Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5863-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5863-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of terrestrial biogeochemistry in CMIP6 Earth system models: a review
Climate and Environment, Saint Francis Xavier University,
Antigonish, Canada
Environmental Sciences, Memorial University, St. John's, Canada
Andrew H. MacDougall
Climate and Environment, Saint Francis Xavier University,
Antigonish, Canada
Related authors
No articles found.
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Benjamin Mark Sanderson, Victor Brovkin, Rosie Fisher, David Hohn, Tatiana Ilyina, Chris Jones, Torben Koenigk, Charles Koven, Hongmei Li, David Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew Macdougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Seferian, Lori Sentman, Isla Simpson, Chris Smith, Norman Steinert, Abigail Swann, Jerry Tjiputra, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3356, https://doi.org/10.5194/egusphere-2024-3356, 2024
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated zero emissions commitment due to emissions rates exceeding historical levels.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Claude-Michel Nzotungicimpaye, Kirsten Zickfeld, Andrew H. MacDougall, Joe R. Melton, Claire C. Treat, Michael Eby, and Lance F. W. Lesack
Geosci. Model Dev., 14, 6215–6240, https://doi.org/10.5194/gmd-14-6215-2021, https://doi.org/10.5194/gmd-14-6215-2021, 2021
Short summary
Short summary
In this paper, we describe a new wetland methane model (WETMETH) developed for use in Earth system models. WETMETH consists of simple formulations to represent methane production and oxidation in wetlands. We also present an evaluation of the model performance as embedded in the University of Victoria Earth System Climate Model (UVic ESCM). WETMETH is capable of reproducing mean annual methane emissions consistent with present-day estimates from the regional to the global scale.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Cited articles
Achard, F., Beuchle, R., Mayaux, P., Stibig, H. J., Bodart, C., Brink, A.,
and Simonetti, D.: Determination of tropical deforestation rates and related
carbon losses from 1990 to 2010, Glob. Change Biol., 20, 2540–2554,
https://doi.org/10.1111/gcb.12605, 2014.
Amthor, J. S.: The McCree–de Wit–Penning de Vries–Thornley respiration
paradigms: 30 years later, Ann. Bot.-London, 86, 1–20, https://doi.org/10.1006/anbo.2000.1175, 2000.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P.,
Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean
components of the global carbon cycle in the CMIP5 earth system models, J.
Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C.,
and Zhao, M.: Spatiotemporal patterns of terrestrial gross primary
production: A review, Rev. Geophys., 53, 785–818, https://doi.org/10.1002/2015RG000483, 2015.
Anderson, T. R., Hawkins, E., and Jones, P. D.: CO2, the greenhouse
effect and global warming: from the pioneering work of Arrhenius and
Callendar to today's Earth System Models, Endeavour, 40, 178–187, https://doi.org/10.1016/j.endeavour.2016.07.002, 2016.
Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the
terrestrial ecosystem component of climate models, Glob. Change Biol., 11,
39–59, https://doi.org/10.1111/j.1365-2486.2004.00890.x, 2005.
Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon
budget associated with land use change, Glob. Change Biol., 16, 3327–3348,
https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2010.
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon–concentration
and carbon–climate feedbacks in CMIP5 Earth system models, J. Climate, 26,
5289–5314, https://doi.org/10.1175/JCLI-D-12-00494.1, 2013.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.
Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips,
O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N.,
Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C.
A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi,
Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan,
C. M., Ferry, S. J. F., Sunderland, T., Laurin, G. V., Gatti, R. C.,
Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated
pan-tropical biomass map using multiple reference datasets, Glob. Change
Biol., 22, 1406–1420, https://doi.org/10.1111/gcb.13139, 2016.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun,
M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M.
A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions
from tropical deforestation improved by carbon-density maps, Nat. Clim.
Change, 2, 182–185, https://doi.org/10.1038/nclimate1354, 2012.
Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M.,
Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J. L., and
Leroy, M.: LAI, fAPAR and fCover CYCLOPES global products derived from
VEGETATION: Part 1: Principles of the algorithm, Remote Sens. Environ., 110,
275–286, https://doi.org/10.1016/j.rse.2007.02.018, 2007.
Batjes, N. H.: Harmonized soil property values for broad-scale modelling
(WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269,
61–68, https://doi.org/10.1016/j.geoderma.2016.01.034, 2016.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau,
A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N.,
Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon
dioxide uptake: global distribution and covariation with
climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984, 2010.
Blackard, J. A., Finco, M. V., Helmer, E. H., Holden, G. R., Hoppus, M.
L., Jacobs, D. M., Lister, A. J., Moisen, G. G., Nelson, M. D., Riemann,
R., Ruefenacht, B., Salajanu, D., Weyermann, D. L., Winterberger, K.
C., Brandeis, T. J., Czaplewski, R. L., McRoberts, R. E., Patterson, P.
L., and Tymcio, R. P.: Mapping U.S. forest biomass using nationwide forest
inventory data and moderate resolution information, Remote Sens.
Environ., 112, 1658–1677, https://doi.org/10.1016/j.rse.2007.08.021, 2008.
Bonan, G. B., Lombardozzi, D. L., Wieder, W. R., Oleson, K. W., Lawrence, D.
M., Hoffman, F. M., and Collier, N.: Model structure and climate data
uncertainty in historical simulations of the terrestrial carbon cycle
(1850–2014), Global Biogeochem. Cy., 33, 1310–1326, https://doi.org/10.1029/2019GB006175, 2019.
