Articles | Volume 15, issue 4
Geosci. Model Dev., 15, 1633–1657, 2022
https://doi.org/10.5194/gmd-15-1633-2022

Special issue: Joint UK Land Environment Simulator (JULES) – configurations,...

Geosci. Model Dev., 15, 1633–1657, 2022
https://doi.org/10.5194/gmd-15-1633-2022
Development and technical paper
25 Feb 2022
Development and technical paper | 25 Feb 2022

A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands

Sarah E. Chadburn et al.

Related authors

Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP)
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022,https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022,https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Evaluation of soil carbon simulation in CMIP6 Earth System Models
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-13,https://doi.org/10.5194/bg-2022-13, 2022
Revised manuscript under review for BG
Short summary
Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021,https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Regional variation in the effectiveness of methane-based and land-based climate mitigation options
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021,https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary

Related subject area

Biogeosciences
Use of genetic algorithms for ocean model parameter optimisation: a case study using PISCES-v2_RC for North Atlantic particulate organic carbon
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022,https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level
Julien Ruffault, François Pimont, Hervé Cochard, Jean-Luc Dupuy, and Nicolas Martin-StPaul
Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022,https://doi.org/10.5194/gmd-15-5593-2022, 2022
Short summary
Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022,https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP)
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022,https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
CLM5-FruitTree: a new sub-model for deciduous fruit trees in the Community Land Model (CLM5)
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022,https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary

Cited articles

Apers, S., De Lannoy, G. J. M., Baird, A. J., Cobb, A. R., Dargie, G., del Aguila Pasquel, J., Gruber, A., Hastie, A., Hidayat, H., Hirano, T., Hoyt, A. M., Jovani-Sancho, A. J., Katimon, A., Kurnain, A., Koster, R. D., Lampela, M., Mahanama, S. P. P., Melling, L., Page, S. E., Reichle, R. H., Taufik, M., Vanderborght, J., and Bechtold, M.​​​​​​​: Tropical peatland hydrology simulated with a global land surface model, Earth and Space Science Open Archive, p. 46, https://doi.org/10.1002/essoar.10507826.1, 2021. a
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020. a
Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Riutta, T., and Laurila, T.: Carbon dioxide exchange on a northern boreal fen, Boreal Environ. Res., 14, 699–710, 2009. a
Baird, A. J., Morris, P. J., and Belyea, L. R.: The DigiBog peatland development model 1: Rationale, conceptual model, and hydrological basis, Ecohydrology, 5, 242–255, 2012. a
Bechtold, M., De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P., Bleuten, W., Bourgault, M. A., Brümmer, C., Burdun, I., Desai, A. R., Devito, K., Grünwald, T., Grygoruk, M., Humphreys, E. R., Klatt, J., Kurbatova, J., Lohila, A., Munir, T. M., Nilsson, M. B., Price, J. S., Röhl, M., Schneider, A., and Tiemeyer, B.​​​​​​​: PEAT-CLSM: A specific treatment of peatland hydrology in the NASA Catchment Land Surface Model, J. Adv. Model. Earth Syst., 11, 2130–2162, 2019. a, b, c, d
Download
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.