Articles | Volume 14, issue 6
Geosci. Model Dev., 14, 4117–4141, 2021
https://doi.org/10.5194/gmd-14-4117-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: The Lund–Potsdam–Jena managed Land (LPJmL) dynamic...
Model description paper
01 Jul 2021
Model description paper
| 01 Jul 2021
CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model
Markus Drüke et al.
Related authors
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-284, https://doi.org/10.5194/hess-2022-284, 2022
Preprint under review for HESS
Short summary
Short summary
We spatially attribute the variance of global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error by two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with smaller-scales lateral convergence of water. Our findings imply that the TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Georg Feulner, Mona Sofie Bukenberger, and Stefan Petri
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-36, https://doi.org/10.5194/esd-2022-36, 2022
Preprint under review for ESD
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation: If Earth cools, growing ice cover makes it brighter, leading to further cooling since more sunlight is reflected, eventually leading to global ice cover ("Snowball Earth"). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Luisa Schmidt, Matthias Forkel, Ruxandra-Maria Zotta, Samuel Scherrer, Wouter A. Dorigo, Alexander Kuhn-Régnier, Robin van der Schalie, and Marta Yebra
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-85, https://doi.org/10.5194/bg-2022-85, 2022
Revised manuscript under review for BG
Short summary
Short summary
Vegetation attenuates natural microwave emissions from the land surface. The strength of this attenuation is quantified as the parameter Vegetation Optical Depth (VOD), and is influenced by the vegetation mass, structure, water content, and observation wavelength. Here we model the VOD signal as a multi-variate function of several descriptive vegetation variables. The results help to understand the effects of ecosystem properties on VOD.
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, https://doi.org/10.5194/essd-14-1063-2022, 2022
Short summary
Short summary
Gross primary production (GPP) describes the conversion of CO2 to carbohydrates and can be seen as a filter for our atmosphere of the primary greenhouse gas CO2. We developed VODCA2GPP, a GPP dataset that is based on vegetation optical depth from microwave remote sensing and temperature. Thus, it is mostly independent from existing GPP datasets and also available in regions with frequent cloud coverage. Analysis showed that VODCA2GPP is able to complement existing state-of-the-art GPP datasets.
Willem Huiskamp and Shayne McGregor
Clim. Past, 17, 1819–1839, https://doi.org/10.5194/cp-17-1819-2021, https://doi.org/10.5194/cp-17-1819-2021, 2021
Short summary
Short summary
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode (SAM) using climate model data. We find that reconstructions are able to capture ~ 60 % of the SAM variability at best, with poorer reconstructions managing only 35 %. Reconstructions perform best when they use more proxies sourced from the entire Southern Hemisphere land mass. Future reconstructions should endeavour to address both sampling and proxy–SAM correlation stability uncertainties.
Boris Sakschewski, Werner von Bloh, Markus Drüke, Anna Amelia Sörensson, Romina Ruscica, Fanny Langerwisch, Maik Billing, Sarah Bereswill, Marina Hirota, Rafael Silva Oliveira, Jens Heinke, and Kirsten Thonicke
Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, https://doi.org/10.5194/bg-18-4091-2021, 2021
Short summary
Short summary
This study shows how local adaptations of tree roots across tropical and sub-tropical South America explain patterns of biome distribution, productivity and evapotranspiration on this continent. By allowing for high diversity of tree rooting strategies in a dynamic global vegetation model (DGVM), we are able to mechanistically explain patterns of mean rooting depth and the effects on ecosystem functions. The approach can advance DGVMs and Earth system models.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
Irene E. Teubner, Matthias Forkel, Benjamin Wild, Leander Mösinger, and Wouter Dorigo
Biogeosciences, 18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021, https://doi.org/10.5194/bg-18-3285-2021, 2021
Short summary
Short summary
Vegetation optical depth (VOD), which contains information on vegetation water content and biomass, has been previously shown to be related to gross primary production (GPP). In this study, we analyzed the impact of adding temperature as model input and investigated if this can reduce the previously observed overestimation of VOD-derived GPP. In addition, we could show that the relationship between VOD and GPP largely holds true along a gradient of dry or wet conditions.
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021, https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary
Short summary
Growth of and irrigation water demand on cotton may be challenged by future climate change. To analyze the global cotton production and irrigation water consumption under spatially varying present and future climatic conditions, we use the global terrestrial biosphere model LPJmL. Our simulation results suggest that the beneficial effects of elevated [CO2] on cotton yields overcompensate yield losses from direct climate change impacts, i.e., without the beneficial effect of [CO2] fertilization.
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary
Short summary
The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Leander Moesinger, Wouter Dorigo, Richard de Jeu, Robin van der Schalie, Tracy Scanlon, Irene Teubner, and Matthias Forkel
Earth Syst. Sci. Data, 12, 177–196, https://doi.org/10.5194/essd-12-177-2020, https://doi.org/10.5194/essd-12-177-2020, 2020
Short summary
Short summary
Vegetation optical depth (VOD) is measured by satellites and is related to the density of vegetation and its water content. VOD has a wide range of uses, including drought, wildfire danger, biomass, and carbon stock monitoring. For the past 30 years there have been various VOD data sets derived from space-borne microwave sensors, but biases between them prohibit a combined use. We removed these biases and merged the data to create the global long-term VOD Climate Archive (VODCA).
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Maarten C. Braakhekke, Jonathan C. Doelman, Peter Baas, Christoph Müller, Sibyll Schaphoff, Elke Stehfest, and Detlef P. van Vuuren
Earth Syst. Dynam., 10, 617–630, https://doi.org/10.5194/esd-10-617-2019, https://doi.org/10.5194/esd-10-617-2019, 2019
Short summary
Short summary
We developed a computer model that simulates forests plantations at global scale and how fast such forests can take up CO2 from the atmosphere. Using this new model, we performed simulations for a scenario in which a large fraction (14 %) of global croplands and pastures are either converted to planted forests or natural forests. We find that planted forests take up CO2 substantially faster than natural forests and are therefore a viable strategy for reducing climate change.
Kirsten Thonicke, Fanny Langerwisch, Matthias Baumann, Pedro J. Leitão, Tomáš Václavík, Ane Alencar, Margareth Simões, Simon Scheiter, Liam Langan, Mercedes Bustamante, Ignacio Gasparri, Marina Hirota, Jan Börner, Raoni Rajao, Britaldo Soares-Filho, Alberto Yanosky, José-Manuel Ochoa-Quinteiro, Lucas Seghezzo, Georgina Conti, and Anne Cristina de la Vega-Leinert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-221, https://doi.org/10.5194/bg-2019-221, 2019
Publication in BG not foreseen
Short summary
Short summary
Tropical dry forests and savannas harbor unique biodiversity and provide critical ecosystem services (ES), yet they are under severe pressure globally. We need to improve our understanding of how and when this pressure provokes tipping points in biodiversity and the associated social-ecological systems. We propose an approach to investigate how drivers leading to natural vegetation decline trigger biodiversity tipping and illustrate it using the example of the Dry Diagonal in South America.
