Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5731-2021
https://doi.org/10.5194/gmd-14-5731-2021
Model description paper
 | 
16 Sep 2021
Model description paper |  | 16 Sep 2021

Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea

Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess

Related authors

Plume spreading test case for coastal ocean models
Vera Fofonova​​​​​​​, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021,https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations
Tuomas Kärnä, Stephan C. Kramer, Lawrence Mitchell, David A. Ham, Matthew D. Piggott, and António M. Baptista
Geosci. Model Dev., 11, 4359–4382, https://doi.org/10.5194/gmd-11-4359-2018,https://doi.org/10.5194/gmd-11-4359-2018, 2018
Short summary

Related subject area

Oceanography
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024,https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
An optimal transformation method for inferring ocean tracer sources and sinks
Jan D. Zika and Taimoor Sohail
Geosci. Model Dev., 17, 8049–8068, https://doi.org/10.5194/gmd-17-8049-2024,https://doi.org/10.5194/gmd-17-8049-2024, 2024
Short summary
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024,https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024,https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary

Cited articles

Arheimer, B., Dahné, J., Donnelly, C., Lindström, G., and Strömqvist, J.: Water and nutrient simulations using the HYPE model for Sweden vs. the Baltic Sea basin – influence of input-data quality and scale, Hydrol. Res., 43, 315–329, https://doi.org/10.2166/nh.2012.010, 2012. a
Axell, L.: BSRA-15: A Baltic Sea Reanalysis 1990–2004, Reports Oceanography 45, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 2013. a
Berg, P. and Poulsen, J. W.: Implementation details for HBM, Tech. rep., Danish Meteorological Institute, Copenhagen, Denmark, 2012. a, b
Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologically Significant Effects of Some Approximations in the Bulk Parameterizations of Turbulent Air–Sea Fluxes, J. Phys. Oceanogr., 47, 5–28, https://doi.org/10.1175/jpo-d-16-0169.1, 2016. a
Burchard, H., Janssen, F., Bolding, K., Umlauf, L., and Rennau, H.: Model simulations of dense bottom currents in the Western Baltic Sea, Cont. Shelf Res., 29, 205–220, https://doi.org/10.1016/j.csr.2007.09.010, 2009. a
Download
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.