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Abstract. The vital role of terrestrial biogeochemical cy-
cles in influencing global climate change is explored by
modelling groups internationally through land surface mod-
els (LSMs) coupled to atmospheric and oceanic components
within Earth system models (ESMs). The sixth phase of
the Coupled Model Intercomparison Project (CMIP6) pro-
vided an opportunity to compare ESM output by provid-
ing common forcings and experimental protocols. Despite
these common experimental protocols, a variety of terrestrial
biogeochemical cycle validation approaches were adopted
by CMIP6 participants, leading to ambiguous model perfor-
mance assessment and uncertainty attribution across ESMs.
In this review we summarize current methods of terrestrial
biogeochemical cycle validation utilized by CMIP6 partici-
pants and concurrent community model comparison studies.
We focus on variables including the dimensions of evalua-
tions, observation-based reference datasets, and metrics of
model performance. To ensure objective and thorough val-
idations for the seventh phase of CMIP (CMIP7), we rec-
ommend the use of a standard validation protocol employing
a broad suite of certainty-weighted observation-based refer-
ence datasets, targeted model performance metrics, and com-
parisons across a range of spatiotemporal scales.

1 Introduction

The terrestrial biosphere is presently responsible for seques-
tering about a quarter of anthropogenic carbon emissions,
substantially reducing the severity of ongoing climate change
(Friedlingstein et al., 2020). The future capacity of the ter-
restrial biosphere to sequester CO2 emissions is uncertain

due to non-linear feedbacks such as CO2 fertilization, grow-
ing season extension in cold-limited regions, enhanced het-
erotrophic respiration, and potentially other feedbacks, as
well as environmental and physiological constraints such as
moisture availability, nutrient limitations, and stomatal clo-
sure (Fleischer et al., 2019; Green et al., 2019; Xu et al.,
2016; Wieder et al., 2015). Earth system models (ESMs) are
a means to simulate past, present, and future terrestrial bio-
geochemical cycles, examine the influence of changes in cli-
mate and atmospheric CO2 concentration on CO2 uptake, ex-
plore feedbacks and limitations, and estimate anthropogenic
carbon emissions compatible with avoiding a given thresh-
old in global temperature change. ESMs simulate global ex-
changes of matter and energy through the coupling of land,
atmospheric, and oceanic components. Through concerted
efforts, successive generations of ESMs have improved in
terms of spatiotemporal resolution, complexity, and process
representation (Anderson et al., 2016). Despite this progress,
terrestrial biogeochemical cycles remain a major source of
uncertainty in future climate projections (Arora et al., 2020;
Lovenduski and Bonan, 2017). This uncertainty stems from
limited process understanding, lacking observational con-
straints, inherent cycle variability, temporal discrepancy be-
tween forcings and responses (Sellar et al., 2019; Ciais et al.,
2013), and uncertain stock quantifications (Ito et al., 2020;
Wieder et al., 2015), which together compound uncertainty
within models. Among models, this uncertainty is ampli-
fied by artefacts in the form of inconsistent model struc-
ture, boundary conditions, forcing datasets, experimental
protocols, and benchmarking observational datasets, which is
magnified by the increasing number, diversity, and complex-
ity of ESMs (Eyring et al., 2020). Subsequently, a study on
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uncertainty in projected terrestrial carbon uptake based upon
12 Coupled Model Intercomparison Project phase 5 (CMIP5)
ESMs indicated that uncertainty stemming from model struc-
ture may be 4 times greater than uncertainty from different
emission scenarios and internal variability (Lovenduski and
Bonan, 2017). Some progress has been made in addressing
the large uncertainty associated with the terrestrial biogeo-
chemistry in ESMs, as comparison of the carbon–climate and
carbon–concentration feedback among ESMs participating
in the sixth phase of CMIP (CMIP6) by Arora et al. (2020)
shows a reduced model spread amongst models that included
a nitrogen cycle, which provided a realistic constraint on
photosynthesis in the context of elevated atmospheric CO2
concentration. However, the spread in estimated feedback pa-
rameters across ESMs overall has not been significantly re-
duced from CMIP6 relative to CMIP5 (Arora et al., 2020,
2013).

To answer scientific questions regarding climate change,
the CMIP was initiated in 1995 by the World Climate Re-
search Programme’s (WCRP) Working Group of Coupled
Modelling (WCRP, 2020). The CMIP designates standard
experimental protocols, model output formats, and model
forcings to diagnose climate change variability, predictabil-
ity, and uncertainty following various scenarios within a
multi-model framework. CMIP6 began in 2013 with 3 years
of planning and community consultation to address knowl-
edge gaps, prior to the conduction of simulations and anal-
yses in 2016 and onwards. Model validation in the context
of CMIP consists of demonstrating sufficient agreement be-
tween model output data and historical observation-based
reference data following model development and is a cru-
cial process in model advancement. Such comparison facili-
tates model improvement by identifying model limitations in
performance or sources of model–data uncertainty (Loven-
duski and Bonan, 2017) and informs the weighting of dif-
ferent ESMs in influencing climate projections and policy
(Eyring et al., 2019). CMIP6 specified detailed experimental
protocols for modelling group participants to facilitate ob-
jective comparisons of the output of different models with
common forcings (Eyring et al., 2016a).

Here we focus on validations of the stocks and biologi-
cal fluxes of fully coupled ESMs and associated land sur-
face model (LSM) releases from 2017 onwards with explicit
terrestrial biogeochemical cycle representation contributed
by participating CMIP6 modelling groups (hereafter partici-
pants; Table 1; Arora et al., 2020). Validations are analyzed in
terms of variables included, spatiotemporal scales, reference
datasets, and metrics of performance. Section 2 compares the
methods of historical terrestrial biogeochemical cycle valida-
tion used by participants. Section 3 summarizes the methods
used in community analyses of CMIP5 era models and pro-
vides a critique of these methods. A future outlook is pre-
sented in Sect. 4.

2 Participant methods of validating terrestrial
biogeochemical cycles

To participate in CMIP6, participants had to submit four Di-
agnosis, Validation, and Characterization of Klima (DECK)
experimental simulations, which included a control simula-
tion with prescribed idealized pre-industrial (1850) forcing
for at least 500 years to demonstrate stability in global cli-
mate and biogeochemical exchanges. Additionally, partic-
ipants had to conduct historical simulations from 1850 to
2014 using designated CMIP6 forcings (available at https://
esgf-node.llnl.gov/search/input4MIPs/, last access: 8 Febru-
ary 2021) and initialization from the pre-industrial forc-
ing control run (Eyring et al., 2016a). Each modelling
group demonstrated stability in the global carbon cycle, with
global net carbon exchange below the suggested limit of
0.1 Pg C yr−1 by Jones et al. (2016), while no suitable pre-
industrial simulation global nitrogen or phosphorus flux was
specified for CMIP6, though these were generally below
2.0 Pg yr−1 (Ziehn et al., 2020). Each modelling group val-
idated terrestrial biogeochemical cycle components for the
historical simulation in a unique fashion, which is summa-
rized below and detailed in Appendix A.

2.1 Variables included in validations

The number of terrestrial biogeochemical cycle variables
evaluated against observation-based estimates by partici-
pants varied considerably (from 0 to 21), with a total of
38 unique variables evaluated by all participants combined.
The variable validated most often was gross primary produc-
tion (GPP), which was validated by all but one participant.
The next nine most validated variables in descending order
were soil carbon, the global land carbon sink, leaf area in-
dex (LAI), vegetation carbon, ecosystem respiration, global
land–atmosphere CO2 flux, surface CO2 concentrations, to-
tal biomass, and burned area (Fig. 1). For a list of variable
definitions, see Table 2.

The majority of variables were validated by just one or two
participants (Fig. 2). Danabasoglu et al. (2020) and Lawrence
et al. (2019) validated a relatively extensive suite of vari-
ables with the International Land Model Benchmarking (IL-
AMB) package version 2.1 (ILAMBv2.1; Collier et al., 2018,
Fig. 3), including an explicit uncertainty analysis of the influ-
ences of interannual variability, forcing datasets, and model
structure in the form of prescribed versus prognostic vegeta-
tion phenology. While no nitrogen cycle variable was val-
idated by more than one group, soil N2O flux and total
N2O emissions were evaluated by Hajima et al. (2020) and
Lawrence et al. (2019), respectively.

A variety of spatiotemporal scales of these variables were
considered in validations both within and among partici-
pants. Spatial scales consisted of site-level, model grid cell,
degree of latitude, region, and global scales, with the lat-
ter being the most common across participants. Temporal
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Table 1. Modelling group contributions to C4MIP of CMIP6 from Arora et al. (2020).