Femke Lutz, Tobias Herzfeld, Jens Heinke, Susanne Rolinski, Sibyll Schaphoff, Werner von Bloh, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 12, 2419–2440, https://doi.org/10.5194/gmd-12-2419-2019, https://doi.org/10.5194/gmd-12-2419-2019, 2019
Short summary
Short summary
Tillage practices are under-represented in global biogeochemical models so that assessments of agricultural greenhouse gas emissions and climate mitigation options are hampered. We describe the implementation of tillage modules into the model LPJmL5.0, including multiple feedbacks between soil water, nitrogen, and productivity. By comparing simulation results with observational data, we show that the model can reproduce reported tillage effects on carbon and water dynamics and crop yields.
Sonja Totz, Stefan Petri, Jascha Lehmann, Erik Peukert, and Dim Coumou
Nonlin. Processes Geophys., 26, 1–12, https://doi.org/10.5194/npg-26-1-2019, https://doi.org/10.5194/npg-26-1-2019, 2019
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Short summary
Weather, humans, and vegetation control the occurrence of fires. In this study we find that global fire–vegetation models underestimate the strong increase of burned area with higher previous-season plant productivity in comparison to satellite-derived relationships.
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203–5215, https://doi.org/10.5194/gmd-11-5203-2018, https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Short summary
We propose a generic approach for a pixel-to-point comparison applicable for evaluation of models and remote-sensing products. We provide statistical measures accounting for the uncertainty in ecosystem variables. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest.
Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle
Geosci. Model Dev., 11, 2789–2812, https://doi.org/10.5194/gmd-11-2789-2018, https://doi.org/10.5194/gmd-11-2789-2018, 2018
Short summary
Short summary
The dynamics of the terrestrial carbon cycle are of central importance for Earth system science. Nutrient limitations, especially from nitrogen, are important constraints on vegetation growth and the terrestrial carbon cycle. We extended the well-established global vegetation, hydrology, and crop model LPJmL with a nitrogen cycle. We find significant improvement in global patterns of crop productivity. Regional differences in crop productivity can now be largely reproduced by the model.
Julia Brugger, Matthias Hofmann, Stefan Petri, and Georg Feulner
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-36, https://doi.org/10.5194/cp-2018-36, 2018
Manuscript not accepted for further review
Short summary
Short summary
To get a deeper understanding of the various evolutionary changes, which took place during the Devonian (419 to 359 Ma), we here use a coupled climate model to investigate the sensitivity of the Devonian climate to changes in orbital forcing, continental configuration and vegetation cover. Our results are summarised by best-guess simulations for the Early, Middle and Late Devonian showing a decreasing temperature trend in accordance with the reconstructed decreasing atmospheric CO2.
Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha
Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, https://doi.org/10.5194/gmd-11-1343-2018, 2018
Short summary
Short summary
Here we provide a comprehensive model description of a global terrestrial biosphere model, named LPJmL4, incorporating the carbon and water cycle and the quantification of agricultural production. The model allows for the consistent and joint quantification of climate and land use change impacts on the biosphere. The model represents the key ecosystem functions, but also the influence of humans on the biosphere. It comes with an evaluation paper to demonstrate the credibility of LPJmL4.
Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha
Geosci. Model Dev., 11, 1377–1403, https://doi.org/10.5194/gmd-11-1377-2018, https://doi.org/10.5194/gmd-11-1377-2018, 2018
Short summary
Short summary
Here we provide a comprehensive evaluation of the now launched version 4.0 of the LPJmL biosphere, water, and agricultural model. The article is the second part to a comprehensive description of the LPJmL4 model. We have evaluated the model against various datasets of satellite observations, agricultural statistics, and in situ measurements by applying a range of metrics. We are able to show that the LPJmL4 model simulates many parameters and relations reasonably.
Sonja Totz, Alexey V. Eliseev, Stefan Petri, Michael Flechsig, Levke Caesar, Vladimir Petoukhov, and Dim Coumou
Geosci. Model Dev., 11, 665–679, https://doi.org/10.5194/gmd-11-665-2018, https://doi.org/10.5194/gmd-11-665-2018, 2018
Susanne Rolinski, Christoph Müller, Jens Heinke, Isabelle Weindl, Anne Biewald, Benjamin Leon Bodirsky, Alberte Bondeau, Eltje R. Boons-Prins, Alexander F. Bouwman, Peter A. Leffelaar, Johnny A. te Roller, Sibyll Schaphoff, and Kirsten Thonicke
Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, https://doi.org/10.5194/gmd-11-429-2018, 2018
Short summary
Short summary
One-third of the global land area is covered with grasslands which are grazed by or mowed for livestock feed. These areas contribute significantly to the carbon capture from the atmosphere when managed sensibly. To assess the effect of this management, we included different options of grazing and mowing into the global model LPJmL 3.6. We found in polar regions even low grazing pressure leads to soil carbon loss whereas in temperate regions up to 1.4 livestock units per hectare can be sustained.
Matthias Forkel, Wouter Dorigo, Gitta Lasslop, Irene Teubner, Emilio Chuvieco, and Kirsten Thonicke
Geosci. Model Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017, https://doi.org/10.5194/gmd-10-4443-2017, 2017
Short summary
Short summary
Wildfires affect infrastructures, vegetation, and the atmosphere. However, it is unclear how fires should be accurately represented in global vegetation models. We introduce here a new flexible data-driven fire modelling approach that allows us to explore sensitivities of burned areas to satellite and climate datasets. Our results suggest combining observations with data-driven and process-oriented fire models to better understand the role of fires in the Earth system.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J. Kolb, Kirsten Thonicke, and Jobst Heitzig
Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, https://doi.org/10.5194/esd-8-977-2017, 2017
Short summary
Short summary
Today, human interactions with the Earth system lead to complex feedbacks between social and ecological dynamics. Modeling such feedbacks explicitly in Earth system models (ESMs) requires making assumptions about individual decision making and behavior, social interaction, and their aggregation. In this overview paper, we compare different modeling approaches and techniques and highlight important consequences of modeling assumptions. We illustrate them with examples from land-use modeling.
Sonja Molnos, Stefan Petri, Jascha Lehmann, Erik Peukert, and Dim Coumou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-65, https://doi.org/10.5194/esd-2017-65, 2017
Manuscript not accepted for further review
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Sonja Molnos, Tarek Mamdouh, Stefan Petri, Thomas Nocke, Tino Weinkauf, and Dim Coumou
Earth Syst. Dynam., 8, 75–89, https://doi.org/10.5194/esd-8-75-2017, https://doi.org/10.5194/esd-8-75-2017, 2017
Fanny Langerwisch, Ariane Walz, Anja Rammig, Britta Tietjen, Kirsten Thonicke, and Wolfgang Cramer
Earth Syst. Dynam., 7, 953–968, https://doi.org/10.5194/esd-7-953-2016, https://doi.org/10.5194/esd-7-953-2016, 2016
Short summary
Short summary
Amazonia is heavily impacted by climate change and deforestation. During annual flooding terrigenous material is imported to the river, converted and finally exported to the ocean or the atmosphere. Changes in the vegetation alter therefore riverine carbon dynamics. Our results show that due to deforestation organic carbon amount will strongly decrease both in the river and exported to the ocean, while inorganic carbon amounts will increase, in the river as well as exported to the atmosphere.