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas,
R.: Globally rising soil heterotrophic respiration over recent
decades, Nature, 560, 80–83, https://doi.org/10.1038/s41586-018-0358-x, 2018.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski,
Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot,
P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil,
S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont,
E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols,
M.-A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet,
B., Guez, L., Guilyardi, É., Guimberteau, M., Hauglustaine, D., Hourdin,
F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner,
G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton,
T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand,
M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé,
C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset,
C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Khadre
Traore, A., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N.,
and Vuichard, N.: Presentation and evaluation of the IPSL-CM6A-LR climate
model, J. Adv. Model. Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens,
B., Beer, C., Cescatti, A., Randerson, J. T., and Reichstein, M.: Global
covariation of carbon turnover times with climate in terrestrial
ecosystems, Nature, 514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Chu, H., Baldocchi, D. D., John, R., Wolf, S., and Reichstein, M.: Fluxes
all of the time? A primer on the temporal representativeness of Fluxnet, J.
Geophys. Res.-Biogeo., 122, 289–307, https://doi.org/10.1002/2016JG003576, 2017.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell,
J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le
Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and
Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, available at: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf (last access: 1 April 2021), 2013.
Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao,
S.-L., Moriarty, R., Broquet, G., Le Quéré, C., Canadell, J.
G., Peng, S., Poulter, B., Liu, Z., and Tans, P.: Five decades of northern
land carbon uptake revealed by the interhemispheric
CO2 gradient, Nature, 568, 221–225, https://doi.org/10.1038/s41586-019-1078-6, 2019.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C.
D., Riley, W. J., Mu, M., and Randerson, J. T.: The International Land Model
Benchmarking (ILAMB) system: design, theory, and implementation, J. Adv. Model.
Earth Sy., 10, 2731–2754, https://doi.org/10.1029/2018MS001354,
2018.
Dai, M., Yin, Z., Meng, F., Liu, Q., and Cai, W. J.: Spatial distribution of
riverine DOC inputs to the ocean: an updated global synthesis, Curr. Opin. Env.
Sust., 4, 170–178, https://doi.org/10.1016/j.cosust.2012.03.003,
2012.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L.K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M., Large, W., Lauritzen, P., Lawrence, D., Lenaerts,
J., Lindsay, K., Lipscomb, W., Mills M. J., Neale, R., Oleson, K.,
Otto-Bliesner, B., Phillips, A., Sacks, W., Tilmes, S., van Kampenhout, L.,
Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C.,
Fox-Kemper, B., Kay, J., Kinnison, D., Kushner, P., Larson, V., Long, M.,
Mickelson, S., Moore, J., Nienhouse, E., Polvani, L., Rasch, P., and Strand,
W.: The community earth system model version 2 (CESM2), J. Adv. Model. Earth
Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., Fisher, R. A., Jones, C. D., Lee, H., Peano, D., Smith, B., Wårlind, D., and Wiltshire, A. J.: Nitrogen cycling in CMIP6 land surface models: progress and limitations, Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, 2020.
Defourny, P., Boettcher, M., Bontemps, S., Kirches, G., Lamarche, C.,
Peters, M., Santoro, M., and Schlerf, M.: Land cover CCI Product user guide
version 2, Technical report, European Space Agency, London, United Kingdom, 1–91, 2016.
de Kauwe, M. G., Disney, M. I., Quaife, T., Lewis, P., and Williams, M.: An
assessment of the MODIS Collection 5 leaf area index product for a region of
mixed coniferous forest, Remote Sens. Environ., 115, 767–780, https://doi.org/10.1016/j.rse.2010.11.004, 2011.
Delire, C., Séférian, R., Decharme, B., Alkama, R., Calvet, J. C.,
Carrer, D., Gibelin, A., Joetzjer, E., Morel, X., Rochner, M., and Tzanos,
D.: The global land carbon cycle simulated with ISBA-CTRIP: Improvements
over the last decade, J. Adv. Model. Earth Sy, 12, e2019MS001886, https://doi.org/10.1029/2019MS001886, 2020.
de Mora, L., Butenschön, M., and Allen, J. I.: How should sparse marine in situ measurements be compared to a continuous model: an example, Geosci. Model Dev., 6, 533–548, https://doi.org/10.5194/gmd-6-533-2013, 2013.
Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D.
Y., Barr, A., and Stauch, V. J.: Cross-site evaluation of eddy covariance
GPP and RE decomposition techniques, Agr. Forest Meteorol., 148, 821–838,
https://doi.org/10.1016/j.agrformet.2007.11.012, 2008.
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., and Ting, M.: Insights from Earth system model initial-condition large
ensembles and future prospects, Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020.
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M.,
John, J. G., Krasting, J. P., Malyshev, S., Naik1, V., Paulot, F.,
Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K.
A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S.
M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C.,
Menzel, R., Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J.,
Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D.
M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg,
A. T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL Earth System Model
version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation
characteristics, J. Adv. Model. Earth Sy., 12, e2019MS002015, https://doi.org/10.1029/2019MS002015, 2020.
Ehlers, I., Augusti, A., Betson, T. R., Nilsson, M. B., Marshall, J. D., and
Schleucher, J.: Detecting long-term metabolic shifts using isotopomers:
CO2-driven suppression of photorespiration in C3 plants over the 20th
century, P. Natl. Acad. Sci. USA, 112, 15585–15590, https://doi.org/10.1073/pnas.1504493112, 2015.
Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I.: Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, 2018.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016a.
Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, 2016b.