Modelling ESM Land surface model Explicit Dynamic Prognostic Prognostic leaf Reference(s)
group biogeochemistry component N cycle vegetation LAI phenology

CSIRO ACCESS-ESM1.5 CABLE2.4 Yes No Yes No Ziehn et al. (2020)

BCC BCC-CSM2-MR BCC-AVIM2 No No Yes Yes (for Wu et al. (2019);
deciduous) Li et al. (2019)

CCCma CanESM5 CLASS-CTEM No No Yes Yes Swart et al. (2019)

CESM CESM2 CLM5 Yes No Yes Yes Danabasoglu et
al. (2020);
Lawrence et al. (2019)

CNRM CNRM-ESM2-1 ISBA-CTRIP No No Yes Yes (from leaf Séférian et al. (2019);
carbon balance) Delire et al. (2020)

GFDL GFDL-ESM4 LM4.1 No Yes – – Dunne et al. (2020)

IPSL IPSL-CM6A-LR ORCHIDEE, version 2.0 No No Yes Yes Boucher et al. (2020);
Vuichard et al. (2019)

JAMSTEC MIROC-ES2L VISIT-e Yes No Yes Yes Hajima et al. (2020)

MPI MPI-ESM1.2-LR JSBACH3.2 Yes Yes Yes Yes Mauritsen et al. (2019);
Goll et al. (2017)

NCC NorESM2-LM CLM5 Yes No Yes Yes Seland et al. (2020)

UK UKESM1-0-LL JULES-ES-1.0 Yes Yes Yes Yes Sellar et al. (2019)

Table 2. Terms associated with terrestrial biogeochemical cycles and their definitions as used by participants.

Term CMIP6 definition

Gross primary production (GPP) The quantity of CO2 removed from the atmosphere by
vegetation.

Net primary productivity (NPP) The quantity of CO2 removed from the atmosphere by
vegetation minus the quantity of CO2 from autotrophic
respiration.

Autotrophic respiration (AR) The quantity of CO2 from cellular respiration in plants.

Ecosystem respiration (ER) The quantity of CO2 from autotrophic respiration and
heterotrophic respiration.

Heterotrophic respiration (HR) The quantity of CO2 from cellular respiration by het-
erotrophs.

Net ecosystem production (NEP) The quantity of CO2 removed from the atmosphere by
vegetation minus the quantity of CO2 from autotrophic
and heterotrophic respiration.

Net biome production (NBP) The net rate of organic carbon accumulation mi-
nus autotrophic and heterotrophic respiration and non-
respiratory losses from disturbance.

Net ecosystem carbon balance (NECB) The net rate of organic carbon accumulation in an
ecosystem (independent of scale).
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Figure 1. Validation (green) or omission (grey) of the 10 most
frequently validated variables by participants (treating ESMs and
LSMs separately): gross primary productivity (GPP), soil carbon
(SC), global land carbon sink (GLCS), leaf area index (LAI), veg-
etation carbon (VC), ecosystem respiration (ER), land–atmosphere
CO2 flux (LACF), surface CO2 concentrations (Surf[CO2]), total
biomass (TB), and burned area (BA).

Figure 2. Frequency of a given variable being validated across par-
ticipants (treating ESMs and LSMs separately). Most variables were
validated only once across participants (leftmost x axis), while GPP
was validated by 11 participants (rightmost bar).

scales included daily, seasonal, annual, decadal, select pe-
riods, and long-term trends, accumulations, or averages over
the whole historical simulation period from 1850 to 2014.
For more detail on the spatiotemporal scales of validation
used by each participant, readers should refer to Appendix A.

Dynamic variables such as LAI were subject to a detailed as-
sessment, including annual maximum and minimum magni-
tude (Séférian et al., 2019) and month (Li et al., 2019), sea-
sonality (Ziehn et al., 2020), and seasonal average, as well
as global averages. GPP was also evaluated across a vari-
ety of scales, including in terms of the daily, seasonal, and
annual magnitude on a plant functional type (PFT), spatial,
and global basis against site-level observations (Vuichard et
al., 2019), as well as globally in terms of functional relation-
ships with temperature and precipitation (Swart et al., 2019)
and the relative contribution of drivers of variation (Vuichard
et al., 2019). Biomass and carbon stock variables were eval-
uated in terms of spatial distributions or global averages over
the chosen time periods, often on a decadal scale (Li et al.,
2019). Global vegetation and soil carbon turnover times were
also evaluated for selected time periods (Delire et al., 2020;
Lawrence et al., 2019).

2.2 Reference datasets

For variables which were validated by more than one mod-
elling group, such as GPP, a variety of observation-based
reference datasets were utilized. For example, across par-
ticipants several different GPP reference datasets were used
(Table 3), though most participants utilized model tree en-
semble (MTE) machine-learning upscaled ground eddy-
covariance, meteorological, and satellite observation-based
estimates of GPP from Jung et al. (2011). Interestingly, one
group, the Centre National de Recherches Météorologiques
(CNRM; Delire et al., 2020), used a more recent Fluxnet-
based GPP dataset (FluxComv1; Jung et al., 2016; Tramon-
tana et al., 2016) and further used the mean of 12 prod-
ucts therein. CNRM and the Institut Pierre Simon Laplace
(IPSL, Vuichard et al., 2019) were the only groups to in-
clude a comparison to site-level GPP observations. A vari-
ety of reference datasets were also utilized for the second
most frequently validated variable, soil carbon (Table 4),
spanning a 12-year publication range (Batjes, 2016; Global
Soil Data Task Group, 2002). Several participants used more
than one reference dataset for evaluation of soil carbon de-
pending upon regional or global focus, such as the Northern
Circumpolar Soil Carbon Database provided by Hugelius et
al. (2013) for mid–high latitudes, while global soil carbon
estimates were obtained from Batjes (2016), Carvalhais et
al. (2014), Todd-Brown et al. (2013), and FAO (2012). While
biomass and carbon stocks were predominantly compared to
present-day observations, Delire et al. (2020) used records
from the Global Database of Litterfall Mass and Litter Pool
Carbon and Nutrients database, which extends from 1827 to
1997 (Holland et al., 2015).

2.3 Statistical metrics of model performance

A variety of statistical metrics were used to quantify model
performance in simulating historical variables in comparison
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Figure 3. Validation results for terrestrial variables within the CLM5 by Lawrence et al. (2019) using ILAMB analysis (Collier et al.,
2018) including three different climate forcing data products (individual columns) and two forms of model structure (column groups).
CLM5SP denotes MODIS-prescribed (Zhao et al., 2005) vegetation phenology, while CLM5GBC denotes prognostic phenology. Climate
forcing data products include WATCH/WFDEI from Mitchell and Jones (2005), CRUNCEPv7, the default forcing dataset used by the Global
Carbon Project (Le Quéré et al., 2018), and GSWP3v1, the default forcing dataset used in the Land Surface, Snow and Soil Moisture Model
Intercomparison Project (van den Hurk et al., 2016). This figure was made available under a Creative Commons Attribution License (CC
BY).

to observations, though chosen metrics were more consistent
than selected variables. The comparison of simulated and
observation-based averages calculated over space and time
was the most common metric used by all but two partici-
pants (Table 5). The next most commonly used metric was
root-mean-squared error (RMSE), followed by bias (simu-
lated− observed) on a spatial or global basis. Evaluations
of global accumulations, seasonal phase, seasonal maximum
and/or minimum, and global totals were also used. The Tay-
lor diagram, which geometrically combines spatiotemporal
correlation, standard deviation, and root mean square (rms)

difference (Taylor, 2001), was used to summarize model per-
formance by three participants (Li et al., 2019; Collier et al.,
2018; Goll et al., 2017). The correlation coefficient (r) was
also used by three participants (Swart et al., 2019; Maurit-
sen et al., 2019; Goll et al., 2017). RMSE normalized by
the standard deviation of observations (NRMSE) was only
used by Swart et al. (2019), while the coefficient of deter-
mination (r2) was only used by Mauritsen et al. (2019). A
targeted metric in the form of dissected mean squared devia-
tion (Kobayashi and Salam, 2000), the sum of squared bias,
squared difference between standard deviations, and lack of

https://doi.org/10.5194/gmd-14-5863-2021 Geosci. Model Dev., 14, 5863–5889, 2021



5868 L. Spafford and A. H. MacDougall: Validation of terrestrial biogeochemistry in CMIP6

Table 3. The source for gross primary production (GPP) data referenced by each modelling group for ESM or LSM simulations. Adjacent
contributions from the same modelling group are banded in a common fashion for readability. LSM-focused validations by each modelling
group are presented with the associated ESM in brackets.

Model validation GPP reference data

ACCESS-ESM1.5 Jung et al. (2011); Ziehn et al. (2011); Beer et al. (2010)
BCC-CSM2-MR –
BCC-AVIM2.0 (BCC-CSM2-MR) Jung et al. (2011)
CanESM5 Jung et al. (2009)
CESM2 Jung et al. (2011)
CLM5 (CESM2) Jung et al. (2011)
CNRM-ESM2-1 –
ISBA-CTRIP (CNRM-ESM2-1) Jung et al. (2016); Tramontana et al. (2016); Joetzjer et al. (2015)
IPSL-CM6A-LR –
ORCHIDEE (IPSL-CM6A-LR) Jung et al. (2011)
GFDL-ESM4.1 –
MIROC-ES2L Jung et al. (2011)
MPI-ESM1.2-LR –
JSBACH3.10 (MPI-ESM1.2-LR) –
NORESM2 Jung et al. (2011)
UKESM1-0-LL Jung et al. (2011)

Table 4. The source for soil carbon data referenced by each modelling group for ESM or LSM simulations. Adjacent contributions from the
same modelling group are banded in a common fashion for readability. LSM-focused validations by each modelling group are presented with
the associated ESM in brackets.