F. Langerwisch, A. Walz, A. Rammig, B. Tietjen, K. Thonicke, and W. Cramer
Earth Syst. Dynam., 7, 559–582, https://doi.org/10.5194/esd-7-559-2016, https://doi.org/10.5194/esd-7-559-2016, 2016
Short summary
Short summary
In Amazonia, carbon fluxes are considerably influenced by annual flooding. We applied the newly developed model RivCM to several climate change scenarios to estimate potential changes in riverine carbon. We find that climate change causes substantial changes in riverine organic and inorganic carbon, as well as changes in carbon exported to the atmosphere and ocean. Such changes could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean.
M. Fader, S. Shi, W. von Bloh, A. Bondeau, and W. Cramer
Hydrol. Earth Syst. Sci., 20, 953–973, https://doi.org/10.5194/hess-20-953-2016, https://doi.org/10.5194/hess-20-953-2016, 2016
Short summary
Short summary
At present, the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems (EICS). By 2080–2090 the region may face an increase in gross irrigation requirements (IRs) of up to 74 % due to climate change and population growth. EICS may be able to compensate to some degree these increases. Most countries in the northern and eastern Mediterranean have a high risk of not being able to meet future IRs due to water scarcity.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
M. Fader, W. von Bloh, S. Shi, A. Bondeau, and W. Cramer
Geosci. Model Dev., 8, 3545–3561, https://doi.org/10.5194/gmd-8-3545-2015, https://doi.org/10.5194/gmd-8-3545-2015, 2015
Short summary
Short summary
This study presents the inclusion of 10 Mediterranean agricultural plants in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses.
The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With this development presented, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture.
W. Greuell, J. C. M. Andersson, C. Donnelly, L. Feyen, D. Gerten, F. Ludwig, G. Pisacane, P. Roudier, and S. Schaphoff
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-10289-2015, https://doi.org/10.5194/hessd-12-10289-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The main aims of this paper are the evaluation of five large-scale hydrological models across Europe and the assessment of the suitability of the models for making projections under climate change. While we found large inter-model differences in biases, the skill to simulate interannual variability in discharge did not differ much between the models. Assuming that the skill of a model to simulate interannual variability provides a measure for the model’s ability to make projections under climate
C. Yue, P. Ciais, P. Cadule, K. Thonicke, and T. T. van Leeuwen
Geosci. Model Dev., 8, 1321–1338, https://doi.org/10.5194/gmd-8-1321-2015, https://doi.org/10.5194/gmd-8-1321-2015, 2015
Short summary
Short summary
We conducted parallel simulations using a global land surface model, with and without fires being included, respectively. When the anthropogenic land cover change fire is excluded, we find that natural wildfires have reduced the global land carbon uptake by 0.3Pg C per year over 1901-2012. This is equivalent to 20% of the land carbon uptake in a world without fire. This fire-induced reduction in carbon uptake could be partly explained by climate variability, in particular the ENSO events.
S. Rolinski, A. Rammig, A. Walz, W. von Bloh, M. van Oijen, and K. Thonicke
Biogeosciences, 12, 1813–1831, https://doi.org/10.5194/bg-12-1813-2015, https://doi.org/10.5194/bg-12-1813-2015, 2015
Short summary
Short summary
Extreme weather events can but do not have to cause extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions.
We use a simple probabilistic risk assessment and apply it to terrestrial ecosystems, defining a hazard as negative net biome productivity. In Europe, ecosystems are vulnerable to drought in the Mediterranean and temperate region, whereas vulnerability in Scandinavia is not caused by water shortages.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
M. Forkel, N. Carvalhais, S. Schaphoff, W. v. Bloh, M. Migliavacca, M. Thurner, and K. Thonicke
Biogeosciences, 11, 7025–7050, https://doi.org/10.5194/bg-11-7025-2014, https://doi.org/10.5194/bg-11-7025-2014, 2014
M. Van Oijen, J. Balkovi, C. Beer, D. R. Cameron, P. Ciais, W. Cramer, T. Kato, M. Kuhnert, R. Martin, R. Myneni, A. Rammig, S. Rolinski, J.-F. Soussana, K. Thonicke, M. Van der Velde, and L. Xu
Biogeosciences, 11, 6357–6375, https://doi.org/10.5194/bg-11-6357-2014, https://doi.org/10.5194/bg-11-6357-2014, 2014
Short summary
Short summary
We use a new risk analysis method, and six vegetation models, to analyse how climate change may alter drought risks in European ecosystems. The conclusions are (1) drought will pose increasing risks to productivity in the Mediterranean area; (2) this is because severe droughts will become more frequent, not because ecosystems will become more vulnerable; (3) future C sequestration will be at risk because carbon gain in primary productivity will be more affected than carbon loss in respiration.
C. Yue, P. Ciais, P. Cadule, K. Thonicke, S. Archibald, B. Poulter, W. M. Hao, S. Hantson, F. Mouillot, P. Friedlingstein, F. Maignan, and N. Viovy
Geosci. Model Dev., 7, 2747–2767, https://doi.org/10.5194/gmd-7-2747-2014, https://doi.org/10.5194/gmd-7-2747-2014, 2014
Short summary
Short summary
ORCHIDEE-SPITFIRE model could moderately capture the decadal trend and variation of burned area during the 20th century, and the spatial and temporal patterns of contemporary vegetation fires. The model has a better performance in simulating fires for regions dominated by climate-driven fires, such as boreal forests. However, it has limited capability to reproduce the infrequent but important large fires in different ecosystems, where urgent model improvement is needed in the future.