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G.,
Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M.,
Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A., Krasting, J. P.,
Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass, A. G.,
Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., Santer, B. D.,
Sherwood, S. C., Simpson, I. R., Stouffer, R. J., and Williamson, M. S.:
Taking climate model validation to the next level, Nat. Clim. Change, 9,
102–110, https://doi.org/10.1038/s41558-018-0355-y, 2019.
Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP, Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, 2020.
Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X., and Xiang, Y.: Evaluation and
development of temperature-based empirical models for estimating daily
global solar radiation in humid regions, Energy, 144, 903–914, https://doi.org/10.1016/j.energy.2017.12.091, 2018.
Fan, N., Koirala, S., Reichstein, M., Thurner, M., Avitabile, V., Santoro, M., Ahrens, B., Weber, U., and Carvalhais, N.: Apparent ecosystem carbon turnover time: uncertainties and robust features, Earth Syst. Sci. Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020, 2020.
FAO.: Harmonized World Soil Database v 1.2, available at: http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (last access: 29 January 2021),
2012.
Fisher, R. A., Wieder, W. R., Sanderson, B. M., Koven, C. D., Oleson, K. W.,
Xu, C., and Lawrence, D. M.: Parametric controls on vegetation responses to
biogeochemical forcing in the CLM5, J. Adv. Model. Earth Sy., 11, 2879–2895,
https://doi.org/10.1029/2019MS001609, 2019.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins,
W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of climate models, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2013.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., and Lapola, D. M.: Amazon forest response to CO2
fertilization dependent on plant phosphorus acquisition, Nat. Geosci., 12,
736–741, https://doi.org/10.1038/s41561-019-0404-9, 2019.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis,
S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek,
P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson,
D., Amann, M., and Voss, M.: The global nitrogen cycle in the twenty-first
century, Philos. T. R. Soc. B, 368, 20130164–20130164, https://doi.org/10.1098/rstb.2013.0164, 2013.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A.
R., and Vo, C. J.: Nitrogen cycles: past, present, and
future, Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z.,
Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.:
Transformation of the nitrogen cycle: recent trends, questions, and
potential solutions, Science, 320, 889–892, https://doi.org/10.1126/science.1136674, 2008.
Galloway, J. N., Leach, A. M., Bleeker, A., and Erisman, J. W.: A chronology
of human understanding of the nitrogen cycle, Philos. T. R. Soc. B, 368,
20130120, https://doi.org/10.1098/rstb.2013.0120, 2013.
Gibbs, H. K.: Olson's Major World Ecosystem Complexes Ranked by Carbon in
Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product
NDP-017b, Oak Ridge National Laboratory, Oak Ridge, TN, https://doi.org/10.3334/CDIAC/lue.ndp017.2006, 2006.
Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assessing variability and long-term trends in burned area by merging multiple satellite fire products, Biogeosciences, 7, 1171–1186, https://doi.org/10.5194/bg-7-1171-2010, 2010.
Gleckler, P. J., Doutriaux, C., Durack, P. J., Taylor, K. E., Zhang, Y.,
Williams, D. N., and Servonnat, J.: A more powerful reality test for climate
models, EOS, 97, 20–24, available at: https://eos.org/science-updates/a-more-powerful-reality-test-for-climate-models (last access: 1 April 2021),
2016.
Global Monitoring Laboratory.: Global monitoring Laboratory – carbon cycle
greenhouse gases, available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (last access: 1 April 2021), 2005.
Global Soil Data Task Group.: Global Gridded Surfaces of Selected Soil
Characteristics (IGBP-DIS), Tech. Rep., available at: https://doi.org/10.3334/ORNLDAAC/569, 2002.
GLOBAL VIEW-CO2: Cooperative Global Atmospheric Data Integration
Project, updated annually, Multi-laboratory compilation of synchronized and
gap-filled atmospheric carbon dioxide records for the period 1979–2012,
NOAA, Boulder, CO, https://doi.org/10.3334/OBSPACK/1002, 2013.
Goll, D. S., Brovkin, V., Liski, J., Raddatz, T., Thum, T., and Todd-Brown,
K. E.: Strong dependence of CO2 emissions from anthropogenic land cover
change on initial land cover and soil carbon parametrization, Global
Biogeochem. Cy., 29, 1511–1523, https://doi.org/10.1002/2014GB004988, 2015.
Goll, D. S., Winkler, A. J., Raddatz, T., Dong, N., Prentice, I. C., Ciais, P., and Brovkin, V.: Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10), Geosci. Model Dev., 10, 2009–2030, https://doi.org/10.5194/gmd-10-2009-2017, 2017.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on
long-term terrestrial carbon uptake, Nature, 565, 476–479, https://doi.org/10.1038/s41586-018-0848-x, 2019.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global
nitrogen cycle, Nature, 451, 293–296, https://doi.org/10.1038/nature06592, 2008.
Gulden, L. E., Rosero, E., Yang, Z. L., Wagener, T., and Niu, G. Y.: Model
performance, model robustness, and model fitness scores: A new method for
identifying good land-surface models, Geophys. Res. Lett., 35, L11404, https://doi.org/10.1029/2008GL033721, 2008.
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020.
Harper, A. B., Wiltshire, A. J., Cox, P. M., Friedlingstein, P., Jones, C. D., Mercado, L. M., Sitch, S., Williams, K., and Duran-Rojas, C.: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types, Geosci. Model Dev., 11, 2857–2873, https://doi.org/10.5194/gmd-11-2857-2018, 2018.
Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., and Reichstein, M.: Global spatiotemporal distribution of soil respiration modeled using a global database, Biogeosciences, 12, 4121–4132, https://doi.org/10.5194/bg-12-4121-2015, 2015.