Model validation Soil carbon reference data

ACCESS-ESM1.5 –
BCC-CSM2-MR –
BCC-AVIM2.0 (BCC-CSM2-MR) –
CanESM5 –
CESM2 Hugelius et al. (2013); Todd-Brown et al. (2013)
CLM5 (CESM2) FAO (2012)
CNRM-ESM2-1 –
ISBA-CTRIP (CNRM-ESM2-1) FAO (2012)
IPSL-CM6A-LR –
ORCHIDEE (IPSL-CM6A-LR) –
GFDL-ESM4.1 –
MIROC-ES2L Batjes (2016); Hugelius et al. (2013); Todd-Brown et al. (2013)
MPI-ESM1.2-LR Goll et al. (2015)
JSBACH3.10 (MPI-ESM1.2-LR) –
NORESM2 FAO (2012)
UKESM1-0-LL Batjes (2016); Carvalhais et al. (2014); Global Soil Data Task Group (2002)

correlation weighted by standard deviation, was used to dis-
tinguish model sources of error by Vuichard et al. (2019).
In addition to quantitative metrics, the qualitative aspects of
simulations were compared to observational reference data,
such as in demonstrating source or sink behaviour over time
(Danabasoglu et al., 2020) or in visual comparison of spatial
distribution maps.

3 Community methods of validating terrestrial
biogeochemical cycles

A variety of software and projects have been dedicated to
the communal evaluation of ESM (Gleckler et al., 2016) and
LSM performance (Kumar et al., 2012; Gulden et al., 2008),
with CMIP6-era collaborative efforts including the Earth
System Model Evaluation Tool version 2 (ESMValToolv2.0;
Eyring et al., 2016b) and ILAMBv2.1 (Danabasoglu et al.,
2020; Lawrence et al., 2019; Collier et al., 2018). Both ES-
MValToolv2.0 and ILAMBv2.1 are openly available tools
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Table 5. Model performance metrics used by each modelling group for ESM or LSM simulations. Adjacent contributions from the same
modelling group are banded in a common fashion for readability. LSM-focused validations by each modelling group are presented with the
associated ESM in brackets.

Model validation Presented model performance assessment metrics

ACCESS-ESM1.5 Space-time averages, seasonal amplitude, timing, and magnitude of annual maximums and min-
imums

BCC-CSM2-MR –

BCC-AVIM2.0 (BCC-CSM2-MR) Average annual cycle phase, global mean bias, RMSE, Taylor score

CanESM5 Space-time averages, geographic distribution of time averages and bias, latitudinal averages,
correlation coefficient (r), RMSE, NRMSE ( RMSE

standard deviation of observations ), change in NRMSE

CESM2 Space-time averages, seasonal cycles, spatial distributions, time series, interannual variability,
global accumulations, functional relationships, relative bias, RMSE, ILAMB relative scale

CLM5 (CESM2) Space-time averages, seasonal cycles, annual monthly maximum, spatial distributions, global
totals, turnover time, time series, interannual variability, functional relationships, bias, relative
bias, RMSE, ILAMB relative scale

CNRM-ESM2-1 Average annual maximums and minimums, spatial distribution, bias, RMSE, model correlation
between spatial pattern of error

ISBA-CTRIP (CNRM-ESM2-1) Geographic distribution of time averages and bias, latitudinal averages, global accumulations,
bias, spatial correlation, turnover time, average annual maximums, seasonal cycle amplitude
and phase

IPSL-CM6A-LR Global annual averages and accumulations over time

ORCHIDEE (IPSL-CM6A-LR) Daily, seasonal, annual averages, spatial distribution, regional averages, global averages,
RMSE, NRMSE, dissected mean-squared deviation (squared bias, squared difference between
standard deviations, lack of correlation weighted by standard deviations from Kobayashi and
Salam, 2000), relative drivers of variation

GFDL-ESM4.1 Spatial distribution of seasonal amplitude, interannual variability, RMSE, correlation coefficient
(r), coefficient of determination (r2)

MIROC-ES2L Space-time averages, latitudinal averages, spatial distribution, gradient, seasonality, density,
global accumulations

MPI-ESM1.2-LR Spatial variability, latitudinal average density, global accumulations

JSBACH3.10 (MPI-ESM1.2-LR) Space-time averages, spatial variability, frequency distribution, response ratio, correlation coef-
ficient (r), RMSE, Taylor score

NORESM2 Global averages and totals

UKESM1-0-LL Space-time averages, spatial distribution, latitudinal averages, global accumulations and totals

for the evaluation of a variety of model output against re-
processed observations (https://www.esmvaltool.org/, https:
//pypi.org/project/ILAMB/, last access: 1 May 2021; Eyring
et al., 2020, 2016b; Collier et al., 2018). The observation-
based reference datasets for each are displayed in Table 6.
For the ESMValToolv2.0 dataset, re-processing for compat-
ible comparison in space and masking of missing obser-
vations is detailed in Righi et al. (2020). The analysis of
the land carbon cycle in ESMValToolv2.0 (Eyring et al.,
2020) is based upon the approach of Anav et al. (2013)
for considering long-term trends, interannual variability, and
seasonal cycles. A variety of tailored model performance

metrics are available with ESMValToolv2.0 (Eyring et al.,
2020). The relative space-time root-mean-square deviation
(RMSD) indicates model success relative to the multi-model
median in simulating the seasonal cycle of key variables that
was originally detailed in Flato et al. (2013) and allows si-
multaneous comparison to more than one observational ref-
erence for each simulated variable (where available). ES-
MValTool2.0’s AutoAssess function provides a highly re-
solved model performance evaluation for 300 individual vari-
ables, originally developed by the UK Met Office. Further,
land cover can be comprehensively evaluated with ESM-
ValToolv2.0 in terms of area, mean fraction, and bias on a
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regional and global basis, accommodating different model
representations of land cover. ILAMBv2.1 was used to vali-
date terrestrial biogeochemical cycle components in CESM2
(Danabasoglu et al., 2020) and CLM5 (Fig. 3; Lawrence et
al., 2019). ILAMBv2.1 was also used to demonstrate the ab-
solute and relative performance of Dynamic Global Vegeta-
tion Models (DGVMs) within several iterations of the Global
Carbon Project (Friedlingstein et al., 2020, 2019; Le Quéré
et al., 2018). In addition to variables presented in Table 6,
functional relationships between these variables and temper-
ature and precipitation are provided for validation purposes
in ILAMBv2.1. ILAMBv2.1 employs a weighting system
to assign scores to observation-based datasets, which en-
compasses certainty measures, spatiotemporal-scale appro-
priateness, and process implications. In computing statistical
model performance scores, ILAMBv2.1 acknowledges how
reference observations represent discontinuous constants in
time and space. For example, if a reference dataset contains
average information across a span of years, the annual cycle
of such a dataset is assumed to be undefined and is there-
fore not used as a reference. The calculation of averages over
time in ILAMBv2.1 addresses spatiotemporally discontinu-
ous data by performing calculations over specific intervals
for which data are considered valid. For each variable evalua-
tion, ILAMBv2.1 generates a series of graphical diagnostics,
including spatial contour maps, time series plots, and Taylor
diagrams (Taylor, 2001), as well as statistical model perfor-
mance scores, including period mean, bias, RMSE, spatial
distribution, interannual coefficient of variation, seasonal cy-
cle, and long-term trend. These scores are then scaled based
upon the weighting of reference observation-based datasets,
and for multi-model comparisons they are presented across
metrics and datasets to provide a single score.

4 Critique of validation approaches

While standard protocols were used by participants for his-
torical simulations in CMIP6, no standard protocol in terms
of variables evaluated, reference data, performance metrics,
or acceptable performance threshold was adopted for terres-
trial biogeochemical cycle validation. The validation of par-
ticular variables by different participants occasionally em-
ployed the same datasets, though in many cases inconsis-
tent reference datasets were used for the same variable, and
the spatial and temporal dimension of validations was often
distinct. This contrasts with other works employing multi-
ple models such as the Global Carbon Project (Friedlingstein
et al., 2020, 2019; Le Quéré et al., 2018), which provides
explicit validation criteria, such as simulating recent histori-
cal net land–atmosphere carbon flux within a particular range
and within the 90 % confidence interval of specified observa-
tions. The stringency of such criteria must be carefully cho-
sen to acknowledge the role of observational uncertainty and
uncertainty stemming from potential model tuning to forcing

datasets. The use of different validation approaches impedes
the comparison of performance across models; however, it
also provides a diverse collection of example methods.