M. Willeit, A. Ganopolski, and G. Feulner
Biogeosciences, 11, 17–32, https://doi.org/10.5194/bg-11-17-2014, https://doi.org/10.5194/bg-11-17-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
H. Kienert, G. Feulner, and V. Petoukhov
Clim. Past, 9, 1841–1862, https://doi.org/10.5194/cp-9-1841-2013, https://doi.org/10.5194/cp-9-1841-2013, 2013
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
C. F. Schleussner and G. Feulner
Clim. Past, 9, 1321–1330, https://doi.org/10.5194/cp-9-1321-2013, https://doi.org/10.5194/cp-9-1321-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
Related subject area
Climate and Earth system modeling
Evaluation of native Earth system model output with ESMValTool v2.6.0
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Accelerated photosynthesis routine in LPJmL4
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Temperature forecasting by deep learning methods
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: a case study over the coastal regions of North China
Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States
SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics
Impacts of the ice-particle size distribution shape parameter on climate simulations with the Community Atmosphere Model Version 6 (CAM6)
A modeling framework to understand historical and projected ocean climate change in large coupled ensembles
TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
The Moist Quasi-Geostrophic Coupled Model: MQ-GCM 2.0
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
Transport parameterization of the Polar SWIFT model (version 2)
Analog data assimilation for the selection of suitable general circulation models
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Grid refinement in ICON v2.6.4
Classification of tropical cyclone containing images using a convolutional neural network: performance and sensitivity to the learning dataset
The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514)
Further improvement and evaluation of nudging in the E3SM Atmosphere Model version 1 (EAMv1): simulations of the mean climate, weather events, and anthropogenic aerosol effects
HORAYZON v1.2: an efficient and flexible ray-tracing algorithm to compute horizon and sky view factor
LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism
Downscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44
Intercomparison of four algorithms for detecting tropical cyclones using ERA5
Inland lake temperature initialization via coupled cycling with atmospheric data assimilation
wavetrisk-2.1: an adaptive dynamical core for ocean modelling
Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime
AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model
The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system using the Community Earth System Model version 2
Combining Regional Mesh Refinement With Vertically Enhanced Physics to Target Marine Stratocumulus Biases
Comparison and evaluation of updates to WRF-Chem (v3.9) biogenic emissions using MEGAN
Checkerboard patterns in E3SMv2 and E3SM-MMFv2
AttentionFire_v1.0: interpretable machine learning fire model for burned area predictions over tropics
MIdASv0.2.1 – MultI-scale bias AdjuStment
Assessing methods for representing soil heterogeneity through a flexible approach within the Joint UK Land Environment Simulator (JULES) at version 3.4.1
Monthly-Scale Extended Predictions Using the Atmospheric Model Coupled with a Slab-Ocean
FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023, https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023, https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868, https://doi.org/10.5194/gmd-15-8831-2022, https://doi.org/10.5194/gmd-15-8831-2022, 2022
Short summary
Short summary
We developed a new simple climate model designed to fill a perceived gap within the existing simple climate models by fulfilling three key requirements: calibration using Bayesian inference, the possibility of coupling with integrated assessment models, and the capacity to explore climate scenarios compatible with limiting climate impacts. Here, we describe the model and its calibration using the latest data from complex CMIP6 models and the IPCC AR6, and we assess its performance.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Adama Sylla, Emilia Sanchez Gomez, Juliette Mignot, and Jorge López-Parages
Geosci. Model Dev., 15, 8245–8267, https://doi.org/10.5194/gmd-15-8245-2022, https://doi.org/10.5194/gmd-15-8245-2022, 2022
Short summary
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
Jadwiga H. Richter, Daniele Visioni, Douglas G. MacMartin, David A. Bailey, Nan Rosenbloom, Brian Dobbins, Walker R. Lee, Mari Tye, and Jean-Francois Lamarque
Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, https://doi.org/10.5194/gmd-15-8221-2022, 2022
Short summary
Short summary
Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI).
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Entao Yu, Rui Bai, Xia Chen, and Lifang Shao
Geosci. Model Dev., 15, 8111–8134, https://doi.org/10.5194/gmd-15-8111-2022, https://doi.org/10.5194/gmd-15-8111-2022, 2022
Short summary
Short summary
A large number of simulations are conducted to investigate how different physical parameterization schemes impact surface wind simulations under stable weather conditions over the coastal regions of North China using the Weather Research and Forecasting model with a horizontal grid spacing of 0.5 km. Results indicate that the simulated wind speed is most sensitive to the planetary boundary layer schemes, followed by short-wave/long-wave radiation schemes and microphysics schemes.
Xingying Huang, Andrew Gettelman, William C. Skamarock, Peter Hjort Lauritzen, Miles Curry, Adam Herrington, John T. Truesdale, and Michael Duda
Geosci. Model Dev., 15, 8135–8151, https://doi.org/10.5194/gmd-15-8135-2022, https://doi.org/10.5194/gmd-15-8135-2022, 2022
Short summary
Short summary
We focus on the recent development of a state-of-the-art storm-resolving global climate model and investigate how this next-generation model performs for precipitation prediction over the western USA. Results show realistic representations of precipitation with significantly enhanced snowpack over complex terrains. The model evaluation advances the unified modeling of large-scale forcing constraints and realistic fine-scale features to advance multi-scale climate predictions and changes.
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Wentao Zhang, Xiangjun Shi, and Chunsong Lu
Geosci. Model Dev., 15, 7751–7766, https://doi.org/10.5194/gmd-15-7751-2022, https://doi.org/10.5194/gmd-15-7751-2022, 2022
Short summary
Short summary
The two-moment bulk cloud microphysics scheme used in CAM6 was modified to consider the impacts of the ice-crystal size distribution shape parameter (μi). After that, how the μi impacts cloud microphysical processes and then climate simulations is clearly illustrated by offline tests and CAM6 model experiments. Our results and findings are useful for the further development of μi-related parameterizations.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf
Geosci. Model Dev., 15, 7489–7504, https://doi.org/10.5194/gmd-15-7489-2022, https://doi.org/10.5194/gmd-15-7489-2022, 2022
Short summary
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-202, https://doi.org/10.5194/gmd-2022-202, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Cell tracking algorithms allow the properties of a convective cell to be studied across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm’s criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022, https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Short summary
We present a new approach to validate numerical simulations of the current climate. The method can take advantage of existing climate simulations produced by different centers combining an analog forecasting approach with data assimilation to quantify how well a particular model reproduces a sequence of observed values. The method can be applied with different observations types and is implemented locally in space and time significantly reducing the associated computational cost.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Günther Zängl, Daniel Reinert, and Florian Prill
Geosci. Model Dev., 15, 7153–7176, https://doi.org/10.5194/gmd-15-7153-2022, https://doi.org/10.5194/gmd-15-7153-2022, 2022
Short summary
Short summary
This article describes the implementation of grid refinement in the ICOsahedral Nonhydrostatic (ICON) model, which has been jointly developed at several German institutions and constitutes a unified modeling system for global and regional numerical weather prediction and climate applications. The grid refinement allows using a higher resolution in regional domains and transferring the information back to the global domain by means of a feedback mechanism.
Sébastien Gardoll and Olivier Boucher
Geosci. Model Dev., 15, 7051–7073, https://doi.org/10.5194/gmd-15-7051-2022, https://doi.org/10.5194/gmd-15-7051-2022, 2022
Short summary
Short summary
Tropical cyclones (TCs) are one of the most devastating natural disasters, which justifies monitoring and prediction in the context of a changing climate. In this study, we have adapted and tested a convolutional neural network (CNN) for the classification of reanalysis outputs (ERA5 and MERRA-2 labeled by HURDAT2) according to the presence or absence of TCs. We tested the impact of interpolation and of "mixing and matching" the training and test sets on the performance of the CNN.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Shixuan Zhang, Kai Zhang, Hui Wan, and Jian Sun
Geosci. Model Dev., 15, 6787–6816, https://doi.org/10.5194/gmd-15-6787-2022, https://doi.org/10.5194/gmd-15-6787-2022, 2022
Short summary
Short summary
This study investigates the nudging implementation in the EAMv1 model. We find that (1) revising the sequence of calculations and using higher-frequency constraining data to improve the performance of a simulation nudged to EAMv1’s own meteorology, (2) using the relocated nudging tendency and 3-hourly ERA5 reanalysis to obtain a better agreement between nudged simulations and observations, and (3) using wind-only nudging are recommended for the estimates of global mean aerosol effects.