He, Y., Piao, S. L., Li, X. Y., Chen, A. P., and Qin, D. H.: Global patterns
of vegetation carbon use efficiency and their climate drivers deduced from
MODIS satellite data and process-based models, Agr. Forest
Meteorol., 256–257, 150– 158, https://doi.org/10.1016/j.agrformet.2018.03.009, 2018.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feedbacks, Nature, 451, 289–292, https://doi.org/10.1038/nature06591, 2008.
Herridge, D. F., Peoples, M. B., and Boddey, R. M.: Global inputs of
biological nitrogen fixation in agricultural systems, Plant Soil, 311, 1–18,
https://doi.org/10.1007/s11104-008-9668-3, 2008.
Hoffman, F. M., Randerson, J. T., Arora, V. K., Bao, Q., Cadule, P., Ji, D.,
Jones, C. D., Kawamiya, M., Khatiwala, S., Lindsay, K., and Wu, T.: Causes
and implications of persistent atmospheric carbon dioxide biases in Earth
System Models, J. Geophys. Res.-Biogeo., 119, 141–162, https://doi.org/10.1002/2013JG002381, 2014.
Holland, E. A., Post, W. M., Matthews, E., Sulzman, J. M., Staufer, R., and
Krankina, O. N.: A global database of litterfall mass and litter pool carbon
and nutrients, ORNL DAAC, available at: https://daac.ornl.gov/VEGETATION/guides/Global_Litter_Carbon_Nutrients.html (last access: 1 April 2021), 2015.
Houlton, B. Z., Marklein, A. R., and Bai, E.: Representation of nitrogen in
climate change forecasts, Nat. Clim. Change, 5, 398–401, https://doi.org/10.1038/nclimate2538, 2015.
Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F.,
Rochetin, N., Jam, A., Musat, I., Idelkadi, A., Fairhead, L., Foujols,
M.-A., Mellul, L., Traore, A.-K., Ghattas, J., Gastineau, G., Dufresne,
J.-L., Boucher, O., Lefebvre, M.-P., Millour, E., Vignon, E., Jouaud, J.,
Bint Diallo, F., Bonazzola, M. and Lott, F.: LMDZ6: Improved atmospheric
component of the IPSL coupled model, J. Adv. Model. Earth Sy., 12,
e2019MS001892, https://doi.org/10.1029/2019MS001892, 2020.
Hovenden, M. and Newton, P.: Plant responses to CO2 are a question of
time, Science, 360, 263–264, https://doi.org/10.1126/science.aat2481, 2018.
Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., Johnson, K., Jorgenson, T., Koven, C. D., Kuhry, P., Michaelson, G., Mishra, U., Palmtag, J., Ping, C.-L., O'Donnell, J., Schirrmeister, L., Schuur, E. A. G., Sheng, Y., Smith, L. C., Strauss, J., and Yu, Z.: A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region, Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, 2013.
Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design, Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, 2013.
Ito, A.: A historical meta-analysis of global terrestrial net primary
productivity: are estimates converging?, Glob. Change Biol., 17, 3161–3175,
https://doi.org/10.1111/j.1365-2486.2011.02450.x, 2011.
Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, https://doi.org/10.5194/bg-9-759-2012, 2012.
Ito, A., Hajima, T., Lawrence, D. M., Brovkin, V., Delire, C., Guenet, B.,
Jones, C., Malyshev, S., Materia, S., McDermid, S., Peano, D., Pongratz, J.,
Robertson, E., Shevliakova, E., Vuichard, N., Warlind, D., Wiltshire, A.,
and Ziehn, T.: Soil carbon sequestration simulated in CMIP6-LUMIP models:
implications for climatic mitigation, Environ. Res. Lett., 15, 124061,
https://doi.org/10.1088/1748-9326/abc912, 2020.
Joetzjer, E., Delire, C., Douville, H., Ciais, P., Decharme, B., Carrer, D., Verbeeck, H., De Weirdt, M., and Bonal, D.: Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest, Geosci. Model Dev., 8, 1709–1727, https://doi.org/10.5194/gmd-8-1709-2015, 2015.
Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., and Zaehle, S.: C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6, Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, 2016.
Jonsson, A., Åberg, J., Lindroth, A., and Jansson, M.: Gas transfer rate
and CO2 flux between an unproductive lake and the atmosphere in
northern Sweden, J. Geophys. Res.-Biogeo., 113, G04006,
https://doi.org/10.1029/2008JG000688, 2008.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J.,
Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., De Jeu, R., and Zhang,
K.: Recent decline in the global land evapotranspiration trend due to
limited moisture supply, Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.-Biogeo., 116, G00J07,
https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P.,
Weber, U., Zaehle, S., and Zeng, N.: FLUXCOM (RS+METEO) Global Land Carbon
Fluxes using CRUNCEP climate data, FLUXCOM Data Portal,
https://www.doi.org/10.17871/FLUXCOM_RS_METEO_CRUNCEPv6_1980_2013_v1, 2016.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch,
S., Ahlström, A., Arneth, A., Camps-Valls, G., Ciais,
P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale,
D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy,
N., Wang, Y., Weber, U., Zaehle, S., and Zeng, N.: Compensatory water
effects link yearly global land CO2 sink changes to temperature,
Nature, 541, 516– 520, https://doi.org/10.1038/nature20780,
2017.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying
photosynthetic capacity and its relationship to leaf nitrogen content for
global-scale terrestrial biosphere models, Glob. Change Biol., 15, 976–991,
https://doi.org/10.1111/j.1365-2486.2008.01744.x, 2009.