4.1 Variable choice

A comprehensive validation of a process-based model should
include all simulated interacting variables for which a re-
liable empirical reference is available. Improvement in the
simulation of one variable through altered parameters, struc-
ture, or algorithms may translate into degradation for other
variables, which would be otherwise obscured in a restricted
variable analysis (Deser et al., 2020; Ziehn et al., 2020;
Lawrence et al., 2019). Given the scope of CMIP6 pub-
lications in demonstrating model improvements relative to
previous versions and the results of CMIP6 experiments, it
is understandable that most participants validated a few se-
lect variables and that more extensive validations may be in
preparation. Essential climate variables (ECVs) prioritized
for land evaluation in the ESMValToolv2.0 included GPP,
LAI, and NBP (Eyring et al., 2020, 2016b), as these variables
intersect with other ESM components in matter and energy
exchanges (Reichler and Kim, 2008). In contrast, LAI and
NBP were not as frequently validated as GPP by CMIP6 par-
ticipants (Fig. 1), though the third most validated variable,
the global land carbon sink, is equivalent to NBP minus land
use emissions. The most common variable chosen for val-
idation by participants was GPP, which is advantageous as
it represents a crucial carbon cycle flux. GPP designates the
quantity of CO2 removed from the atmosphere and assimi-
lated into structural and non-structural carbohydrates during
photosynthesis by vegetation, part of which is later respired
back to the atmosphere. This quantity is limited by nutri-
ent availability, light, soil moisture, stomatal response to at-
mospheric CO2 concentration, and other environmental fac-
tors (Davies-Barnard et al., 2020) and is the largest carbon
flux between the land biosphere and atmosphere (Xiao et al.,
2019). Over- or under-estimations of GPP can lead to biases
in carbon stocks, which are exacerbated through time (Car-
valhais et al., 2014).

An emergent ecosystem property that integrates a variety
of influential model processes is carbon turnover time calcu-
lated as the ratio of a long-term average total carbon stock
compared to GPP or NPP (Eyring et al., 2020; Yan et al.,
2017; Carvalhais et al., 2014). Carbon turnover times can
be the source of pervasive uncertainty within ESMs, and
their misrepresentation can lead to long-term drifts in car-
bon stocks, fluxes, and feedbacks (Koven et al., 2017). The
evaluation capacity of turnover times was seldom utilized by
CMIP6 participants, despite soil carbon being a relatively
commonly validated variable. Many CMIP5 models were
found to under-estimate turnover times both globally and on
a latitudinal basis (Eyring et al., 2020; Fan et al., 2020), while
two participants here, Delire et al. (2020) and Lawrence et
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Table 6. Select observation-based reference dataset sources for ESMValToolv2.0 (Eyring et al., 2020) and ILAMBv2.1 (Collier et al., 2018),
including net biome production (NBP), leaf area index (LAI), land cover (LC), gross primary production (GPP), net ecosystem exchange
(NEE), soil carbon (SC), vegetation carbon (VC), ecosystem carbon turnover (ECT), vegetation biomass (VB), and burned area (BA). Note
that vegetation carbon is dependent upon vegetation biomass.

Variables ESMValToolv2.0 ILAMBv2.1

NBP Le Quéré et al. (2018);
Maki et al. (2010)

Le Quéré et al. (2016);
Hoffman et al. (2014)

LAI Zhu et al. (2013);
Baret et al. (2007)

De Kauwe et al. (2011);
Myneni et al. (1997)

LC Defourny et al. (2016) –

GPP, NEE Jung et al. (2019, 2011) Lasslop et al. (2010);
Jung et al. (2010)

SC Wieder (2014) Todd-Brown et al. (2013);
Hugelius et al. (2013)

VC Gibbs, 2006 –

ECT Carvalhais et al. (2014) –

VB – Saatchi et al. (2011);
Kellndorfer et al. (2013);
Blackard et al. (2008)

BA – Giglio et al. (2010)

al. (2019), reported over-estimated carbon turnover times de-
spite demonstrating improvement from previous models.

Another approach to validation that combines high-level
variables and re-parameterization efforts is the assessment of
functional relationships or emergent constraints, such as the
relationship between GPP or turnover times and temperature,
moisture, growing season length, and nutrient stoichiometry
(Danabasoglu et al., 2020; Swart et al., 2019; Anav et al.,
2015; McGroddy et al., 2004). Physically interpretable emer-
gent constraints can aid in identifying model components that
are particularly influential for climate projections (Eyring et
al., 2019), such as the temperature control on carbon turnover
in the top metre of soil in cold climates (Koven et al., 2017),
GPP responses to soil moisture availability (Green et al.,
2019), or regional carbon–climate feedbacks (Yoshikawa et
al., 2008). With the goal of realistically simulating Earth
system processes to develop informed predictions of future
climate, large-scope variables that inherit uncertainty from
an amalgamation of processes are often prioritized for val-
idation. Several participants focused on comparing simu-
lated long-term trends or accumulations in global land car-
bon fluxes to observation-based estimates from the Global
Carbon Project (Friedlingstein et al., 2019; Le Quéré et al.,
2018, 2016). While this summation approach can signal a
large bias (Eyring et al., 2020, 2016b; Reichler and Kim,
2008) and reduce the effect of sub-scale noise, it does not
identify sources of model error or may even obscure model
error. For example, if simulated land–atmosphere carbon flux

from the pre-industrial era to the 2010s is found to concur
with observation-based estimates, this could be due in part
to compounding underlying biases which neutralize one an-
other over time (Fisher et al., 2019; Yoshikawa et al., 2008),
or alternatively suitable global averages may be susceptible
to antagonistic regional biases, such as between the trop-
ics and northern high latitudes. Plant-functional-type-level
evaluations, such as that of the maximum rate of RuBisCO
carboxylation and canopy height by Lawrence et al. (2019),
demonstrate the performance of underlying variables in in-
fluencing large-scale carbon fluxes and stocks. Several par-
ticipants included latitudinal-scale evaluations (Delire et al.,
2020; Hajima et al., 2020; Mauritsen et al., 2019), which
are both informative and readily comparable to observations.
A comprehensive validation should therefore encompass a
range of scales and a variety of variables to demonstrate
model performance not only for producing suitable averages
or accumulations but also for representing processes.

4.2 Reference datasets

Satellite-based remote sensing of terrestrial biogeochemical
components has been conducted for almost 50 years, since
the launch of the Landsat satellite in 1972 (Xiao et al., 2019;
Mack, 1990), while field-based experimental and observa-
tional data has been available since at least the early 19th
century (Holland et al., 2015). Just in terms of satellite-based
observational data products, there are currently thousands of
examples available (Waliser et al., 2020). Despite this seem-
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ing wealth of observational data and observation-based data
products, the implementation of a variety of observation-
based references for validation of terrestrial biogeochemi-
cal cycles within ESMs and LSMs is challenging for several
reasons. These include the specifications required for direct
model output comparison, inconsistent spatial and temporal
domains, missing observations, logistical biases, and large
uncertainty in global-scale data products (Delire et al., 2020;
Collier et al., 2018; Lovenduski and Bonan, 2017). The in-
complete coverage of observational datasets in space-time di-
mensions has led to significant bias in comparisons of model
data and observation data previously (de Mora et al., 2013),
though this has not been generally discussed in validation ex-
ercises by CMIP6 participants. Observational discontinuity
has been addressed previously in a LSM validation by Orth et
al. (2017), which excluded daily observation reference aver-
ages when more than 1 h of data from a 24 h period was miss-
ing, and through exclusion criteria in Collier et al. (2018).
For example, the compilation of satellite observations to de-
velop a LAI data product with one observation-based esti-
mate every 15 d by Zhu et al. (2013) for monthly average
or seasonal extrema comparison would require careful con-
sideration for comparison to model averages computed from
more resolved output. In an analysis of how sparse histori-
cal measurements compare to continuous model output, de
Mora et al. (2013) demonstrate that where data are lacking
in time or space, the discrete comparison of model output to
records from site-level measurements may provide a strate-
gic assessment of model performance over time, especially
in producing interannual variability. Site-level comparisons
of GPP and or CO2 concentrations were performed by Delire
et al. (2020), Dunne et al. (2020), and Vuichard et al. (2019),
while Collier et al. (2018) caution against the use of spatially
sparse data but indicate that inclusion of site level evaluations
is a key future focus for the ILAMB project.

Another approach to overcome spatial discontinuity may
be to compare broad gradients or trends in a given variable
with reference datasets, such as regional and functional-type
trends in forest carbon stocks rather than a global summa-
tion or average (Thurner et al., 2014), to investigate whether
or not the model captures enduring spatial patterns. In addi-
tion, some observational methods may invoke inherent bias,
such as satellite-based observation estimates of LAI in mid to
high latitudes seasonally under-estimating LAI due to snow
cover, leading to ambiguous model performance assessment
(Ziehn et al., 2020; Liu et al., 2018). Observational uncer-
tainty can be addressed by applying a weighting to reference
datasets as in ILAMBv2.1, as well as by using more than one
observational reference when available (Eyring et al., 2020;
Sellar et al., 2019; Collier et al., 2018). Careful considera-
tion of spatiotemporal discontinuity in observations and in-
herent bias is warranted in future validations, which can be
achieved through filtered exclusions, site-level comparisons,
pattern comparison, certainty weighting of datasets, and the
use of more than one reference dataset.