Christian R. Steger, Benjamin Steger, and Christoph Schär
Geosci. Model Dev., 15, 6817–6840, https://doi.org/10.5194/gmd-15-6817-2022, https://doi.org/10.5194/gmd-15-6817-2022, 2022
Short summary
Short summary
Terrain horizon and sky view factor are crucial quantities for many geoscientific applications; e.g. they are used to account for effects of terrain on surface radiation in climate and land surface models. Because typical terrain horizon algorithms are inefficient for high-resolution (< 30 m) elevation data, we developed a new algorithm based on a ray-tracing library. A comparison with two conventional methods revealed both its high performance and its accuracy for complex terrain.
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022, https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Short summary
We present a number of augmentations to the ecosystem model LPJ-GUESS, which will allow us to use it in studies of the interactions between the land biosphere and the climate. The new module enables calculation of fluxes of energy and water into the atmosphere that are consistent with the modelled vegetation processes. The modelled fluxes are in fair agreement with observations across 21 sites from the FLUXNET network.
Jorge Baño-Medina, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesús Fernández, Jose González-Abad, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 6747–6758, https://doi.org/10.5194/gmd-15-6747-2022, https://doi.org/10.5194/gmd-15-6747-2022, 2022
Short summary
Short summary
Deep neural networks are used to produce downscaled regional climate change projections over Europe for temperature and precipitation for the first time. The resulting dataset, DeepESD, is analyzed against state-of-the-art downscaling methodologies, reproducing more accurately the observed climate in the historical period and showing plausible future climate change signals with low computational requirements.
Stella Bourdin, Sébastien Fromang, William Dulac, Julien Cattiaux, and Fabrice Chauvin
Geosci. Model Dev., 15, 6759–6786, https://doi.org/10.5194/gmd-15-6759-2022, https://doi.org/10.5194/gmd-15-6759-2022, 2022
Short summary
Short summary
When studying tropical cyclones in a large dataset, one needs objective and automatic procedures to detect their specific pattern. Applying four different such algorithms to a reconstruction of the climate, we show that the choice of the algorithm is crucial to the climatology obtained. Mainly, the algorithms differ in their sensitivity to weak storms so that they provide different frequencies and durations. We review the different options to consider for the choice of the tracking methodology.
Stanley G. Benjamin, Tatiana G. Smirnova, Eric P. James, Eric J. Anderson, Ayumi Fujisaki-Manome, John G. W. Kelley, Greg E. Mann, Andrew D. Gronewold, Philip Chu, and Sean G. T. Kelley
Geosci. Model Dev., 15, 6659–6676, https://doi.org/10.5194/gmd-15-6659-2022, https://doi.org/10.5194/gmd-15-6659-2022, 2022
Short summary
Short summary
Application of 1-D lake models coupled within earth-system prediction models will improve accuracy but requires accurate initialization of lake temperatures. Here, we describe a lake initialization method by cycling within a weather prediction model to constrain lake temperature evolution. We compared these lake temperature values with other estimates and found much reduced errors (down to 1-2 K). The lake cycling initialization is now applied to two operational US NOAA weather models.
Nicholas K.-R. Kevlahan and Florian Lemarié
Geosci. Model Dev., 15, 6521–6539, https://doi.org/10.5194/gmd-15-6521-2022, https://doi.org/10.5194/gmd-15-6521-2022, 2022
Short summary
Short summary
WAVETRISK-2.1 is an innovative climate model for the world's oceans. It uses state-of-the-art techniques to change the model's resolution locally, from O(100 km) to O(5 km), as the ocean changes. This dynamic adaptivity makes optimal use of available supercomputer resources, and allows two-dimensional global scales and three-dimensional submesoscales to be captured in the same simulation. WAVETRISK-2.1 is designed to be coupled its companion global atmosphere model, WAVETRISK-1.x.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-175, https://doi.org/10.5194/gmd-2022-175, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Models that are used to simulated and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper we develop a novel framework that increases the horizontal and vertical resolution only for areas of the globe that contain stratocumulus, hence reducing model run-time while providing better results.
Mauro Morichetti, Sasha Madronich, Giorgio Passerini, Umberto Rizza, Enrico Mancinelli, Simone Virgili, and Mary Barth
Geosci. Model Dev., 15, 6311–6339, https://doi.org/10.5194/gmd-15-6311-2022, https://doi.org/10.5194/gmd-15-6311-2022, 2022
Short summary
Short summary
In the present study, we explore the effect of making simple changes to the existing WRF-Chem MEGAN v2.04 emissions to provide MEGAN updates that can be used independently of the land surface model chosen. The changes made to the MEGAN algorithm implemented in WRF-Chem were the following: (i) update of the emission activity factors, (ii) update of emission factor values for each plant functional type (PFT), and (iii) the assignment of the emission factor by PFT to isoprene.
Walter Hannah, Kyle Pressel, Mikhail Ovchinnikov, and Gregory Elsaesser
Geosci. Model Dev., 15, 6243–6257, https://doi.org/10.5194/gmd-15-6243-2022, https://doi.org/10.5194/gmd-15-6243-2022, 2022
Short summary
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified, and a solution for one configuration is discussed.
Fa Li, Qing Zhu, William Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James Randerson
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-195, https://doi.org/10.5194/gmd-2022-195, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
In this work, we developed an interpretable machine learning model to predict sub-seasonal and near future wildfire burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 month) from local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning model result in high accurate predictions of wildfire burned area, also will help develop relevant early warming and management system for tropical wildfire.
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022, https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
Short summary
When performing impact analyses with climate models, one is often confronted with the issue that the models have significant bias. Commonly, the modelled climatological temperature deviates from the observed climate by a few degrees or it rains excessively in the model. MIdAS employs a novel statistical model to translate the model climatology toward that observed using novel methodologies and modern tools. The coding platform allows opportunities to develop methods for high-resolution models.
Heather Suzanne Rumbold, Richard J. J. Gilham, and Martin John Best
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-139, https://doi.org/10.5194/gmd-2022-139, 2022
Preprint under review for GMD
Short summary
Short summary
The Joint UK Land Environment Simulator (JULES) uses a tiled representation of land cover but can only model a single dominant soil type within a grid box, hence there is no representation of sub-grid soil heterogeneity. This paper evaluates a new surface-soil tiling scheme in JULES and demonstrates the impacts of the scheme using several soil tiling approaches. Results show that soil tiling has an impact on the water and energy exchanges due to the way vegetation accesses the soil moisture.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-159, https://doi.org/10.5194/gmd-2022-159, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified SOM to restrict the complicated SST bias from 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have the performance than that of the WRF-ROMS, which has a significant impact on the atmosphere. For the extreme weather event such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Cited articles
Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O.,
Dunne, J. P., Griffies, S. M., Hallberg, R., Harrison, M. J., Held, I. M.,
Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg, S.,
Liang, Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels,
B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B.,
Zadeh, N., and Zhang, R.: The GFDL Global Ocean and Sea Ice Model OM4.0:
Model Description and Simulation Features, J. Adv. Model.