Kellndorfer, J., Walker, W., Kirsch, K., Fiske, G., Bishop, J., Lapoint,
L., Hoppus, M., and Westfall, J.: NACP aboveground biomass and carbon baseline
data, V.2 (NBCD 2000), U.S.A., 2000, https://doi.org/10.3334/ORNLDAAC/1161, 2013.
Kindermann, G., McCallum, I., Fritz, S., and Obersteiner, M.: A global
forest growing stock, biomass and carbon map based on FAO statistics, Silva
Fenn, 42, 387–396, https://doi.org/10.14214/sf.244, 2008.
Kobayashi, K. and Salam, M. U.: Comparing simulated and measured values
using mean squared deviation and its components, Agron. J., 92, 345–352,
https://doi.org/10.2134/agronj2000.922345x, 2000.
Koch, J., Siemann, A., Stisen, S., and Sheffield, J.: Spatial validation of
large-scale land surface models against monthly land surface temperature
patterns using innovative performance metrics, J. Geophys. Res.-Atmos., 121,
5430–5452, https://doi.org/10.1002/2015JD024482, 2016.
Koven, C. D., Hugelius, G., Lawrence, D. M., and Wieder, W. R.: Higher
climatological temperature sensitivity of soil carbon in cold than warm
climates, Nat. Clim. Change, 7, 817–822, https://doi.org/10.1038/nclimate3421, 2017.
Kowalczyk, E. A., Wang, Y. P., Law, R. M., Davies, H. L., McGregor, J. L.,
and Abramowitz, G.: The CSIRO Atmosphere Biosphere Land Exchange (CABLE)
model for use in climate models and as an offline model, CSIRO Marine and
Atmospheric Research Paper, 13, 1–43, http://www.cmar.csiro.au/e-print/open/kowalczykea_2006a.pdf (last access: 1 April 2021), 2006.
Kowalczyk, E. A., Stevens, L., Law, R. M., Dix, M., Wang, Y. P., Harman, I.
N., Haynes, K., Srbinovsky, J., Pak, B., and Ziehn, T.: The land surface
model component of ACCESS: description and impact on the simulated surface
climatology, Aust. Meteorol. Oceanogr. J, 63, 65–82, http://www.bom.gov.au/jshess/docs/2013/kowalczyk_hres.pdf (last access: 1 April 2021),
2013.
Kumar, S. V., Peters-Lidard, C. D., Santanello, J., Harrison, K., Liu, Y., and Shaw, M.: Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation, Geosci. Model Dev., 5, 869–886, https://doi.org/10.5194/gmd-5-869-2012, 2012.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lasslop, G., Reichstein, M., Kattge, J., and Papale, D.: Influences of observation errors in eddy flux data on inverse model parameter estimation, Biogeosciences, 5, 1311–1324, https://doi.org/10.5194/bg-5-1311-2008, 2008.
Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth,
A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange
into assimilation and respiration using a light response curve approach:
Critical issues and global evaluation, Glob. Change Biol., 16, 187–208,
https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010.
Law, K., Stuart, A., and Zygalakis, K.: Data assimilation: A Mathematical
Introduction, Texts in Applied Mathematics, Cham, Switzerland:
Springer, 141, 1–242, https://doi.org/10.1007/978-3-319-20325-6,
2015.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., and
Zeng, X.: The Community Land Model version 5: Description of new features,
benchmarking, and impact of forcing uncertainty, J. Adv. Model. Earth Sy., 11,
4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S.: Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, 2014.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, 2016.
Li, W., Zhang, Y., Shi, X., Zhou, W., Huang, A., Mu, M., Qiu, B., and Ji,
J.: Development of land surface model BCC_AVIM2.0 and its
preliminary performance in LS3MIP/CMIP6, J. Meteorol. Res.-Prc., 33, 851–869,
https://doi.org/10.1007/s13351-019-9016-y, 2019.
Liang, J., Qi, X., Souza, L., and Luo, Y.: Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis, Biogeosciences, 13, 2689–2699, https://doi.org/10.5194/bg-13-2689-2016, 2016.
Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., and Zhou, Y.:
Satellite-derived LAI products exhibit large discrepancies and can lead to
substantial uncertainty in simulated carbon and water fluxes, Remote Sens.
Environ., 206, 174–188, https://doi.org/10.1016/j.rse.2017.12.024, 2018.
Liu, Y. Y., Van Dijk, A. I., De Jeu, R. A., Canadell, J. G., McCabe, M. F.,
Evans, J. P., and Wang, G.: Recent reversal in loss of global terrestrial
biomass, Nat. Clim. Change, 5, 470–474, https://doi.org/10.1038/nclimate2581, 2015.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.
W. M. J., and Merchant, J. W.: Development of a global land cover
characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J.
Remote Sens., 21, 1303–1330,
https://doi.org/10.1080/014311600210191, 2000.
Lovenduski, N. S. and Bonan, G. B.: Reducing uncertainty in projections of
terrestrial carbon uptake, Environ. Res. Lett., 12, 044020, https://doi.org/10.1088/1748-9326/aa66b8, 2017.
Lovett, G. M., Cole, J. J., and Pace, M. L.: Is net ecosystem production
equal to ecosystem carbon accumulation?, Ecosystems, 9, 152–155, https://doi.org/10.1007/s10021-005-0036-3, 2006.
Mack, P. E.: Viewing the Earth: The social construction of the Landsat
satellite system, MIT Press, Cambridge, Massachusetts, United States, available at: https://books.google.ca/books?id=Pk7WtI2MJPgC (last access: 1 May 2021), 1990.
