, R. C., Holthuijsen, L. H., and Booij, N.: A third-generation wave model
for coastal regions: 2. Verification, J. Geophys. Res.-Oceans, 104, 7667–7681, https://doi.org/10.1029/1998jc900123, 1999.
Röhrs, J., Christensen, K. H., Hole, L. R., Broström, G., Drivdal,
M., and Sundby, S.: Observation-based evaluation of surface wave effects on
currents and trajectory forecasts, Ocean Dynam., 62, 1519–1533,
https://doi.org/10.1007/s10236-012-0576-y, 2012.
Rypina, I. I., Scott, S. E., Pratt, L. J., and Brown, M. G.: Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures, Nonlin. Processes Geophys., 18, 977–987, https://doi.org/10.5194/npg-18-977-2011, 2011.
Schlag, Z. R. and North, E. W.: Lagrangian TRANSport model (LTRANS v.2) User’s Guide, University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, MD, 183 pp., https://northweb.hpl.umces.edu/LTRANS/LTRANS-v2/LTRANSv2_UsersGuide_6Jan12.pdf (last access: 25 May 2022), 2012.
Shadden, S. C., Lekien, F., and Marsden, J. E.: Definition and properties of
Lagrangian coherent structures from finite-time Lyapunov exponents in
two-dimensional aperiodic flows, Physica D, 212,
271–304, https://doi.org/10.1016/j.physd.2005.10.007, 2005.
Simons, R. D., Siegel, D. A., and Brown, K. S.: Model sensitivity and
robustness in the estimation of larval transport: A study of particle
tracking parameters, J. Marine Syst., 119–120, 19–29,
https://doi.org/10.1016/j.jmarsys.2013.03.004, 2013.
Spall, M. A. and Holland, W. R.: A Nested Primitive Equation Model for
Oceanic Applications, J. Phys. Oceanogr., 21, 205–220,
https://doi.org/10.1175/1520-0485(1991)021<0205:Anpemf>2.0.Co;2, 1991.
Thomson, J., Schwendeman, M. S., Zippel, S. F., Moghimi, S., Gemmrich, J.,
and Rogers, W. E.: Wave-Breaking Turbulence in the Ocean Surface Layer,
J. Phys. Oceanogr., 46, 1857–1870, https://doi.org/10.1175/jpo-d-15-0130.1,
2016.
Tolman, H. L.: User manual and system documentation of WAVEWATCH III ™ version 3.14, Technical note, MMAB Contribution, 276, https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf (last access: 25 May 2022), 2009.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003.
van den Bremer, T. S. and Breivik, Ø.: Stokes drift, Philos. T. R. Soc. A, 376, 20170104,
https://doi.org/10.1098/rsta.2017.0104, 2018.
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S.
F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.
A. M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121,
49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.
Vennell, R., Scheel, M., Weppe, S., Knight, B., and Smeaton, M.: Fast
lagrangian particle tracking in unstructured ocean model grids, Ocean
Dynam., 71, 423–437, https://doi.org/10.1007/s10236-020-01436-7, 2021.
Visser, A.: Using random walk models to simulate the vertical distribution
of particles in a turbulent water column, Mar. Ecol. Prog. Ser.,
158, 275–281, https://doi.org/10.3354/meps158275, 1997.
Wagner, P., Rühs, S., Schwarzkopf, F. U., Koszalka, I. M., and Biastoch,
A.: Can Lagrangian Tracking Simulate Tracer Spreading in a High-Resolution
Ocean General Circulation Model?, J. Phys. Oceanogr., 49,
1141–1157, https://doi.org/10.1175/jpo-d-18-0152.1, 2019.
Warner, J. C., Defne, Z., Haas, K., and Arango, H. G.: A wetting and drying
scheme for ROMS, Comput. Geosci., 58, 54–61,
https://doi.org/10.1016/j.cageo.2013.05.004, 2013.
Warner, J. C., Schwab, W. C., List, J. H., Safak, I., Liste, M., and
Baldwin, W.: Inner-shelf ocean dynamics and seafloor morphologic changes
during Hurricane Sandy, Cont. Shelf Res., 138, 1–18,
https://doi.org/10.1016/j.csr.2017.02.003, 2017.
Wilkin, J. and Levin, J.: Outputs from a Regional Ocean Modeling System
(ROMS) data assimilative reanalysis (version DopAnV2R3-ini2007) of ocean
circulation in the Mid-Atlantic Bight and Gulf of Maine for 2007–2020,
SEANOE [data set], https://doi.org/10.17882/86286, 2021.
Wilkin, J., Levin, J., Lopez, A., Hunter, E., Zavala-Garay, J., and Arango, H.: Coastal Ocean Forecast System for the US Mid‐Atlantic Bight and Gulf of Maine, New Frontiers in Operational Oceanography, 593–624, https://diginole.lib.fsu.edu/islandora/object/fsu:602474 (last access: 30 May 2022),
2018.
Xue, H., Incze, L., Xu, D., Wolff, N., and Pettigrew, N.: Connectivity of
lobster populations in the coastal Gulf of Maine, Ecol. Model., 210,
193–211, https://doi.org/10.1016/j.ecolmodel.2007.07.024, 2008.
Yeung, P. K.: Lagrangian investigations of turbulence, Annu. Rev.
Fluid Mech., 34, 115–142, https://doi.org/10.1146/annurev.fluid.34.082101.170725, 2002.
Short summary
ROMSPath is an offline particle tracking model tailored for use with output from Regional Ocean Modeling System (ROMS) simulations. It is an update to an established system, the Lagrangian TRANSport (LTRANS) model, including a number of improvements. These include a modification of the model coordinate system which improved accuracy and numerical efficiency, and added functionality for nested grids and Stokes drift.
ROMSPath is an offline particle tracking model tailored for use with output from Regional Ocean...