The globally gridded 1982–2008 GPP data product fre-
quently used for GPP validation by CMIP6 participants was
developed from machine learning upscaling of site-level
eddy-covariance Fluxnet observations with model tree en-
sembles based on remote sensing vegetation indices, meteo-
rological data, and land use (Jung et al., 2011). Observation-
based estimates of GPP can be obtained through satellite-
derived vegetation indices such as the normalized difference
vegetation index (NDVI; Phillips et al., 2008) and solar-
induced chlorophyll fluorescence (Zhang et al., 2020), in ad-
dition to ground-based monitoring of turbulent CO2 fluxes
with the eddy covariance technique (Jung et al., 2009). Lo-
gistical challenges with eddy covariance-based techniques of
estimating GPP can result in potentially extensive data gaps
and systematic omission of diel cycle observations (Rodda
et al., 2021; Erkkilä et al., 2018; Jung et al., 2011; Lass-
lop et al., 2010, 2008; Desai et al., 2008). For example, in
a study of eddy-covariance monitoring of CO2 flux, Jonsson
et al. (2008) report only 34 % data coverage of a growing
season period, of which 54 % was discarded as it did not
demonstrate energy balance closure. To address these chal-
lenges Jung et al. (2011) employ Bowen ratio corrections
of energy imbalance (Twine et al., 2000), quality control
criteria to exclude sites with more than 20 % missing ob-
servations, and monthly averages to alleviate noise. Where
NEE observations are missing in space, over time driver re-
lationships can be utilized for multi-decadal extrapolation,
though only 38 % and 60 % of Fluxnet sites with less than
15 years of observations capture mean conditions and inter-
annual variability of drivers sufficiently well for this extrapo-
lation as of 2015, and most have been operating for less than
5 years (Chu et al., 2017). While the site-level observations
from Jung et al. (2011) originate from 212 sites, presenting
a globally extensive network, regions with an important con-
tribution to overall carbon stocks and fluxes are underrepre-
sented (Jung et al., 2020), and even the recent global Fluxnet
GPP data product by Jung et al. (2016) has just 14 tropi-
cal and 5 Arctic sites. GPP observations from Fluxnet prod-
ucts currently do not account for fire and waterbody emis-
sions, which prompts regional and interannual bias (Jung et
al., 2020). Despite these caveats, such global-scale data prod-
ucts provide a critical resource to the CMIP community in
conducting model validation (Collier et al., 2018), and the
relatively common use of Jung et al. (2011) for validations
by CMIP6 participants coincidentally reduces the influence
of observational contradiction (Xie et al., 2020; Anav et al.,
2015). Site-level GPP evaluation with observations from the
tropics by Delire et al. (2020) and Vuichard et al. (2019)
demonstrates a strategic approach to addressing the repre-
sentation bias in GPP validations. Site-level evaluations of-
ten benefit from a wealth of available information, including
spatially consistent meteorological forcing, and avoid the in-
fluence of spatial extrapolation error. While Jung et al. (2011)
do not provide uncertainty measures, several forms of uncer-
tainty are explicitly presented for the Fluxnet2015 dataset by
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Pastorello et al. (2020). Therefore, the utility of Fluxnet GPP
data products could be improved with standardized use by
participants in conjunction with other independent data prod-
ucts, select site-level evaluations, explicit uncertainty quan-
tifications, and improved ecological representation in under-
lying site-level data.

4.3 Statistical metrics and validation approaches

Several participants relied primarily on residual-based met-
rics, such as bias (simulated-observed), for validation of
terrestrial biogeochemical cycle model components. On a
spatial basis, bias can identify significant regional over- or
under-estimations of a given variable. However, the attribu-
tion of model error from global maps of bias can be am-
biguous, as the displayed bias is the combined result of dif-
ferent forms of uncertainty, including model structural rep-
resentations, unforced variability, and spatial disagreement
(Deser et al., 2020; Lovenduski and Bonan, 2017; Koch et
al., 2016). Such residual-based metrics may not indicate how
well the model would perform in simulating future condi-
tions beyond the current contextual envelope of observations
(Gulden et al., 2008) and neglect the contribution of uncer-
tainty from observations. These limitations are considerable
in the context of ESMs and LSMs as tools for predicting
terrestrial biogeochemical function. A more contextualized
bias assessment is the Wilcoxon test as applied by Swart
et al. (2019) to filter insignificant bias. In a LSM evalua-
tion, Orth et al. (2017) provides an observationally robust
bias assessment by subtracting mean seasonal cycles from
each grid cell and correlating the resulting anomalies be-
tween observation-based datasets and model output. In ad-
dition, RMSE normalized by the mean or standard deviation
of the observed quantity (NRMSE) contextualizes the differ-
ence between simulated and observed variable quantities in
terms of the magnitude or inherent variability of the variable
of interest (Swart et al., 2019; Fan et al., 2018), which is ad-
vantageous for variables such as GPP with large interannual
variability.

Beyond these, a variety of targeted model skill metrics
have been published for process-based modelling that pro-
vide detailed assessments of different forms of model un-
certainty (Collier et al., 2018; Orth et al., 2017; Eyring et
al., 2016b; Koch et al., 2016; Law et al., 2015; Kumar et
al., 2012; Taylor, 2001; Kobayashi and Salam, 2000). Mean
squared deviation, the sum of squared bias, squared differ-
ence between standard deviations, and lack of correlation
weighted by standard deviations, presented by Kobayashi
and Salam (2000), was used by Vuichard et al. (2019). This
metric is readily applicable to the objective validation and
improvement of mechanistic models, as its dissection allows
for the accurate attribution of different sources of model er-
rors. Additionally, a Taylor diagram (Fig. 4, Taylor, 2001)
conveys several dimensions of model error, allows for the
concise simultaneous display of variables and models, was

utilized in the evaluation of BCC-AVIM2 (Li et al., 2019),
NORESM2 (Seland et al., 2020), and several LSMs and
ESMs by Anav et al. (2015), and is incorporated into IL-
AMBv2.1 (Collier et al., 2018). The Taylor diagram was
designed for simultaneous performance comparison of sev-
eral simulated variables and serves as a concise and infor-
mative validation tool. Caution is warranted however in the
evaluation of fully coupled model output due to the inabil-
ity of fully coupled models to reproduce the timing of inter-
nal climate variability phenomena such as El Niño–Southern
Oscillation (ENSO; Flato et al., 2013). While the magni-
tude of observed and simulated internal climate variability
may be statistically consistent, bias, RMSE, and NRMSE as-
sessments of fully coupled model output should encompass
decadal or longer periods to address the influence of temporal
mismatches in simulated internal climate variability relative
to observational records. Alternatively, as offline simulations
can be directly forced with historical observation data, the
output of offline simulations can be validated on a finer tem-
poral scale.

For example, Taylor diagrams of global and regional NPP
by Anav et al. (2015) demonstrate a consistent low correla-
tion and high standard deviation for model estimates in the
tropics that is substantially reduced in the extratropics and
globally, warranting focus on tropical NPP. The validation
process of terrestrial biogeochemical cycles and dissection of
model uncertainty may also be enhanced through offline sim-
ulations or models with intermediate complexity as these al-
low for a greater replication of simulations with different ini-
tializations, forcing datasets, and model configurations due to
their computational affordability (Bonan et al., 2019; Umair
et al., 2018; Orth et al., 2017). Offline simulations also reduce
the potential for incidental compounding error from coupling
components, though this leads to an under-estimation in un-
certainty for equivalent fully coupled simulations. Replicate
simulations with different initial conditions, such as those
performed by Danabasoglu et al. (2020), allow for the at-
tribution of uncertainty from unforced variability, which ac-
counted for half of the inter-model spread in key variables
previously (Deser et al., 2020; Eyring et al., 2019). In addi-
tion, replicate simulations with different forcing datasets can
indicate the role of forcing uncertainty (Wei et al., 2018),
which Lawrence et al. (2019) found to be significant. Fur-
ther, sensitivity analyses or perturbed parameter analyses in-
volving replicated simulations with one or more variables
fixed as performed by Hajima et al. (2020) and Lawrence et
al. (2019) illuminate structural uncertainty. The use of well-
established statistical and model performance metrics in ad-
dition to strategic simulations facilitates a detailed analysis
of model uncertainty.

4.4 Moving forward

A model can only be expected to perform well in simulat-
ing past, present, and future conditions if it is provided with
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Figure 4. Taylor diagram from Taylor (2001). The standard deviation of model fields is displayed as the radial distance from the origin and
can be visually compared to the observed (reference) point, which is indicated by a circle on the abscissa. The correlation between the model
and observed fields decreases with azimuthal angle (dotted lines), and the root-mean-square difference between the model and observed
fields is proportional to the distance from the reference point (quantified by dashed contours).

high-quality observational constraints. Lovenduski and Bo-
nan (2017) suggest that obtaining accurate observations and
improving process understanding should take precedence
over reducing model spread, as constraining models to un-
certain observations does not improve their predictive capac-
ity, and even models that agree well with observations can
prompt divergent projections. Several of the challenges in-
herent in implementing observations in model validation and
development are now a key focus of the Observations for
Model Intercomparison Project (obs4MIPs; Waliser et al.,
2020), which strives to deliver long-term, high-quality ob-
servations from international efforts. An obs4MIPs meeting
held in preparation for CMIP6 with more than 50 satellite
data and global climate modelling experts identified under-
utilized observation products and recommended new efforts
to address knowledge gaps, including an expanded inven-
tory of datasets, higher-frequency datasets and model output,
more reliable uncertainty measures, more datasets tailored to
offline simulations, and more explicit metadata for modellers
(Waliser et al., 2020). Further, recent satellite missions such
as the Sentinel2A twin satellite launched in 2015 have un-
precedented spectral, spatial, and temporal resolution com-
binations, which can be used alone or in combination with
other satellite-based observations to provide higher-fidelity
references for validation (Vafaei et al., 2018). Field experi-
mental data provide unique insight as to the functional re-
sponses of vegetation to elevated CO2 concentration (Goll
et al., 2017), temperature change (Richardson et al., 2018),
moisture availability (Williams et al., 2019; Hovenden and
Newton, 2018), and nutrient limitations (Fleischer et al.,
2019) outside the current context of observations. The inte-
gration of experimental findings in evaluations is challeng-

ing given the environmentally rapid application of treatments
and limited ecological representation (Nowak et al., 2004),
though sophisticated relationship-based techniques such as
used by Goll et al. (2017) alleviate some of these issues. In-
creased collaboration between field and model researchers
in designing experiments could improve the applicability of
future experiments. In addition, enhanced field and remote
sensing collaboration would allow for higher-fidelity cali-
brated global data products (Orth et al., 2017; Verger et al.,
2016). Thus future CMIPs will benefit from forthcoming col-
laborations and reference data products tailored for valida-
tion.