Maki, T., Ikegami, M., Fujita, T., Hirahara, T., Yamada, K., Mori, K.,
Takeuchi, A., Tsutsumi, Y., Suda, K., and Conway, T. J.: New technique to
analyse global distributions of CO2 concentrations and fluxes from
non-processed observational data, Tellus B, 62, 797–809, https://doi.org/10.1111/j.1600-0889.2010.00488.x, 2010.
Malhi, Y., Aragao, L. E. O., Metcalfe, D. B., Paiva, R., Quesada, C.
A., Almeida, S., Anderson, L., Brando, P., Chamber, J. Q., da Costa, A. C.
L., Hutyra, L. R., Oliveira, P., Patino, S., Pyle, E., Robertson, A., and
Teixeira, L.: Comprehensive assessment of carbon productivity, allocation
and storage in three Amazonian forests, Glob. Change Biol., 15, 1255–1274,
https://doi.org/10.1111/j.1365-2486.2008.01780.x, 2009.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H.,
Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T.,
Jimenéz-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S.,
Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B.,
Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira,
S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J.,
Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider,
T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D.,
Stein, L., Stemmler, I., Stevens, B., von Storch, J.- S., Tian, F., Voigt,
A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner,
E.: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2)
and its response to increasing CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
https://doi.org/10.1029/2018MS001400, 2019.
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H.
W., Bouwman, A. F., Fekete, B. M., Kroeze, C., and Van Drecht, G.: Global
nutrient export from WaterSheds 2 (NEWS 2): model development and
implementation, Environ. Modell. Softw., 25, 837–853,
https://doi.org/10.1016/j.envsoft.2010.01.007, 2010.
McGroddy, M. E., Daufresne, T., and Hedin, L. O.: Scaling of
stoichiometry in forests worldwide: Implications of terrestrial
redfield-type ratios, Ecology, 85, 2390–2401, https://doi.org/10.1890/03-0351, 2004.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a
database of monthly climate observations and associated high-resolution
grids, Int. J. Climatol., 25, 693–712, https://doi.org/10.1002/joc.1181, 2005.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet. Part 2:
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Mouillot, F., and Field, C. B.: Fire history and the global carbon budget: A
1∘ × 1∘ fire history reconstruction for the
20th century, Glob. Change Biol., 11, 398–420, https://doi.org/10.1111/j.1365-2486.2005.00920.x, 2005.
Myneni, R. B., Ramakrishna, R., Nemani, R., and Running, S. W.: Estimation
of global leaf area index and absorbed PAR using radiative transfer
models, IEEE T. Geosci. Remote, 35, 1380–1393,
https://doi.org/10.1109/36.649788, 1997.
NASA LP DAAC.: MOD17A3 Terra/MODIS net primary production yearly L4 global
1 km, NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and
Science (EROS) Center, Sioux Falls, South Dakota,
https://doi.org/10.5067/ASTER/AST_L1T.003, 2017.
Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P.,
King, J. S., and Oren, R.: Forest response to elevated CO2 is conserved
across a broad range of productivity, P. Natl. Acad. Sci. USA, 102, 18052–18056,
https://doi.org/10.1073/pnas.0509478102, 2005.
Nowak, R. S., Ellsworth, D. S., and Smith, S. D.: Functional responses of
plants to elevated atmospheric CO2 – do photosynthetic and productivity
data from FACE experiments support early predictions?, New Phytol., 162,
253–280, https://doi.org/10.1111/j.1469-8137.2004.01033.x,
2004.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H.
E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura,
Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.:
Terrestrial Ecoregions of the World: A New Map of Life on
Earth, BioScience, 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2006.
Orth, R., Dutra, E., Trigo, I. F., and Balsamo, G.: Advancing land surface model development with satellite-based Earth observations, Hydrol. Earth Syst. Sci., 21, 2483–2495, https://doi.org/10.5194/hess-21-2483-2017, 2017.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y. W., and Li, Y.: The Fluxnet2015 dataset and the ONEFlux processing pipeline
for eddy covariance data, Sci. Data, 7, 1–27, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Phillips, L. B., Hansen, A. J., and Flather, C. H.: Evaluating the species
energy relationship with the newest measures of ecosystem energy: NDVI
versus MODIS primary production, Remote Sens. Environ., 112, 4381–4392,
https://doi.org/10.1016/j.rse.2008.04.012, 2008.
Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., and Zhu, X.:
Plant phenology and global climate change: Current progresses and
challenges, Glob. Change Biol., 25, 1922–1940, https://doi.org/10.1111/gcb.14619, 2019.
Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C., Lederer, D., Ottlé, C., Peters, M., and Peylin, P.: Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative, Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, 2015.
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global fire emissions database, version 4.1 (GFEDv4), ORNL
DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1293, 2017.
Reichler, T. and Kim, J.: How well do coupled models simulate today's
climate?, B. Am. Meteorol. Soc., 89, 303–312, https://doi.org/10.1175/BAMS-89-3-303, 2008.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O.,
and Toomey, M.: Climate change, phenology, and phenological control of
vegetation feedbacks to the climate system, Agr. Forest Meteorol., 169,
156–173, https://doi.org/10.1016/j.agrformet.2012.09.012, 2013.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E.,
Seyednasrollah, B., and Hanson, P. J.: Ecosystem warming extends vegetation
activity but heightens vulnerability to cold temperatures, Nature, 560,
368–371, https://doi.org/10.1038/s41586-018-0399-1, 2018.
Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, L., Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Loosveldt Tomas, S., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – technical overview, Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, 2020.