Earth Sy., 11, 3167–3211, https://doi.org/10.1029/2019MS001726, 2019. a
Alkama, R. and Cescatti, A.: Climate change: Biophysical climate impacts of
recent changes in global forest cover, Science, 351, 600–604,
https://doi.org/10.1126/science.aac8083, 2016. a
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones,
C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean
components of the global carbon cycle in the CMIP5 earth system models,
J. Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013. a
Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L.,
Dixon, K. W., Donner, L. J., Dunne, K. A., Freidenreich, S. M., Garner,
S. T., Gudgel, R. G., Gordon, C. T., Held, I. M., Hemler, R. S., Horowitz,
L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhost, A. R., Lau,
N. C., Liang, Z., Malyshev, S. L., Milly, P. C. D., Nath, M. J., Ploshay,
J. J., Ramaswamy, V., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J.,
Soden, B. J., Stern, W. F., Thompson, L. A., Wilson, R. J., Wittenberg,
A. T., and Wyman, B. L.: The new GFDL global atmosphere and land model
AM2-LM2: Evaluation with prescribed SST simulations, J. Climate, 17,
4641–4673, https://doi.org/10.1175/JCLI-3223.1, 2004. a, b, c, d, e
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a
Bonan, G.
B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation
model for use with climate models: Concepts and description of simulated vegetation
dynamics, Global Change Biol., 9, https://doi.org/10.1046/j.1365-2486.2003.00681.x, 2003. a
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith,
B.: Modelling the role of agriculture for the 20th century global
terrestrial carbon balance, Global Change Biol., 13, 679–706,
https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007. a, b
Boysen, L. R., Brovkin, V., Pongratz, J., Lawrence, D. M., Lawrence, P., Vuichard, N., Peylin, P., Liddicoat, S., Hajima, T., Zhang, Y., Rocher, M., Delire, C., Séférian, R., Arora, V. K., Nieradzik, L., Anthoni, P., Thiery, W., Laguë, M. M., Lawrence, D., and Lo, M.-H.: Global climate response to idealized deforestation in CMIP6 models, Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, 2020. a, b
Chapin, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A., and Field,
C. B.: Changing feedbacks in the climate-biosphere system, Front.
Ecol. Environ., 6, 313–320, https://doi.org/10.1890/080005, 2008. a
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler,
D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach,
D. M., and Stewart, M. F.: Global frequency and distribution of lightning as
observed from space by the Optical Transient Detector, J. Geophys. Res.-Atmos., 108, 4–1, https://doi.org/10.1029/2002JD002347, 2003. a
Clark, D. A., Clark, D. B., and Oberbauer, S. F.: Field-quantified responses
of tropical rainforest aboveground productivity to increasing CO2 and
climatic stress, 1997–2009, J. Geophys. Res.-Biogeo.,
118, 783–794, https://doi.org/10.1002/jgrg.20067, 2013. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J.,
Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N.,
and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E., Duursma, R. A., Abramowitz, G., Wang, Y.-P., and Miralles, D. G.: A test of an optimal stomatal conductance scheme within the CABLE land surface model, Geosci. Model Dev., 8, 431–452, https://doi.org/10.5194/gmd-8-431-2015, 2015. a
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A.,
Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux,
P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M.,
Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A.
R., Lee, H., Lin, S., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J.,
Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M.,
Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 global coupled climate models. Part I: Formulation and
simulation characteristics, J. Climate, 19, 643–674, 2006. a, b, c
Drüke, M.: Output data for the GMD publication gmd-2020-436 [data set], Zenodo, https://doi.org/10.5281/zenodo.4683086, 2021. a
Drüke, M., Forkel, M., von Bloh, W., Sakschewski, B., Cardoso, M., Bustamante, M., Kurths, J., and Thonicke, K.: Improving the LPJmL4-SPITFIRE vegetation–fire model for South America using satellite data, Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, 2019. a, b, c
Drüke, M., Petri, S., von Bloh, W., and Schaphoff, S.: Model code for the GMD publication gmd-2020-436 (Version 1.0) [code], Zenodo, https://doi.org/10.5281/zenodo.4700270, 2021. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fader, M., Rost, S., Mueller, C., Bondeau, A., and Gerten, D.: Virtual water
content of temperate cereals and maize: Present and potential future
patterns, J. Hydrol., 384, 218–231, https://doi.org/10.1016/j.jhydrol.2009.12.011,
2010. a, b
Fisher, R. A., Koven, C. D., Anderegg, W. R., Christoffersen, B. O., Dietze,
M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence,
P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K.,
Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu,
X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System
Models: A review of progress and priorities, Global Change Biol., 24,
35–54, https://doi.org/10.1111/gcb.13910, 2018. a
Forkel, M., Carvalhais, N., Schaphoff, S., v. Bloh, W., Migliavacca, M., Thurner, M., and Thonicke, K.: Identifying environmental controls on vegetation greenness phenology through model–data integration, Biogeosciences, 11, 7025–7050, https://doi.org/10.5194/bg-11-7025-2014, 2014. a, b
Forkel, M., Drüke, M., Thurner, M., Dorigo, W., Schaphoff, S.,
Thonicke, K., von Bloh, W., and Carvalhais, N.: Constraining modelled global vegetation
dynamics and carbon turnover using multiple satellite observations, Sci. Rep., 9, 18757, https://doi.org/10.1038/s41598-019-55187-7, 2019. a
Forrest, M., Tost, H., Lelieveld, J., and Hickler, T.: Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53), Geosci. Model Dev., 13, 1285–1309, https://doi.org/10.5194/gmd-13-1285-2020, 2020. a, b
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski,
L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K.,
Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R.,
Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K.,
Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F.,
Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova,
V., Marc, R., Müller Schmied, H., Mouratiadou, I., Pierson, D.,
Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A.,
Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K.,
Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.:
Assessing the impacts of 1.5 ∘C global warming – simulation
protocol of the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP2b), European Geosciences Union,
available at: http://eprints.nottingham.ac.uk/48771 (last access: 30 November 2020), 2017. a
Galbraith, E. D., Kwon, E. Y., Gnanadesikan, A., Rodgers, K. B., Griffies,
S. M., Bianchi, D., Sarmiento, J. L., Dunne, J. P., Simeon, J., Slater,
R. D., Wittenberg, A. T., and Held, I. M.: Climate variability and
radiocarbon in the CM2Mc earth system model, J. Climate, 24,
4230–4254, https://doi.org/10.1175/2011JCLI3919.1, 2011. a, b, c, d, e, f, g, h, i, j, k, l
Gelfan, A. N., Pomeroy, J. W., and Kuchment, L. S.: Modeling forest cover
influences on snow accumulation, sublimation, and melt, J.