A standard protocol for the validation of terrestrial biogeo-
chemical variables would facilitate a thorough and objective
assessment of model performance within and among partici-
pants. Further, the collective merits and limitations of the cur-
rent variety of approaches utilized by participants could be
consolidated and addressed in a comprehensive protocol. In
the interest of model improvement and weighting for predic-
tions, validation with an exhaustive assessment of variables
across a range of spatiotemporal scales against all available
peer-recommended observation-based references is optimal.
Dataset-specific expertise is also warranted to correctly im-
plement reference datasets in these evaluations (Waliser et
al., 2020; Liu et al., 2018). The procurement and applica-
tion of reference datasets within validations is demanding for
participants, considering their presiding obligation to con-
tinuously refine model components and participate in CMIP
with computationally expensive ESM simulations. Addition-
ally, the universal inclusion of often overlooked processes
such as moisture limitation, nitrogen and phosphorus cy-
cles, dynamic vegetation, prognostic leaf phenology, and
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natural disturbance regimes should be a priority focus for
participants in developing diagnostic models as these pro-
cesses are highly influential on terrestrial biogeochemistry
and physics (Eyring et al., 2020; Fleischer et al., 2019; Piao
et al., 2019; Wieder et al., 2015; Achard et al., 2014; Richard-
son et al., 2013; Heimann and Reichstein, 2008; Tucker et
al., 1986), and the omission of these processes contributes to
widespread bias (Green et al., 2019; Anav et al., 2015). While
outside the focus of this review, equal attention should be ap-
plied to the physical components of terrestrial biogeochem-
ical cycles, including explicit representation of permafrost
and riverine carbon transport dynamics. In fact, a study in-
cluding four CMIP5 ESMs found that soil moisture variabil-
ity prompted variability in terrestrial NBP on the order of gi-
gatonnes, with non-linear responses to both moisture scarcity
and excess (Green et al., 2019). Further, many of the merits
and limitations of the validation approaches discussed herein
apply to the validation of these physical components as well.

The communal use of software packages such as ESM-
ValToolv2.0 and ILAMBv2.1 (Eyring et al., 2020; Collier et
al., 2018) could liberate time and computational resources for
modellers. In addition, this would standardize validation pro-
tocols, address long-overlooked model uncertainty distinc-
tions (Deser et al., 2020), and avoid terminology confusion
(Lovett et al., 2006). While these packages include exten-
sive suites of peer-verified observational reference datasets
and performance metrics, these packages do not yet include
evaluation of nitrogen and phosphorus cycles, which may
be due to the combined scarcity of observations, upscal-
ing approaches, and model representations (Lawrence et al.,
2019; Zhu et al., 2018; Wieder et al., 2015; Zaehle and Dal-
monech, 2011). The strategic situation of nitrogen, phospho-
rus, and soil moisture monitoring, which coincides with cur-
rent Fluxnet sites (Jung et al., 2020), could provide high-
fidelity insight into nutrient and environmental limitations on
GPP, coherent turnover time assessments, and broadly ap-
plicable functional relationships to facilitate upscaling. The
co-situation of multiple observational monitoring objectives
at Fluxnet sites would enhance the utility of each site-level
dataset and alleviate errors due to spatiotemporal inconsis-
tencies between datasets in both performing evaluations and
developing large-scale data products. Following increased
collaboration between empirical and modelling communities
to strategically expand observations and their inclusion in
a comprehensive evaluation software, the CMIP-designated
use of such software would standardize, conserve, and aug-
ment validation efforts.

5 Conclusion

The current generation of ESMs that participated in the
sixth phase of the Coupled Model Intercomparison Project
adopted a broad assortment of approaches to validate histori-
cally simulated terrestrial biogeochemical cycles. Validations
which encompassed a large suite of variables over a range of
spatiotemporal scales in conjunction with informative model
performance metrics demonstrated relatively comprehensive
assessments of model performance. Across CMIP6 partic-
ipants, the variety of variables, reference datasets, evalua-
tion dimensions, and statistical metrics utilized make general
assessments of model performance in simulating terrestrial
biogeochemistry challenging. To address this inconsistency
and alleviate the immense responsibilities of participants, we
recommend the designation of a standard validation proto-
col for CMIP participants, which is consolidated in an open-
source software (such as the Earth System Model Evalua-
tion Tool version 2 (ESMValToolv2.0) or the International
Land Model Benchmarking version 2.1 (ILAMBv2.1)). This
protocol should utilize a comprehensive suite of certainty-
weighted observational reference datasets, targeted model
performance metrics, and comparisons across a range of
spatiotemporal dimensions. The insights from a universally
adopted validation protocol would precisely attribute model
uncertainty and aid in directing future observational efforts
to improve crucial process understanding within terrestrial
biogeochemical cycles.
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Appendix A: Technical summary of validation activities
by participants

A1 CSIRO

The Australian Community Climate and Earth System
Simulator (ACCESS-ESM1.5) was developed by the Aus-
tralian modelling group Commonwealth Scientific and In-
dustrial Research Organization (CSIRO) for participation
in CMIP6 (Ziehn et al., 2020). The land surface model
used in ACCESS-ESM1.5 is the Community Atmosphere
Biosphere Land Exchange (CABLE) model (Kowalczyk
et al., 2013, 2006) version 2.4. Ziehn et al. (2020) com-
pared ACCESS-ESM1.5 simulated land carbon cycle vari-
ables against observation-based estimates for the 1986–2005
period. The spatial distribution of simulated average an-
nual GPP was compared to upscaled Fluxnet observations
from Jung et al. (2011), while average annual global GPP
was compared to observation-based estimates from Beer et
al. (2010) and Ziehn et al. (2011). Simulated LAI magni-
tude and seasonality was compared to global and regional
estimates based on Moderate Resolution Imaging Spectrora-
diometer (MODIS) and Advanced Very High-Resolution Ra-
diometer (AVHRR) data from Zhu et al. (2013). Simulated
surface CO2 concentrations in terms of mean seasonal cycle
amplitude and timing were compared to four NOAA/Earth
System Research Laboratory station flask samples provided
in the GLOBAL VIEW data product (GLOBAL VIEW-CO2,
2013).

A2 BCC

The Beijing Climate Centre (BCC) participated in CMIP6
with the BCC Climate System Model version 2 with medium
resolution (BCC-CSM2-MR; Wu et al., 2019). Land bio-
geochemistry in BCC-CSM2-MR was simulated through the
BCC Atmosphere and Vegetation Interactive Model version
2.0 (BCC-AVIM2; Li et al., 2019). While Wu et al. (2019)
did not provide validation results for terrestrial biogeochem-
istry from BCC-CSM2-MR, a detailed validation with offline
simulations of BCC-AVIM2 was provided by Li et al. (2019)
using the Princeton global forcing dataset (Sheffield et al.,
2006). Li et al. (2019) compared the annual peak month, sea-
sonal average, and global average of LAI to satellite obser-
vations from 1982 to 2010 by the AVHRR (Myneni et al.,
1997). Surface carbon fluxes including GPP and ER were
compared to upscaled Fluxnet observations from Jung et
al. (2011). Aboveground biomass was compared to Avitabile
et al. (2016), while global total biomass carbon from 1990
to 2010 was compared to Saatchi et al. (2011). The perfor-
mance of BCC-AVIM2 in estimating each of these variables
was assessed through bias, RMSE, and Taylor diagram met-
rics (Taylor, 2001).