Rodda, S. R., Thumaty, K. C., Praveen, M. S. S., Jha, C. S., and Dadhwal, V.
K.: Multi-year eddy covariance measurements of net ecosystem exchange in
tropical dry deciduous forest of India, Agr. Forest Meteorol., 301, 108351,
https://doi.org/10.1016/j.agrformet.2021.108351, 2021.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T.,
Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., and Morel, A.:
Benchmark map of forest carbon stocks in tropical regions across three
continents, P. Natl. Acad. Sci. USA, 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J. B. S., Hall,
R. J., Pathe, C., Schmullius, C., Schepaschenko, D., Shvidenko, A., Thurner,
M., and Wegmüller, U.: Forest growing stock volume of the northern
hemisphere: Spatially explicit estimates for 2010 derived from Envisat
ASAR, Remote Sens. Environ., 168, 316–334, https://doi.org/10.1016/j.rse.2015.07.005, 2015.
Saugier, B., Roy, J., and Mooney, H. A.: 23 – Estimations of Global Terrestrial Productivity: Converging toward a Single Number?, in: Physiological Ecology, Global Terrestrial Productivity, Academic Press,
San Diego, USA, 543–557, https://doi.org/10.1016/B978-012505290-0/50024-7, 2001.
Schlesinger, W. H.: Biogeochemistry: An analysis of global change, 2nd edn.,
Academic Press, Oxford, United Kingdom, https://doi.org/10.1017/S0016756898231505,
1997.
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A.,
Colin, J., and Madec, G.: Evaluation of CNRM Earth System Model, CNRM-ESM2-1:
Role of Earth System Processes in Present-Day and Future Climate, J. Adv.
Model. Earth Sy., 11, 4182–4227, https://doi.org/10.1029/2019MS001791, 2019.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire,
A., and Zerroukat, M.: UKESM1: Description and evaluation of the UK Earth System
Model, J. Adv. Model. Earth Sy., 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Shevliakova, E., Malyshev, S., Martinez-Cano, I., Milly, P. C. D., Pacala,
S. W., Ginoux, P., Dunne, K. A., Dunne, J. P., Dupius, C., Findell, K.,
Ghannam, K., Horowitz, L. W., John, J. G., Knutson, T. R., Krasting, J. P.,
Naik, V., Zadeh, N., Zeng, F., and Zeng, Y.: The land component LM4. 1 of
the GFDL Earth System Model ESM4. 1: biophysical and biogeochemical
processes and interactions with climate, J. Adv. Model. Earth Sy.,
2019MS002040, in review, 2021.
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy
height globally with spaceborne lidar, J. Geophys. Res.-Biogeo., 116, G04021,
https://doi.org/10.1029/2011JG001708, 2011.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler,
T., Schepaschenko, D., Shvidenko, A., Kompter, E., Ahrens, B., Levick, S.
R., and Schmullius, C.: Carbon stock and density of northern boreal and
temperate forests, Global Ecol. Biogeogr., 23, 297–310, https://doi.org/10.1111/geb.12125, 2014.
Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., Arneth,
A., Chang, J., Chen, G., Ciais, P., Gerber, S., Ito, A., Huang, Y., Joos,
F., Lienert, S., Messina, P., Olin, S., Pan, S., Peng, C., Saikawa, E.,
Thompson, R. L., Vuichard, N., Winiwarter, W., Zaehle, S., Zhang, B., Zhang,
K., and Zhu, Q.: The global N2O model intercomparison project, B. Am.
Meteorol. Soc., 99, 1231–1251, https://doi.org/10.1175/BAMS-D-17-0212.1, 2018.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Tucker, C. J., Fung, I. Y., Keeling, C. D., and Gammon, R. H.: Relationship
between atmospheric CO2 variations and a satellite-derived vegetation
index, Nature, 319, 195–199, https://doi.org/10.1038/319195a0,
1986.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P., Meyers,
T. P., and Wesely, M. L.: Correcting eddy-covariance flux underestimates
over a grassland, Agr. Forest Meteorol., 103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Umair, M., Kim, D., Ray, R. L., and Choi, M.: Estimating land surface
variables and sensitivity analysis for CLM and VIC simulations using remote
sensing products, Sci. Total Environ., 633, 470–483, https://doi.org/10.1016/j.scitotenv.2018.03.138, 2018.
Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D.,
and Tien Bui, D.: Improving accuracy estimation of Forest Aboveground
Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery
and machine learning: A case study of the Hyrcanian forest area
(Iran), Remote Sens., 10, 172, https://doi.org/10.3390/rs10020172, 2018.
van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville, H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W., Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S., Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M., and Sheffield, J.: LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome, Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, 2016.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Verger, A., Filella, I., Baret, F., and Peñuelas, J.: Vegetation
baseline phenology from kilometric global LAI satellite products, Remote
Sens. Environ., 178, 1–14, https://doi.org/10.1016/j.rse.2016.02.057, 2016.
Vitousek, P. M., Menge, D. N., Reed, S. C., and Cleveland, C. C.: Biological
nitrogen fixation: rates, patterns and ecological controls in terrestrial
ecosystems, Philos. T. R. Soc. B, 368, 20130119, https://doi.org/10.1098/rstb.2013.0119, 2013.
Vuichard, N. and Papale, D.: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis, Earth Syst. Sci. Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, 2015.
Vuichard, N., Messina, P., Luyssaert, S., Guenet, B., Zaehle, S., Ghattas, J., Bastrikov, V., and Peylin, P.: Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production, Geosci. Model Dev., 12, 4751–4779, https://doi.org/10.5194/gmd-12-4751-2019, 2019.