Hydrometeorol., 5, 785–803,
https://doi.org/10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2, 2004. a
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terrestrial vegetation and water balance – hydrological evaluation of a
dynamic global vegetation model, J. Hydrol., 286, 249–270,
https://doi.org/10.1016/j.jhydrol.2003.09.029, 2004. a, b
Gkatsopoulos, P.: A Methodology for Calculating Cooling from Vegetation
Evapotranspiration for Use in Urban Space Microclimate Simulations, Proc.
Environ. Sci., 38, 477–484, https://doi.org/10.1016/j.proenv.2017.03.139,
2017. a
Goldewijk, K. K., Beusen, A., van Drecht, G., and de Vos, M.: The HYDE 3.1
spatially explicit database of human-induced global land-use change over the
past 12 000 years, Global Ecol. Biogeogr., 20, 73–86,
https://doi.org/10.1111/j.1466-8238.2010.00587.x, 2011. a
Green, J. K., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D.,
Kolassa, J., Lee, J. E., and Gentine, P.: Regionally strong feedbacks
between the atmosphere and terrestrial biosphere, Nat. Geosci., 10,
410–414, https://doi.org/10.1038/ngeo2957, 2017. a, b
Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison, M. J., Rosati, A., Russell, J. L., Samuels, B. L., Spelman, M. J., Winton, M., and Zhang, R.: Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45–79, https://doi.org/10.5194/os-1-45-2005, 2005. a
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020. a, b
Harper, A. B., Wiltshire, A. J., Cox, P. M., Friedlingstein, P., Jones, C. D., Mercado, L. M., Sitch, S., Williams, K., and Duran-Rojas, C.: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types, Geosci. Model Dev., 11, 2857–2873, https://doi.org/10.5194/gmd-11-2857-2018, 2018. a
Heyder, U., Schaphoff, S., Gerten, D., and Lucht, W.: Risk of severe
climate change impact on the terrestrial biosphere, Environ. Res. Lett., 6, 034036, https://doi.org/10.1088/1748-9326/6/3/034036, 2011. a
Hoffmann, W. A. and Jackson, R. B.: Vegetation-climate feedbacks in the
conversion of tropical savanna to Grassland, J. Climate, 13,
1593–1602, https://doi.org/10.1175/1520-0442(2000)013<1593:VCFITC>2.0.CO;2, 2000. a
Huntingford, C. and Monteith, J. L.: The behaviour of a mixed-layer model of
the convective boundary layer coupled to a big leaf model of surface energy
partitioning, Bound.-Lay. Meteorol., 88, 87–101,
https://doi.org/10.1023/A:1001110819090, 1998. a
Kattsov, V., Federation, R., Reason, C., Africa, S., Uk, A. A., Uk, T. A.,
Baehr, J., Uk, A. B.-s., Catto, J., Canada, J. S., and Uk, A. S.: Evaluation
of climate models (AR5), Climate Change 2013 the Physical Science Basis:
Working Group I Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 9781107057, 741–866,
https://doi.org/10.1017/CBO9781107415324.020, 2013. a, b, c, d, e, f
Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and Willis, K. O.: A comprehensive benchmarking system for evaluating global vegetation models, Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, 2013. a
Kim, H., Lee, M. I., Cha, D. H., Lim, Y. K., and Putman, W. M.: Improved
representation of the diurnal variation of warm season precipitation by an
atmospheric general circulation model at a 10 km horizontal resolution,
Clim. Dynam., 53, 6523–6542, https://doi.org/10.1007/s00382-019-04943-6, 2019. a
Körner, C.: CO2 Fertilization: The Great Uncertainty in Future
Vegetation Development, in: Vegetation Dynamics & Global Change, pp.
53–70, Springer US, https://doi.org/10.1007/978-1-4615-2816-6_3, 1993. a
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cycles, 19, 1–33, https://doi.org/10.1029/2003GB002199,
2005. a
Kueppers, L. M., Snyder, M. A., and Sloan, L. C.: Irrigation cooling effect:
Regional climate forcing by land-use change, Geophys. Res. Lett.,
34, 1–5, https://doi.org/10.1029/2006GL028679, 2007. a
Lenssen, N. J., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy,
R., and Zyss, D.: Improvements in the GISTEMP Uncertainty Model, J.
Geophys. Res.-Atmos., 124, 6307–6326,
https://doi.org/10.1029/2018JD029522, 2019. a, b, c
Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, 2015. a
Levis, S.: Modeling vegetation and land use in models of the Earth System,
Wiley Interdisciplinary Reviews: Climate Change, 1, 840–856,
https://doi.org/10.1002/wcc.83, 2010. a, b
Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R. A., and Peng, S.: Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015), Earth Syst. Sci. Data, 10, 219–234, https://doi.org/10.5194/essd-10-219-2018, 2018. a
Lin, S. J.: A “vertically Lagrangian” finite-volume dynamical core for global
models, Mon. Weather Rev., 132, 2293–2307,
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004. a
Lutz, F., Herzfeld, T., Heinke, J., Rolinski, S., Schaphoff, S., von Bloh, W., Stoorvogel, J. J., and Müller, C.: Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage), Geosci. Model Dev., 12, 2419–2440, https://doi.org/10.5194/gmd-12-2419-2019, 2019. a
Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E.,
Churkina, G., Don, A., Erb, K., Ferlicoq, M., Gielen, B., Grünwald, T.,
Houghton, R. A., Klumpp, K., Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T.,
Lohila, A., Loustau, D., McGrath, M. J., Meyfroidt, P., Moors, E. J., Naudts,
K., Novick, K., Otto, J., Pilegaard, K., Pio, C. A., Rambal, S., Rebmann, C.,
Ryder, J., Suyker, A. E., Varlagin, A., Wattenbach, M., and Dolman, A. J.:
Land management and land-cover change have impacts of similar magnitude on
surface temperature, Nat. Clim. Change, 4, 389–393,
https://doi.org/10.1038/nclimate2196, 2014. a, b
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.:
Reconciling the optimal and empirical approaches to modelling stomatal
conductance, Global Change Biol., 17, 2134–2144,
https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011. a
Monteith, J. L.: Rothamsted Repository Download, Symposia of the Society for
Experimental Biology, Cambridge University Press (CUP) Cambridge, 205–234, 1965. a
Mueller, B. and Seneviratne, S. I.: Systematic land climate and
evapotranspiration biases in CMIP5 simulations, Geophys. Res.