A3 CCCma

The Canadian Centre for Climate Modelling and Analy-
sis (CCCma) participated in CMIP6 with the CCCma fifth-
generation Earth System model (CanESM5; Swart et al.,
2019). The land biogeochemistry component of CanESM5
is the Canadian Terrestrial Ecosystem Model (CTEM;
Arora and Boer, 2010, 2005). Swart et al. (2019) com-
pared CanESM5 simulated GPP from 1982 to 2009 with
observation-based estimates from Jung et al. (2009) in terms
of geographical distribution, zonal averages, and functional
relationships with air temperature and precipitation. Sev-
eral metrics were used to illustrate CanESM5’s performance
in simulating GPP, including the correlation coefficient (r)
between simulated and observed spatial patterns in GPP,
bias (simulated− observed), and root-mean-squared error
(RMSE) normalized (NRMSE) by observed spatial standard
deviation. Global average decadal land–atmosphere CO2 flux
and net cumulative atmosphere–land CO2 flux from 1850 to
2014 were compared to observation-based estimates from the
Global Carbon Project (GCP; Le Quéré et al., 2018), the lat-
ter by subtracting cumulative land use emissions from cumu-
lative land carbon uptake.

A4 Climate and Global Dynamics Laboratory (NCAR)

The Community Earth System Model version 2 (CESM2)
was developed by the Climate and Global Dynamics Labo-
ratory at the American National Centre for Atmospheric Re-
search (NCAR) for participation in CMIP6 (Danabasoglu et
al., 2020). The land component of CESM2 is the Commu-
nity Land Model Version 5 (CLM5; Lawrence et al., 2019).
Danabasoglu et al. (2020) and Lawrence et al. (2019) com-
prehensively assessed terrestrial biogeochemical cycle vari-
able outputs from simulations of CESM2 and CLM5, re-
spectively, with the International Land Model Benchmark-
ing package (ILAMBv2.1; Collier et al., 2018), including
an explicit analysis of interannual variability with a three-
member ensemble from different pre-industrial control ini-
tialization years (CESM2), the influence of forcing through
the use of three forcing datasets (CLM5), and the influence of
prescribed versus prognostic vegetation phenology (CLM5).
ILAMBv2.1 utilizes a suite of data products weighted by cer-
tainty. These included vegetation biomass (tropical: Saatchi
et al., 2011; global: Kellndorfer et al., 2013; Blackard et
al., 2008), burned area (Giglio et al., 2010), CO2 concentra-
tions, GPP (Fluxnet: Lasslop et al., 2010; Global biosphere–
atmosphere flux: Jung et al., 2010), LAI (AVHRR: Myneni et
al., 1997; MODIS: de Kauwe et al., 2011), global net ecosys-
tem carbon balance (GCP: Le Quéré et al., 2014; Hoffman et
al., 2014), net ecosystem exchange (Fluxnet: Lasslop et al.,
2010; GBAF: Jung et al., 2010), NBP, ER, NEP (equivalent
to GPP-ER), soil carbon (Harmonized World Soil Database
(HWSD): Todd-Brown et al., 2013; Northern Circumpolar
Soil Carbon Database (NCSCDV22): Hugelius et al., 2013),
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and 10 functional relationships. Lawrence et al. (2019) also
compared the relationship between apparent soil carbon
turnover times versus air temperature to observation-based
estimates developed from HWSD, NCSDV22, and MODIS.
Lawrence et al. (2019) additionally compared maximum
monthly LAI and average Vcmax25 (maximum RuBisCO car-
boxylation rate at 25 ◦C and high irradiance per unit leaf area
in µmol m−2 s−1) at the PFT-level for the year 2010 to Zhao
et al. (2005) and Kattge et al. (2009), respectively, as well as
canopy height for the year 2005 for tree PFTs to Simard et
al. (2011). Nitrogen cycle variables evaluated by Lawrence
et al. (2019) with observational references included nitro-
gen deposition (Fowler et al., 2013), symbiotic fixed nitrogen
(Vitousek et al., 2013), soy fixed nitrogen (Herridge et al.,
2008), crop nitrogen fertilization (Fowler et al., 2013), den-
itrification (Fowler et al., 2013), hydrologic nitrogen losses
(Fowler et al., 2013), fire losses (Lamarque et al., 2010),
and N2O flux (Fowler et al., 2013). Different climate forc-
ing datasets and anthropogenic forcings were utilized to ex-
amine the effect of climate, CO2 emissions, land use change,
and nitrogen additions on carbon cycle variables and three
CLM versions to partition total uncertainty into forcing and
model contributions using fixed-effect analysis of variance,
with additional PFT-level analysis and prognostic versus pre-
scribed vegetation and carbon cycling for CLM5. In addi-
tion to the ILAMB validation, Danabasoglu et al. (2019)
and Lawrence et al. (2019) compared simulated global net
biome production (NBP) and cumulative land carbon sink
to observation-based estimates from 1850 to 2014 from the
GCP for 1959–2014 (Le Quéré et al., 2016), and from Hoff-
man et al. (2014) for 1850–2010. Observation-based GPP,
ER, and NEP (equivalent to GPP-ER) comparison data were
obtained from Jung et al. (2011, 2010). Vegetation carbon
was evaluated relative to observations for the tropics from
Saatchi et al. (2011) and the GEOCARBON and Global-
Carbon datasets (Collier et al., 2018; Avitabile et al., 2016;
Santoro et al., 2015). ILAMBv2.1 results from these inves-
tigations comprised a collection of statistical metrics for an-
nual mean, bias, relative bias, RMSE, seasonal cycle phase,
spatial distribution, and interannual variability, in addition to
functional relationships. Bonan et al. (2019) provides a de-
tailed analysis of the role of climate forcing uncertainty in
influencing CLM5 output.

A5 CNRM and CERFACS

The Centre National de Recherches Météorologiques
(CNRM) and Centre Européen de Recherche et de Forma-
tion Avancée en Calcul Scientifique (CERFACS) contributed
the CNRM-ESM2-1 to CMIP6 (Séférian et al., 2019). The
land component in CNRM-ESM2-1 is the Interaction Soil-
Biosphere-Atmosphere with Total Runoff Integrating Path-
ways with carbon cycling (ISBA-CTRIP; Delire et al., 2020).
Séférian et al. (2019) compared CNRM-ESM2-1 simulated
annual minimum and maximum LAI to AVHRR observa-

tions from 1998 to 2011 (Zhu et al., 2013). The simulated
land carbon sink from 1982 to 2010 was compared to a multi-
model estimate by Huntzinger et al. (2013). These valida-
tions included spatial bias, global mean bias, RMSE, and
spatial error correlation between CNRM ESM versions to
distinguish model sources of error. Delire et al. (2020) val-
idated offline ISBA-CTRIP simulated GPP, NPP, autotrophic
respiration, and ER from 1980 to 2010 with estimates with
the mean of 12 products from the FluxComv1 dataset (Jung
et al., 2017, 2016; Tramontana et al., 2016), and a satel-
lite product from the Numerical Terradynamic Simulation
Group: MODIS17A3 (NASA LP DAAC, 2017; Zhao et al.,
2005), with reference autotrophic respiration calculated as
the mean of FLUXCOM GPP products minus MODIS17A3
NPP. Simulated crop NPP for the 2000s was compared
to the Harvested Area and Yield dataset (Monfreda et al.,
2008). Carbon use efficiency (CUE), calculated as the ra-
tio of NPP to GPP, was evaluated with observation and
model-based estimates for tropical evergreen forest from
Malhi et al. (2009), and tropical deciduous, temperate, and
boreal forests from He et al. (2018), Zhang et al. (2014),
and theoretical derivations by Amthor (2000). Simulated
heterotrophic respiration was evaluated with a data prod-
uct from Hashimoto et al. (2015) which combines global
and Amazonian in situ observations from the Soil Respi-
ration database (Bond-Lamberty et al., 2018) and Malhi et
al. (2009), respectively, and global gridded climate data. The
simulated burned area and fire CO2 emissions were com-
pared to Mouillot and Field (2005) and the Global Fire Emis-
sions Database version 4.1 (Randerson et al., 2017; van der
Werf et al., 2017). Simulated dissolved organic carbon yield
leached from soil was compared to model results of May-
orga et al. (2010) and observations by Dai et al. (2012).
Simulated global aboveground biomass carbon was validated
with observation-based estimates from 1993–2012 from Liu
et al. (2015), regional datasets for mid–high northern lati-
tudes from Thurner et al. (2014), and tropical datasets from
Saatchi et al. (2011) and Baccini et al. (2012). Simulated
aboveground litter carbon was compared to site measure-
ments from 1827 to 1997 from the Global Database of Litter-
fall Mass and Litter Pool Carbon and Nutrients (Holland et
al., 2015). Simulated belowground organic carbon was vali-
dated with the HWSDv1.2 (FAO, 2012). Vegetation turnover
time calculated as biomass divided by NPP and soil turnover
time calculated as the combination of litter and soil carbon
divided by NPP for 1984–2014 were also computed for val-
idation. Delire et al. (2020) also used local scale Fluxnet
data from Joetzjer et al. (2015) to assess ISBA-CTRIP per-
formance. Each variable was validated through comparison
of the distribution of simulated and observation-based esti-
mates of annual averages, as well as zonal averages, and the
spatial distribution of the bias (simulated minus observed).
Average simulated carbon fluxes from 2006–2015 and the
trend from 1960–2015 were also compared to observation-
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based estimates from the GCP (Le Quéré et al., 2018) and
Ciais et al. (2019).