Waliser, D., Gleckler, P. J., Ferraro, R., Taylor, K. E., Ames, S., Biard, J., Bosilovich, M. G., Brown, O., Chepfer, H., Cinquini, L., Durack, P. J., Eyring, V., Mathieu, P.-P., Lee, T., Pinnock, S., Potter, G. L., Rixen, M., Saunders, R., Schulz, J., Thépaut, J.-N., and Tuma, M.: Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6, Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, 2020.
WCRP: CMIP Phase 6 (CMIP6), available at: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 (last access: 23 January 2021), 2020.
Wei, J., Dirmeyer, P. A., Yang, Z. L., and Chen, H.: Effect of land model
ensemble versus coupled model ensemble on the simulation of precipitation
climatology and variability, Theor. Appl. Climatol., 134, 793–800, https://doi.org/10.1007/s00704-017-2310-7, 2018.
Wieder, W.: Regridded Harmonized World Soil Database v1.2, ORNL DAAC, Oak
Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1247,
2014.
Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K.: Future
productivity and carbon storage limited by terrestrial nutrient
availability, Nat. Geosci., 8, 441–444, https://doi.org/10.1038/ngeo2413, 2015.
Williams, K. E., Harper, A. B., Huntingford, C., Mercado, L. M., Mathison, C. T., Falloon, P. D., Cox, P. M., and Kim, J.: How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?, Geosci. Model Dev., 12, 3207–3240, https://doi.org/10.5194/gmd-12-3207-2019, 2019.
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6 , Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A.
R., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review
of advances over 50 years, Remote Sens. Environ., 233, 111383, https://doi.org/10.1016/j.rse.2019.111383, 2019.
Xie, X., Li, A., Tan, J., Lei, G., Jin, H., and Zhang, Z.: Uncertainty
analysis of multiple global GPP datasets in characterizing the lagged effect
of drought on photosynthesis, Ecol. Indic., 113, 106224, https://doi.org/10.1016/j.ecolind.2020.106224, 2020.
Xu, Z., Jiang, Y., Jia, B., and Zhou, G.: Elevated-CO2 response of
stomata and its dependence on environmental factors, Front. Plant Sci., 7,
657, https://doi.org/10.3389/fpls.2016.00657, 2016.
Yan, Y., Zhou, X., Jiang, L., and Luo, Y.: Effects of carbon turnover time on terrestrial ecosystem carbon storage, Biogeosciences, 14, 5441–5454, https://doi.org/10.5194/bg-14-5441-2017, 2017.
Yoshikawa, C., Kawamiya, M., Kato, T., Yamanaka, Y., and Matsuno, T.:
Geographical distribution of the feedback between future climate change and
the carbon cycle, J. Geophys. Res.-Biogeo., 113, G03002,
https://doi.org/10.1029/2007JG000570, 2008.
Zaehle, S. and Dalmonech, D.: Carbon–nitrogen interactions on land at
global scales: current understanding in modelling climate biosphere
feedbacks, Curr. Opin. Env. Sust., 3, 311–320, https://doi.org/10.1016/j.cosust.2011.08.008, 2011.
Zhang, Y. J., Yu, G. R., Yang, J., Wimberly, M. C., Zhang, X. Z., Tao,
J., Jiang, Y. B., and Zhu, J. T.: Climate-driven global changes in carbon
use efficiency, Global Ecol. Biogeogr., 23, 144–155, https://doi.org/10.1111/geb.12086, 2014.
Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., and
Li, Z.: The potential of satellite FPAR product for GPP estimation: An
indirect evaluation using solar-induced chlorophyll fluorescence, Remote
Sens. Environ., 240, 111686, https://doi.org/10.1016/j.rse.2020.111686, 2020.
Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of
the MODIS terrestrial gross and net primary production global data
set, Remote Sens. Environ., 95, 164–176, https://doi.org/10.1016/j.rse.2004.12.011, 2005.
Zhu, Q., Castellano, M. J., and Yang, G.: Coupling soil water processes and
the nitrogen cycle across spatial scales: Potentials, bottlenecks and
solutions, Earth-Sci. Rev., 187, 248–258, https://doi.org/10.1016/j.earscirev.2018.10.005, 2018.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao,
S., Nemani, R. R., and Myneni, R. B.: Global data sets of vegetation leaf
area index (LAI)3g and fraction of photosynthetically active radiation
(FPAR)3g derived from global inventory modeling and mapping studies (GIMMS)
normalized difference vegetation index (NDVI3g) for the period 1981 to
2011, Remote Sens., 5, 927–948, https://doi.org/10.3390/rs5020927, 2013.
Ziehn, T., Kattge, J., Knorr, W., and Scholze, M.: Improving the
predictability of global CO2 assimilation rates under climate
change, Geophys. Res. Lett., 38, L10404,
https://doi.org/10.1029/2011GL047182, 2011.
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix,
M., Stevens, L., Wang, Y. P., and Srbinovsky, J.: The Australian Earth System
Model: ACCESS-ESM1.5, Journal of Southern Hemisphere Earth Systems
Science, 70, 193–214, https://doi.org/10.1071/ES19035, 2020.
Short summary
Land biogeochemical cycles influence global climate change. Their influence is examined through complex computer models that account for the interaction of the land, ocean, and atmosphere. Improved models used in the recent round of model intercomparison used inconsistent validation methods to compare simulated land biogeochemistry to datasets. For the next round of model intercomparisons we recommend a validation protocol with explicit reference datasets and informative performance metrics.
Land biogeochemical cycles influence global climate change. Their influence is examined through...