Lett., 41, 128–134, https://doi.org/10.1002/2013GL058055, 2014. a
Murray, R. J.: Explicit generation of orthogonal grids for ocean models,
J. Comput. Phys., 126, 251–273,
https://doi.org/10.1006/jcph.1996.0136, 1996. a
Nachtergaele, F. O., van Velthuizen, H. T., and Verelst, L.: Harmonized World
Soil Database, available at: http://pure.iiasa.ac.at/id/eprint/8958 (last access: 30 November 2020), 2009. a
Nyawira, S. S., Nabel, J. E. M. S., Don, A., Brovkin, V., and Pongratz, J.: Soil carbon response to land-use change: evaluation of a global vegetation model using observational meta-analyses, Biogeosciences, 13, 5661–5675, https://doi.org/10.5194/bg-13-5661-2016, 2016. a
Pokhrel, Y. N., Hanasaki, N., Wada, Y., and Kim, H.: Recent progresses in
incorporating human land-water management into global land surface models
toward their integration into Earth system models, Wiley Interdisciplinary
Reviews: Water, 3, 548–574, https://doi.org/10.1002/wat2.1150, 2016. a, b
Prentice, I. C., Bondeau, A., Cramer, W., Harrison,
S. P., Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: Dynamic Global
Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale
Environmental Change, in: Terrestrial
Ecosystems in a Changing World. Global Change – The IGBP Series, edited by: Canadell, J. G., Pataki, D. E., and Pitelka, L. F., Springer, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-540-32730-1_15, 2007. a
Quillet, A., Peng, C., and Garneau, M.: Toward dynamic global vegetation
models for simulating vegetation-climate interactions and feedbacks: Recent
developments, limitations, and future challenges, Environ. Rev., 18,
333–353, https://doi.org/10.1139/A10-016, 2010. a, b
Randall, D. A., Harshvardhan, and Dazlich, D. A.: Diurnal variability of the
hydrologic cycle in a general circulation model, J. Atmos.
Sci., 48, 40–62, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2,
1991. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., Toll, D., Rodell, M., Houser, P. R.,
Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K.,
Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P.,
Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B.
Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. a
Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., and Thonicke, K.: Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6, Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, 2018. a
Ronda, R. J., Haarsma, R. J., and Holtslag, A. A.: Representing the
atmospheric boundary layer in climate models of intermediate complexity,
Clim. Dynam., 21, 327–335, https://doi.org/10.1007/s00382-003-0338-0, 2003. a
Sakschewski, B., von Bloh, W., Drüke, M., Sörensson, A. A., Ruscica, R., Langerwisch, F., Billing, M., Bereswill, S., Hirota, M., Oliveira, R. S., Heinke, J., and Thonicke, K.: Variable tree rooting strategies improve tropical productivity and evapotranspiration in a dynamic global vegetation model, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-97, in review, 2020. a, b
Santoro, M.: GlobBiomass – global datasets of forest biomass, PANGAEA,
https://doi.org/10.1594/PANGAEA.894711, 2018. a
Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D., Avitabilie, V., Araza, A., de Bruin, S., Herold, M., Quegan, S., Rodríguez Veiga, P., Balzter, H., Carreiras, J., Schepaschenko, D., Korets, M., Shimada, M., Itoh, T., Moreno Martínez, Á., Cavlovic, J., Cazzolla Gatti, R., da Conceição Bispo, P., Dewnath, N., Labrière, N., Liang, J., Lindsell, J., Mitchard, E. T. A., Morel, A., Pacheco Pascagaza, A. M., Ryan, C. M., Slik, F., Vaglio Laurin, G., Verbeeck, H., Wijaya, A., and Willcock, S.: The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-148, in review, 2020. a
Schaphoff, S., Heyder, U., Ostberg, S., Gerten, D., Heinke, J., and Lucht, W.:
Contribution of permafrost soils to the global carbon budget, Environ. Res.
Lett., 8, 14026, https://doi.org/10.1088/1748-9326/8/1/014026, 2013. a
Schaphoff, S., Forkel, M., Müller, C., Knauer, J., von Bloh, W., Gerten, D., Jägermeyr, J., Lucht, W., Rammig, A., Thonicke, K., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation, Geosci. Model Dev., 11, 1377–1403, https://doi.org/10.5194/gmd-11-1377-2018, 2018a. a, b
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description, Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, 2018b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model,
Global Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x,
2003. a, b
Strengers, B. J., Müller, C., Schaeffer, M., Haarsma, R. J., Severijns,
C., Gerten, D., Schaphoff, S., Van Den Houdt, R., and Oostenrijk, R.:
Assessing 20th century climate-vegetation feedbacks of land-use change and
natural vegetation dynamics in a fully coupled vegetation-climate model,
Int. J. Climatol., 30, 2055–2065, https://doi.org/10.1002/joc.2132,
2010. a, b, c, d, e
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010. a, b, c, d
Unger, N.: Human land-use-driven reduction of forest volatiles cools global
climate, Nat. Clim. Change, 4, 907–910, https://doi.org/10.1038/nclimate2347,
2014. a
Verheijen, L. M., Brovkin, V., Aerts, R., Bönisch, G., Cornelissen, J. H. C., Kattge, J., Reich, P. B., Wright, I. J., and van Bodegom, P. M.: Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis, Biogeosciences, 10, 5497–5515, https://doi.org/10.5194/bg-10-5497-2013, 2013. a
Viterbo, P.: A review of parametrization schemes for land surface processes,
Training Course Lecture Series, ECMWF, 1–49,
available at: http://193.63.95.1/newsevents/training/rcourse_notes/pdf_files/Land_surface_processes.pdf (last access: 30 November 2020),
2002.
a
von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K., and Zaehle, S.: Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), Geosci. Model Dev., 11, 2789–2812, https://doi.org/10.5194/gmd-11-2789-2018, 2018. a, b, c, d, e, f, g
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011. a
Zhao, M., Golaz, J. C., Held, I. M., Guo, H., Balaji, V., Benson, R., Chen,
J. H., Chen, X., Donner, L. J., Dunne, J. P., Dunne, K., Durachta, J., Fan,
S. M., Freidenreich, S. M., Garner, S. T., Ginoux, P., Harris, L. M.,
Horowitz, L. W., Krasting, J. P., Langenhorst, A. R., Liang, Z., Lin, P.,
Lin, S. J., Malyshev, S. L., Mason, E., Milly, P. C., Ming, Y., Naik, V.,
Paulot, F., Paynter, D., Phillipps, P., Radhakrishnan, A., Ramaswamy, V.,
Robinson, T., Schwarzkopf, D., Seman, C. J., Shevliakova, E., Shen, Z., Shin,
H., Silvers, L. G., Wilson, J. R., Winton, M., Wittenberg, A. T., Wyman, B.,
and Xiang, B.: The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1.
Simulation Characteristics With Prescribed SSTs, J. Adv.
Model. Earth Sy., 10, 691–734, https://doi.org/10.1002/2017MS001208, 2018. a
Zhou, M. C., Ishidaira, H., and Takeuchi, K.: Estimation of potential
evapotranspiration over the Yellow River basin: Reference crop evaporation or
Shuttleworth-Wallace?, Hydrol. Process., 21, 1860–1874,
https://doi.org/10.1002/hyp.6339, 2006. a
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais,
P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E.,
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
Peuelas, J., Poulter, B., Pugh, T. A., Stocker, B. D., Viovy, N., Wang, X.,
Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the
Earth and its drivers, Nat. Clim. Change, 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016. a
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
In this study, we couple the well-established and comprehensively validated state-of-the-art...
Special issue