A6 IPSL

The Institut Pierre Simon Laplace (IPSL) participated
in CMIP6 with IPSL-CM6A-LR, the land component of
which was the ORCHIDEE land surface model version 2.0
(Boucher et al., 2020; Hourdin et al., 2020). Boucher et
al. (2020) evaluated IPSL-CM6A-LR simulated average an-
nual carbon fluxes from 1990 to 1999 and 2009 to 2018
resulting from land cover change, fossil fuel emissions, the
terrestrial sink, and total net land fluxes (the terrestrial sink
minus land cover change) with observation-based estimates
from the 2019 GCP (Friedlingstein et al., 2019). Vuichard
et al. (2019) validated ORCHIDEE simulated GPP in terms
of the mean annual, seasonal, and daily simulated GPP on a
PFT, spatial, and global basis against observations from 78
Fluxnet sites (Vuichard and Papale, 2015) and the global-
scale MTE-GPP product based upon upscaled Fluxnet ob-
servations for 1982–2008 (Jung et al., 2011). RMSE and
dissected mean-squared deviation (MS; the sum of squared
bias, squared difference between standard deviations, and
lack of correlation weighted by standard deviations, based on
Kobayashi and Salam, 2000) metrics were used to attribute
different sources of uncertainty. The relative contribution of
drivers of variation in present-day GPP were also assessed,
including seasonal variability in NOx and NHx deposition
and the leaf carbon to nitrogen ratio. The sensitivity of OR-
CHIDEE output to model structure in terms of MSE was also
analyzed on a global and PFT-level basis, including fixed and
dynamic fully coupled carbon–nitrogen cycles.

A7 GFDL

The American National Oceanic and Atmospheric Admin-
istration Geophysical Fluid Dynamics Laboratory (GFDL)
participated in CMIP6 with GFDL-ESM4.1 (Dunne et al.,
2020), in which land biogeochemistry is simulated with the
GFDL Land Model version 4.1 (LM4.1; Shevliakova et al.,
2021). Dunne et al. (2020) validated GFDL-ESM 4.1’s sim-
ulated spatial distribution of seasonal amplitude in CO2 con-
centrations and interannual variability of CO2 concentrations
compared to NOAA Global Monitoring Division sites with at
least 15-year records (Global Monitoring Laboratory, 2005)
using RMSE and the coefficient of determination (r2), as
well as the correlation coefficient (r) for individual sites.

A8 JAMSTEC, University of Tokyo, and National
Institute for Environmental Studies

The Japanese Agency for Marine-Earth Science and Tech-
nology (JAMSTEC), University of Tokyo, and National In-
stitute for Environmental Studies participated in CMIP6 with
the Model for Interdisciplinary Research on Climate Earth
System version 2 for Long-term simulations (MIROC-ES2L;

Hajima et al., 2020). The land biogeochemical component
in MIROC-ES2L is the Vegetation Integrative Simulator for
Trace gases model (VISIT-e; Ito and Inatomi, 2012). Hajima
et al. (2020) evaluated MIROC-ES2L simulated terrestrial
carbon gain with and without land use, as well as land use
emissions from 1850 to 2014 in comparison to multi-model
estimates from the GCP (Le Quéré et al., 2018). Observation-
based data products used for other comparisons included (1)
the spatial pattern, gradient across biomes, magnitude, sea-
sonality, and length of growing season of global gridded GPP
from 1986 to 2005 from Fluxnet (Jung et al., 2011); (2) the
magnitude and density of forest carbon stock (Kindermann
et al., 2008); and (3) global and regional soil organic car-
bon from the harmonized soil property values for broad-scale
modelling (WISE30Sec; Batjes, 2016), the northern high lat-
itudes from the Northern Circumpolar Soil Carbon Database
version 2 (NCSCDv2; Hugelius et al., 2013), and an estimate
from Todd-Brown et al. (2013) developed from the HWSD
version 1.3 (FAO, 2012). Hajima et al. (2020) also compared
simulated and observation-based estimates of annual biolog-
ical nitrogen fixation (BNF) from 1850 to 2014 (Gruber and
Galloway, 2008), present-day BNF (Galloway et al., 2008;
Herridge et al., 2008), annual unperturbed state terrestrial
N2 flux (Gruber and Galloway, 2008), and change in annual
soil nitrous oxide emissions from 1850 to 2014 relative to a
model comparison study by Tian et al. (2018).

A9 MPI

The Max Planck Institute for Meteorology (MPI) Earth Sys-
tem Model version 1.2 Low Resolution (MPI-ESM1.2-LR)
was developed for participation in CMIP6 (Mauritsen et al.,
2019) by the MPI, the land component of which is JS-
BACH3.2 (Goll et al., 2017). Mauritsen et al. (2019) com-
pared the spatial variability and zonally averaged density
of MPI-ESM1.2-LR simulated soil and litter carbon stocks
to estimates by Goll et al. (2015) developed from the Har-
monized World Soil Database. The simulated evolution in
global total land carbon from 1850–2013 was compared to
estimates provided by Ciais et al. (2013). Additionally, sim-
ulated land use change carbon emissions from 1860 to 2013
were compared to estimates provided by Ciais et al. (2013).
In a model description paper of JSBACH version 3.10, which
was set to be used in CMIP6, Goll et al. (2017) com-
pare JSBACH3.1 simulated present-day NPP to Ito (2011),
while simulated present-day biomass carbon was compared
to Saugier and Roy (2001) and Ciais et al. (2013). The
simulated response of NPP and GPP to increases in atmo-
spheric CO2 were compared to experimentally observed es-
timates from four free-air CO2 enrichment (FACE) exper-
iments (Norby et al., 2005) and an intramolecular isotope
distribution examination of plant metabolic shifts (Ehlers et
al., 2015). Simulated present-day biomass nitrogen was com-
pared to Schlesinger (1997), while simulated present-day to-
tal nitrogen was compared to Galloway et al. (2013). Simu-
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lated values of pre-industrial (1850) and present-day leach-
ing and BNF were compared to Galloway et al. (2013, 2004),
Vitousek et al. (2013), and short-term experimental results
from a meta-analysis by Liang et al. (2016), while simu-
lated present-day denitrification was compared to Galloway
et al. (2013). Goll et al. (2017) also verified the simulated
spatial variability in reactive nitrogen-loss pathways using
a compilation of nitrogen-15 isotopic data (Houlton et al.,
2015) with the statistical metrics r , RMSE, and Taylor score
(Taylor, 2001).

A10 NCC

The Norwegian Earth System Model (NORESM2) was de-
veloped for participation in CMIP6 (Seland et al., 2020) by
the Norwegian Climate Consortium (NCC), and is based
on CESM2. As in CESM2, the land model in NORESM2
is CLM5 (Lawrence et al., 2019). The performance of
NORESM2 was validated through a three-member ensem-
ble of historical simulations from 1850 to 2014 with slightly
varying initial conditions. Simulated carbon cycle variables
that were compared to observation variables included GPP,
soil carbon, and vegetation carbon from Jung et al. (2011),
FAO (2012), and Avitabile et al. (2016) and Santoro et
al. (2015), respectively. Seland et al. (2020) NORESM2 re-
sults in terms of carbon stocks and fluxes broadly agree with
those of Lawrence et al. (2019) while conducting land-only
simulations of CLM5.

A11 NERC and Met Office

The United Kingdom Community Earth System Model
(UKESM1-0-LL) was developed for participation in CMIP6
by the United Kingdom Natural Environmental Research
Council (NERC) and National Meteorological Service (Met
Office; Sellar et al., 2019). The land component in UKESM1-
0-LL is an updated version of the Joint UK Land Envi-
ronment Simulator (JULES; Clark et al., 2011) with an
additional PFT-updated competition scheme (Harper et al.,
2018). Sellar et al. (2019) evaluated UKESM1-0-LL simu-
lated global GPP magnitude and evolution in time through
comparisons to recent decadal GPP from the Fluxnet model
tree ensemble data product (Jung et al., 2011). The areal
land cover of aggregated plant functional types (PFTs) was
validated with satellite observation-based datasets from the
European Space Agency Climate Change Initiative Land
Cover data (Poulter et al., 2015) and the International
Geosphere-Biosphere Programme (IGBP) Land Use and
Cover Change project (Loveland et al., 2000) using the
model year 2005. The coverage of PFTs were validated using
these observation-based datasets as references both spatially
and as a fraction of biomes based upon regions defined by
Olson et al. (2006). The simulated vegetation carbon distri-
bution was validated on a latitudinal basis with observation-
based estimates from GEOCAROBON (Avitabile et al.,

2016) and Saatchi et al. (2011), while the spatial distribu-
tion of soil carbon was validated with observation-based es-
timates WISE30sec (Batjes, 2016), IGBP-DIS (Global Soil
Data Task Group, 2002), and Carvalhais et al. (2014). The
magnitude of simulated global total soil carbon was com-
pared to whole soil profile observation-based estimates from
Carvalhais et al. (2014) and upper 2 m observation-based es-
timates from Batjes (2016). Cumulative carbon uptake and
land use emissions from 1850 to 2014 was compared to
observation-based estimates from the GCP (Le Quéré et al.,
2018).
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Data availability. The data used to generate Figs. 1 and 2 are
openly available from CMIP6 model participant papers (see Ta-
ble 1).
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